Algèbre linéaire sans réduction

Noyaux, images et rangs

Exercice 1 (Mines)* Soient E un espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

- 1. Montrer l'équivalence entre les trois propriétés suivantes :
 - (i) $\operatorname{Im}(u) = \operatorname{Im}(u^2)$ (ii) $\operatorname{Ker}(u) = \operatorname{Ker}(u^2)$ (iii) $E = \operatorname{Im}(u) \oplus \operatorname{Ker}(u)$.
- 2. Donner des exemples d'endomorphismes vérifiant ces propriétés.
- 3. L'équivalence est-elle vraie en dimension infinie? Montrer que (i) et (ii) équivaut à (iii).

Exercice 2 (Mines) Soit E un espace vectoriel de dimension n. Montrer que, pour $f \in \mathcal{L}(E)$, on a équivalence entre

1.
$$\ker f = \operatorname{Im} f$$

2.
$$\begin{cases} f \circ f = 0 \\ \exists h \in \mathcal{L}(E), f \circ h + h \circ f = \text{ Id} \end{cases}$$

Exercice 3 (Mines-CCINP)

- 1. Soient E et F deux espaces vectoriels de dimension finie, $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(F,E)$ vérifiant $u \circ v \circ u = u$ et $v \circ u \circ v = v$; montrer que $E = \ker u \oplus \operatorname{Im} v$.
- 2. Quelle relation peut-on en déduire entre les rangs de u et v?
- 3. (Mines) Soient $u \in \mathcal{L}(E, F)$, E_1 tel que $E = \ker u \oplus E_1$ et F_1 tel que $F = \operatorname{Im} u \oplus F_1$; montrer qu'il existe une unique application linéaire v de F dans E, de noyau F_1 , d'image E_1 , et telle que $u \circ v \circ u = u$ et $v \circ u \circ v = v$.

Exercice 4 (CCINP*) Soit $u \in \mathcal{L}(\mathbb{R}^n)$ vérifiant $u^3 + u = 0$.

- 1. Montrer que $E = \ker u \oplus \operatorname{Im}(u)$.
- 2. Montrer que $Im(u) = ker(u^2 + Id)$.
- 3. Montrer qu'en dimension impaire u n'est pas injective (on pourra raisonner par l'absurde).
- 4. On suppose désormais n=3. En déduire que rg(u)=2.
- 5. Montrer qu'il existe une base e de E dans laquelle u est représenté par $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

Exercice 5 (ENS Lyon) Soit E un K-espace vectoriel. On dit que $u \in Gl(E)$ est un échangeur s'il existe des sous-espaces vectoriels F, G tels que $E = F \oplus G$, $u(F) \subset G$ et $u(G) \subset F$. Montrer que u est un échangeur si et seulement si il existe des endomorphismes a et b tels que u = a + b avec $a^2 = b^2 = 0$.

Exercice 6 (Mines) Soit $n \in \mathbb{N}^*$. Si U et V sont dans $\mathcal{M}_n(\mathbb{R})$, on définit l'endomorphisme $\Phi_{U,V}$ de $\mathcal{M}_n(\mathbb{R})$ par l'égalité $\Phi_{U,V}(M) = UMV$.

- 1. Si A, B, C et D sont dans $\mathcal{M}_n(\mathbb{R})$, exprimer $\Phi_{A,B} \circ \Phi_{C,D}$.
- 2. Si $A \in \mathcal{M}_n(\mathbb{R})$, déterminer $\operatorname{rg}\Phi_{A,A}$.

Exercice 7 (Mines) Soient A et B dans $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer qu'il existe U et V inversibles telles que $\operatorname{rg}(UA + BV) = \min\{n, \operatorname{rg}A + \operatorname{rg}B\}$.
- 2. Montrer que, si $\operatorname{rg} A + \operatorname{rg} B \geq n$, il existe U et V inversibles telles que UA + BV soit inversible.

Exercice 8 (X-Mines) Soient $n \in \mathbb{N}^*$, $A \in GL_n(\mathbb{R})$, $B \in \mathcal{M}_n(\mathbb{R})$ de rang 1, $t = Tr(A^{-1}B)$.

- 1. On suppose que $t \neq -1$. Montrer que A + B est inversible d'inverse $A^{-1} \frac{A^{-1}BA^{-1}}{1+t}$.
- 2. On suppose que t = -1. Montrer que A + B n'est pas inversible.

Exercice 9 (Mines) Soient n et p deux éléments de \mathbb{N}^* , $A \in \mathcal{M}_{n,p}(\mathbb{R})$, $B \in \mathcal{M}_{p,n}(\mathbb{R})$. Montrer que $p + \operatorname{rg}(I_n + AB) = n + \operatorname{rg}(I_p + BA)$.

Exercice 10 $(X)^*$ Soient E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Trouver une condition nécessaire et suffisante sur u pour qu'il existe $v \in \mathcal{L}(E)$ tel que u + v soit inversible et $u \circ v = 0$.

Exercice 11 $(Ulm)^*$ Soient $A, B, C \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\operatorname{rg}(AB) + \operatorname{rg}(BC) \leq \operatorname{rg}B + \operatorname{rg}(ABC)$.

Exercice 12 (Ulm) Soit $M \in \mathcal{M}_n(\mathbb{Z})$.

- 1. Comparer le rang de M dans \mathbb{C} , dans \mathbb{R} , dans \mathbb{Q} et dans $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ avec p premier.
- 2. Existe-t-il toujours p premier tel que $\operatorname{rg}_{\mathbb{Q}}(M) = \operatorname{rg}_{\mathbb{F}_p}(M)$?

Exercice 13 (SR) Soient $n, r, k \in \mathbb{N}$ avec $1 \le r \le n$ et $r + k \le n$. Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$, où $A \in \operatorname{GL}_r(\mathbb{C})$. Montrer que M est de rang r + k si et seulement si $D - CA^{-1}B$ est de rang k.

Exercice 14 (X) Soit $M \in \mathcal{M}_n(\mathbb{R})$.

- 1. Si M est inversible, combien de coefficients de M faut-il modifier au minimum pour la rendre non-inversible?
- 2. Si M n'est pas inversible, combien de coefficients de M faut-il modifier au minimum pour la rendre inversible?

Sous-espaces vectoriels, dimensions

Exercice 15 (IMT) Montrer que l'ensemble A des applications linéaires u d'un espace E dans un espace F, tous deux de dimension finie, telles que ker u contienne le sous-espace W de E, est un espace vectoriel. Trouver sa dimension.

Exercice 16 (Mines) Soient \mathbb{K} un corps, E un \mathbb{K} -espace vectoriel de dimension finie, F et G deux sous-espaces vectoriels de E ayant même dimension. Montrer que F et G ont un supplémentaire commun.

Exercice 17 (Mines) Soient A et B dans $\mathcal{M}_n(\mathbb{R})$. Comparer la dimension du \mathbb{R} -espace vectoriel $\{M \in \mathcal{M}_n(\mathbb{R}), AM = MB\}$ et celle du \mathbb{C} -espace vectoriel $\{M \in \mathcal{M}_n(\mathbb{C}), AM = MB\}$.

Exercice 18 (Mines) Soient $n \in \mathbb{N}^*$, A et B dans $\mathcal{M}_n(\mathbb{R})$, $E = \{M \in \mathcal{M}_n(\mathbb{R}) ; AMB = 0\}$. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, en calculer la dimension.

$Endomorphismes\ nilpotents$

Exercice 19 (Mines) Si A et B sont deux matrices complexes, carrées de taille n vérifiant $(AB)^n = 0$, a-t-on aussi $(BA)^n = 0$?

Exercice 20 (Mines) Soient E un espace vectoriel de dimension n > 1 et $u \in \mathcal{L}(E)$ nilpotent de rang n - 1.

- 1. Soit F un sous-espace vectoriel stable par u. Montrer que $F = \{0\}$ ou que $\ker u \subset F$.
- 2. Montrer que $rg(u^2) = rg(u) 1$.
- 3. Soit F tel que $u(F) \subset F$. Montrer que dim $u(F) = \dim F 1$. En déduire que, pour $k \in [1, n]$, dim $\ker u^k = k$.
- 4. Déterminer les sous-espaces vectoriels stables par u.

Exercice 21 (Mines) Soient E un \mathbb{R} -espace vectoriel de dimension $n \in \mathbb{N}^*$, $u \in \mathcal{L}(E)$ tel que $u^3 = 0$.

- 1. Montrer que $rg(u) + rg(u^2) \le n$.
- 2. Montrer que $2 \operatorname{rg}(u^2) \leq \operatorname{rg}(u)$.

Exercice 22 (TPE) Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que $A^3 = 0$, AB = BA et B est inversible. Montrer que (A + B) est inversible.

Exercice 23 (X) Soit $M \in \mathcal{M}_n(\mathbb{Q})$ nilpotente. Montrer que $I_n + M$ a une racine carrée dans $\mathcal{M}_n(\mathbb{Q})$.

Autres exercices sur les endomorphismes et les matrices

Exercice 24 (X) Soit f un endomorphisme de \mathbb{R}^{10} qui stabilise tous les sous-espaces de dimension 5. Que dire de f?

Exercice 25 $(X)^*$ Soit E un \mathbb{R} -espace vectoriel de dimension finie. Quels sont les endomorphismes de E qui stabilisent les hyperplans de E?

Exercice 26 (Mines)*

- 1. Que dire d'un endomorphisme de \mathbb{R}^n dont la matrice dans toute base est la même?
- 2. Que dire d'un endomorphisme de \mathbb{R}^n qui commute avec tout projecteur?

Exercice 27 (Mines-Centrale-SR)* Soit $A \in \mathfrak{M}_n(\mathbb{C})$.

- 1. Soit $u \in \mathcal{L}(E)$, tel que $\forall x \in E$, (x, u(x)) est lié. Montrer que u est une homothétie.
- 2. Montrer que Tr(A) = 0 si et seulement si A est semblable à une matrice de diagonale nulle.
- 3. Soit A telle que $\operatorname{Tr}(A) = 0$. En déduire qu'il existe $(B, C) \in \mathfrak{M}_n(\mathbb{C})^2$ telle que A = BC CB.

Exercice 28 (Théorème d'Hadamard) * Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathfrak{M}_n(\mathbb{R})$ telle que : $\forall i \in \{1,\ldots,n\} \quad |a_{i,i}| > \sum_{j \ne i} |a_{i,j}|$. Montrer que A est inversible.

Exercice 29 (Mines) Soit $n \in \mathbb{N}^*$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{R})$ qui commutent à toutes les matrices de permutation de $\mathcal{M}_n(\mathbb{R})$.

Exercice 30 (X) Soit $n \in \mathbb{N}^*$. Si A est un sous-anneau de \mathbb{R} , on note $\mathrm{SL}_n(A)$ l'ensemble des matrices de $\mathcal{M}_n(A)$ de déterminant 1.

- 1. Montrer que $\mathrm{SL}_n(A)$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.
- 2. Montrer que $\mathrm{SL}_n(\mathbb{Q})$ ne possède pas de partie génératrice finie.
- 3. Montrer que $\mathrm{SL}_n(\mathbb{Q})$ est dense dans $\mathrm{SL}_n(\mathbb{R})$.
- 4. * Montrer que $SL_2(\mathbb{Z})$ est engendré par $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Exercice 31 (X) Pour tout $\sigma \in \mathcal{S}_n$, on note $P_{\sigma} \in \mathcal{M}_n(\mathbb{R})$ la matrice de permutation associée et, pour tout k, $n_k(\sigma)$ le nombre de cycles de longueur k dans la décomposition de σ en produit de cycles à supports disjoints.

- 1. Soit $\sigma \in S_n$. Calculer, pour tout k, $\text{Tr}(P_{\sigma}^k)$ en fonction des $n_r(\sigma)$.
- 2. En déduire que deux permutations σ , $\tau \in \mathcal{S}_n$ sont conjuguées dans \mathcal{S}_n si et seulement si les matrices P_{σ} et P_{τ} sont semblables.

Exercice 32 (SR) Lorsque $\sigma \in S_n$, on note $n_k(\sigma)$ le nombre de k-cycles dans la décomposition de σ en produit de cycles à supports disjoints. Ainsi $n_1(\sigma)$ est le nombre de points fixes de σ . On note également $m(\sigma) = \sum_{k=1}^{n} n_k(\sigma)$ le nombre d'orbites de σ .

- 1. Soient $i, k \in \mathbb{N}^*$. Déterminer l'ordre de i dans $(\mathbb{Z}/k\mathbb{Z}, +)$.
- 2. Soient $n \in \mathbb{N}^*$ et $\sigma, \tau \in S_n$. On dit que σ et τ sont conjuguées s'il existe $\phi \in S_n$ tel que $\sigma = \phi \tau \phi^{-1}$. Montrer que σ et τ sont conjuguées si et seulement si : $\forall k \in [1, n], n_k(\sigma) = n_k(\tau)$.
- 3. Soit $n \in \mathbb{N}^*$. Calculer det $(i \wedge j)_{1 \leq i,j \leq n}$. Ind. Considérer les matrices $A = (\mathbbm{1}_{i|j})$ et $B = (\varphi(j)\mathbbm{1}_{j|i})$.
- 4. Montrer que σ et τ sont conjuguées si et seulement si : $\forall i \in [1, n], m(\sigma^i) = m(\tau^i)$.
- 5. Montrer que σ et τ sont conjuguées si et seulement si les matrices de permutation P_{σ} et P_{τ} sont semblables.

Exercice 33 (Ulm) Soit $n \in \mathbb{N}^*$. Trouver les fonctions f de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} telles que $\forall (X,Y) \in \mathcal{M}_n(\mathbb{R})^2$, $f(XY) \leq \min\{f(X), f(Y)\}$.

Exercice 34 $(SR)^*$ On fixe $n \in \mathbb{N}^*$. Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite bistochastique lorsque tous ses coefficients sont positifs et que la somme de ses coefficients sur une ligne ou une colonne quelconque vaut 1. On note $D_n(\mathbb{R})$ l'ensemble formé par ces matrices.

- 1. Montrer que $D_n(\mathbb{R})$ est convexe.
- 2. Un élément P de $D_n(\mathbb{R})$ est dit extrémal lorsque : $\forall (A,B) \in D_n(\mathbb{R})^2, \ \forall t \in]0,1[\ ,\ (1-t)A+tB=P \Rightarrow A=B.$ Montrer que toute matrice de permutation est un élément extrémal de $D_n(\mathbb{R})$.
- 3. Montrer que tout élément extrémal de $D_n(\mathbb{R})$ est une matrice de permutation.

Exercice 35 (X) Soient $(n, p, a) \in \mathbb{N}^{*3}$, U_1, \dots, U_p des parties distinctes de $\{1, \dots, n\}$ telles que, si $1 \leq i < j \leq p$, $|U_i \cap U_j| = a$. Montrer que $p \leq n$.

Ind. Considérer la matrice $(\mathbf{1}_{k \in U_i})_{\substack{1 \leq k \leq n \\ 1 \leq i \leq n}}$

Exercice 36 (X) Soient \mathbb{K} un sous-corps de \mathbb{C} , $n \geq 2$ un entier, $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. On note $C(J) = \{ M \in \mathcal{M}_2(\mathbb{K}) ; AJ = JA \}$, $\Gamma_n = \{ M \in \mathcal{M}_2(\mathbb{K}) ; M^n = J \}$.

- 1. Déterminer C(J). Vérifier que C(J) est une sous-algèbre commutative de la \mathbb{K} -algèbre $\mathcal{M}_2(\mathbb{K})$.
- 2. Montrer que, si $\mathbb{K} = \mathbb{R}$, la \mathbb{R} -algèbre C(J) est isomorphe à \mathbb{C} . Déterminer Γ_n .
- 3. Montrer que, si $\mathbb{K} = \mathbb{Q}$, la \mathbb{Q} -algèbre C(J) est isomorphe à $\mathbb{Q}[i]$. Déterminer Γ_n . On admettra que les éléments d'ordre fini de $(\mathbb{Q}[i]^*, \times)$ sont ± 1 et $\pm i$.
- 4. Montrer que, si $\mathbb{K} = \mathbb{C}$, la \mathbb{C} -algèbre C(J) est isomorphe à $\mathbb{C} \times \mathbb{C}$. Déterminer Γ_n .

Exercice 37 (Ulm) Soient $n \in \mathbb{N}^*$, A une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$. On suppose que, pour tout $v \in \mathbb{C}^n$ non nul, on a $\{Mv \; ; \; M \in A\} = \mathbb{C}^n$. Montrer que $A = \mathcal{M}_n(\mathbb{C})$.

Familles libres

Exercice 38 (Mines-ENS)* Pour tout $a \in \mathbb{R}$, on note $f_a : \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x-a| \end{cases}$. Montrer que la famille $(f_a)_{a \in \mathbb{R}}$ est libre.

Exercice 39 $(X)^*$ Soit A un ensemble non vide, \mathbb{K} un corps. Rappeler que $E = \mathcal{F}(A, \mathbb{K})$ est un \mathbb{K} -espace vectoriel. On considère $(f_j)_{1 \leq j \leq n} \in E^n$. Montrer que cette famille est libre si et seulement si il existe $(x_i)_{1 \leq i \leq n} \in A$ tel que $\det(f_j(x_i))_{i,j} \neq 0$.

Projecteurs

Exercice 40 $(CCP)^*$ Soit E un espace vectoriel sur un corps \mathbb{K} . F_0 , F_1 , G_0 et G_1 des s.e.v. de E. Soit f (resp. g) le projecteur de E de noyau F_0 $(resp. G_0)$ et d'image F_1 $(resp. G_1)$. Supposons que $f \circ g = g \circ f$.

- 1. Démontrer que $h = f \circ g$ est un projecteur de E et que son image est $F_1 \cap G_1$.
- 2. Déterminer le noyau de h.

Exercice 41 $(CCP)^*$ Soit E un \mathbb{K} -espace vectoriel, soient p et q deux projecteurs définis sur E.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q + q \circ p = 0$, si et seulement si $p \circ q = q \circ p = 0$.
- 2. Interpréter cette condition en terme de noyaux et d'images de p et q.
- 3. Si r = p + q est un projecteur, montrer que $\ker r = \ker p \cap \ker q$ et que $\operatorname{Im} r = \operatorname{Im} p + \operatorname{Im} q$. Montrer que cette somme est directe.
- 4. On suppose dans cette question que $r = p + q p \circ q$ et $\operatorname{Im} p \subset \ker q$; montrer que r est un projecteur dont on déterminera le noyau.

Exercice 42 (CCP) Soient L_1 et L_2 deux sous-espaces supplémentaires dans $\mathcal{L}(E)$, où E est de dimension finie n, tels que $\forall (u,v) \in L_1 \times L_2, u \circ v + v \circ u = 0$.

- 1. Montrer qu'il existe deux projecteurs p_1 et p_2 dans $L_1 \times L_2$ tels que $Id = p_1 + p_2$.
- 2. Montrer que $n = \operatorname{rg}(p_1) + \operatorname{rg}(p_2)$.
- 3. Soit $u \in L_1$; montrer que, si $x \in \text{Im} p_2$, u(x) = 0 et si $x \in \ker p_2$, $u(x) \in \ker p_2$.
- 4. En déduire que $\dim(L_1) \leq (n \operatorname{rg}(p_2))^2$; quelle inégalité a-t-on pour $\dim(L_2)$?
- 5. Justifier que dim $\mathcal{L}(E) = \dim(L_1) + \dim(L_2)$.
- 6. Montrer que $\operatorname{rg}(p_1)(n-\operatorname{rg}(p_1)) \leq 0$ et en déduire que $\operatorname{rg}(p_1)=0$ ou $\operatorname{rg}(p_1)=n$, puis que $L_1=\{0\}$ ou $L_2=\{0\}$.

Exercice 43 (ENS Lyon-X)*

- 1. Soient n dans \mathbb{N}^* , A une partie finie de cardinal m de $\mathrm{GL}_n(\mathbb{C})$ stable par produit. Montrer que $\sum_{M\in A}\mathrm{Tr}(M)\in m\mathbb{Z}$.
- 2. Soit G un sous-groupe fini de $\mathrm{GL}_n(\mathbb{C})$ tel que $\sum_{g\in G}\mathrm{Tr}(g)=0$. Montrer que $\sum_{g\in G}g=0$.

Exercice 44 (Mines) Soit E un K-espace vectoriel de dimension finie et $(p_i)_{1 \le i \le r}$ une famille de projecteurs de E tels que $p = \sum_{i=1}^r p_i$ vérifie $p^2 = p$.

- 1. Montrer que $\operatorname{Im} p = \bigoplus_{i=1}^r \operatorname{Im} p_i$.
- 2. Pour tout $i \neq j$, montrer que $p_i \circ p_i = 0$.

Exercice 45 (Paris) Soient $(m, n) \in \mathbb{N}^* \times \mathbb{N}^*$, A_1, \dots, A_m des éléments idempotents de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire vérifiant $A_k A_k = A_k$. Montrer que $\sum_{i=1}^m (n - \operatorname{rg}(A_i)) \geq \operatorname{rg}\left(I_n - \prod_{i=1}^m A_i\right)$.

Formes linéaires, hyperplans et traces

Exercice 46 (Mines)* Soit $f \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R})$.

- 1. Montrer qu'il existe une unique $C \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, f(A) = Tr(AC)
- 2. On suppose que pour tout $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$, f(AB) = f(BA). Montrer que $f = \lambda Tr$ où $\lambda \in \mathbb{R}$.

Exercice 47 (Mines)* Soit $n \geq 2$ et soit H un hyperplan de $\mathfrak{M}_n(\mathbb{K})$.

- 1. Montrer que H contient au moins une matrice inversible.
- 2. On suppose que H est stable par multiplication. Montrer que $I_n \in H$.

Exercice 48 (X) Soient $n \in \mathbb{N}$ avec $n \geq 2$, H un hyperplan affine de $\mathcal{M}_n(\mathbb{R})$. Montrer que $H \cap \operatorname{GL}_n(\mathbb{R})$ est non vide.

Exercice 49 (X) Soient $n \in \mathbb{N}^*$ et $(X_1, \dots, X_{n^2}) \in \mathcal{M}_n(\mathbb{C})^{n^2}$. On pose

$$\varphi: M \in \mathcal{M}_n(\mathbb{C}) \mapsto (\operatorname{Tr}(MX_k))_{1 \le k \le n^2} \in \mathbb{C}^{n^2}.$$

- 1. Donner une condition nécessaire et suffisante sur (X_1, \dots, X_{n^2}) pour que φ soit un isomorphisme d'espaces vectoriels.
- 2. Donner une relation entre la dimension du noyau de φ et le rang de (X_1,\ldots,X_{n^2}) .

Exercice 50 (X) Soit $M=(m_{i,j})_{1\leq i,j\leq n}\in\mathcal{M}_n(\mathbb{C})$. On dit que (V,A,B) est une réalisation de M si :

- V est un \mathbb{C} -espace vectoriel de dimension d,
- $A = (a_1, \ldots, a_n)$ est une famille libre de formes linéaires sur V,
- $B = (b_1, \ldots, b_n)$ est une famille libre de vecteurs de V,
- pour tous $i, j, a_i(b_j) = m_{i,j}$.

On dit que d est la dimension de la réalisation.

- 1. Montrer que si M est réalisée par un espace de dimension d, elle l'est aussi par un espace de dimension d' > d.
- 2. Trouver une réalisation de la matrice $M_0 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$
- 3. Trouver la dimension minimale d'une réalisation de M_0 .

Systèmes linéaires, pivot de Gauss et déterminants

Exercice 51 (CCP)

- 1. Soient P_0, P_1, \dots, P_n tels que chaque P_k soit unitaire de degré k. Soient $x_0, x_1, \dots, x_n \in \mathbb{R}$. Calculer le déterminant de la matrice $(P_j(x_i))_{0 \le i, i \le n}$.
- 2. Soient $\theta_0, \ldots, \theta_n \in \mathbb{R}$. Calculer le déterminant de la matrice $(\cos(j\theta_i))_{0 \le i,j \le n}$.

Exercice 52 (Mines) Soient
$$x, y \in \mathbb{R}$$
 et $D = \begin{vmatrix} 1 & 0 & 1 & 0 & 0 \\ x & 1 & y & 1 & 0 \\ x^2 & 2x & y^2 & 2y & 2 \\ x^3 & 3x^2 & y^3 & 3y^2 & 6y \\ x^4 & 4x^3 & y^4 & 4y^3 & 12y^2 \end{vmatrix}$. Montrer que $D = 0$ si et seulement si $x = y$.

Exercice 53 (SR)

- 1. Redémontrer la formule du déterminant de Vandermonde.
- 2. Calculer $\det((i^j))_{1 \leq i,j \leq n}$.
- 3. Soit $(a_i)_{1 \le i \le n}$ des réels distincts. On note (L_i) les polynômes d'interpolation associés. Quel est le déterminant de la famille des (L_i) dans la base canonique?
- 4. On considère l'application qui à $P \in \mathbb{R}_{n-1}[X]$ associe $(P(a_i))_{1 \leq i \leq n}$; montrer que c'est un isomorphisme. Quel est le lien avec le déterminant de Vandermonde?

Exercice 54 (X)

- 1. Soit $(\alpha_1, \ldots, \alpha_n, a, b) \in \mathbb{R}^{n+2}$. Calculer det M, où $M(i, i) = \alpha_i$, M(i, j) = a si i > j et M(i, j) = b si i < j.
- 2. Calculer le déterminant de la matrice M telle que $M(i,j)=i \land j$ pour $1 \le i \le j \le n$.

Exercice 55 (Mines) Soit $n \in \mathbb{N}^*$. Considérons $(A, B, C, D) \in \mathcal{M}_n(\mathbb{C})^4$ où D est inversible et $D^tC = C^tD$. Montrer que : $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A^tD - B^tC)$.

Pour plus tard : Étendre le résultat au cas où D est non-inversible.

Exercice 56 (X) Soit $n \in \mathbb{N}^*$. Considérons $(A, B, C, D) \in \mathcal{M}_n(\mathbb{R})^4$ où A est inversible et AB = BA. Montrer que : $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(DA - CB)$.

Pour plus tard: Étendre le résultat au cas où D est non-inversible.

Exercice 57 (Mines) Soit $A \in Gl_n(\mathbb{C})$, $B \in \mathcal{M}_{n,1}(\mathbb{C})$ et $C \in \mathcal{M}_{1,n}(\mathbb{C})$. Montrer que $\det(A + BC) = \det(A)(1 + CA^{-1}B)$.

Exercice 58 $(X)^*$ Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_{2n}(\mathbb{R})$. On suppose que les coefficients diagonaux de A sont tous nuls et que les coefficients en dehors de la diagonale sont dans $\{-1,1\}$. Montrer que A est inversible.

Exercice 59 (Centrale) On s'intéresse aux matrices A de coefficients a_{ij} entiers, de diagonale nulle et dont les termes non diagonaux valent 1 ou -1. On note la A_0 matrice de ce type dont tous les termes non diagonaux valent 1.

- 1. Calculer $\det(A_0)$. En déduire dans le cas général que si n est pair, alors A est inversible (on pourra raisonner modulo 2). Que dire du rang de A si n est impair?
- 2. Soit un tas de n cailloux tel que, si l'on en retire un, on puisse toujours faire deux tas de même masse avec les n-1 cailloux restants : montrer que n est impair.
- 3. Montrer que, pour n impair, il existe un nombre fini de masses m_1, \ldots, m_n (à une constante multiplicative près) qui permettent de réaliser la condition précédente.
- 4. On impose désormais que, pour n = 2k + 1 et quel que soit le caillou que l'on retire, il soit possible de former deux tas de k cailloux de même masse. Montrer que tous les cailloux ont la même masse.

Exercice 60 (X) Soient $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$ distincts. Calculer le déterminant de $\left(\frac{1}{a_i - b_j}\right)_{1 \le i, j, \le n}$.

Exercice 61 * Soient A et B deux matrices de $\mathfrak{M}_n(\mathbb{R})$. On suppose qu'il existe P dans $Gl_n(\mathbb{C})$ telle que $B = P^{-1}AP$. On veut montrer qu'il existe $Q \in Gl_n(\mathbb{R})$ telle que $B = Q^{-1}AQ$.

- 1. Ecrivons P = R + iS avec $(R, S) \in \mathfrak{M}_n(\mathbb{R})$. Montrer que RB = AR et SB = AS.
- 2. En déduire que : $\forall \lambda \in \mathbb{R} \ (R + \lambda S)B = A(R + \lambda S)$. Conclure.
- 3. Étendre ce résultat à une extension plus générale $\mathbb{K} \subset$.

Exercice 62 (Centrale-Mines-X)* Soit $n \in \mathbb{N}^*$.

- 1. Si $M \in \mathcal{M}_n(\mathbb{K})$, calculer $\operatorname{rg}(\operatorname{Com} M)$ en fonction de $\operatorname{rg} M$.
- 2. Montrer que, pour tout $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$, $\operatorname{Com}(AB) = (\operatorname{Com}B)(\operatorname{Com}A)$. On pourra commencer par le montrer pour des matrices inversibles et traiter le cas général plus tard.
- 3. L'application Com est-elle injective?
- 4. Quelle est son image dans $\mathcal{M}_n(\mathbb{C})$? Même question sur \mathbb{R} , puis sur \mathbb{Q} .?

Exercice 63 (X-Mines) Soit $n \in \mathbb{N}^*$. Résoudre dans $\mathcal{M}_n(\mathbb{C})$ l'équation M = Com(M).

Exercice 64 (X) Soient $\theta_1, \theta_2, \dots, \theta_n \in \mathbb{R}$ avec $0 < \theta_1 < \theta_2 < \dots < \theta_n < 1$ et $a_1, \dots, a_n \in \mathbb{R}$. On suppose que la suite de terme général $u_p = \sum_{j=1}^n a_j \cos(\pi p \, \theta_j)$ tend vers 0. Montrer : $\forall j \in \{1, \dots, n\}, \ a_j = 0$.

Exercice 65 (ULSR) On considère $\phi: (\mathbb{R}^4)^2 \to \mathcal{M}_4(\mathbb{R})$ qui à (u, v) associe la matrice dont le cœfficient en (i, j) vaut $\begin{vmatrix} u_i & v_i \\ u_j & v_j \end{vmatrix}$.

- 1. Que peut-on dire si $\phi(u, v) = \phi(u', v') \neq 0$?
- 2. Que dire de la réciproque?
- 3. Montrer que A s'écrit comme $\phi(u,v)$ avec (u,v) libre ssi $A \in \mathcal{A}_n(\mathbb{R}), det(A) = 0$ et $A \neq 0$.
- 4. Décrire l'image et le noyau d'une telle matrice.

Exercice 66 $(ULSR)^*$ Si $\sigma \in \mathfrak{S}_n$, on note $\nu(\sigma)$ le nombre de points fixes de σ . Calculer

$$\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma), \quad \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \nu(\sigma) \ \text{ et } \ \sum_{\sigma \in \mathfrak{S}_n} \frac{\varepsilon(\sigma)}{\nu(\sigma) + 1}.$$

Exercice 67 (Ulm) Montrer que la projection de $SL_d(\mathbb{Z})$ sur $SL_d(\mathbb{Z}/n\mathbb{Z})$ est surjective.

Exercice 68 (X-Ulm) Soit V un sous-espace de $\mathcal{M}_n(\mathbb{K})$ dont tous les éléments sont de rang inférieur ou égal à r. Montrer que dim $V \leq n \times r$. Étudier les cas d'égalité.