Feuille d'exercices : Réduction

Éléments propres : recherche pratique

Exercice 1 (CCINP) Trigonaliser ou diagonaliser si cela est possible, en précisant les matrices de passage :

1.
$$A = \begin{pmatrix} 3 & -2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 2. $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$ 3. $C = \begin{pmatrix} 13 & -5 & -2 \\ -2 & 7 & -8 \\ -5 & 4 & 7 \end{pmatrix}$

Exercice 2 (CCINP-IMT-Mines) Soit A fixée dans $\mathcal{M}_n(\mathbb{K})$; montrer que f, défini sur $\mathcal{M}_n(\mathbb{C})$ par $f(M) = (\operatorname{Tr} A)M - (\operatorname{Tr} M)A$ est un endomorphisme dont on donnera le noyau et l'image. En donner les éléments propres. Est-il diagonalisable?

Exercice 3 (Mines) Soient A et B deux matrices réelles, non nulles, carrées d'ordre n. Trouver une CNS pour que $\phi(X) = X + \text{Tr}(AX)B$ soit diagonalisable sur $\mathcal{M}_n(\mathbb{R})$.

Exercice 4 (CCPINP)

- 1. Montrer que u défini par u(M) = Tr(M)A + Tr(A)M, où A est une matrice fixée, est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$.
- 2. Donner ses éléments propres (on pourra commencer par le cas où A est de trace nulle). À quelle condition est-il diagonalisable?

Exercice 5 (X-Mines) On considère I = [0,1] ou I = [-1,1]. Soient $E = \mathcal{C}^0(I,\mathbb{C})$, g une surjection continue croissante de I sur lui-même et Φ l'endomorphisme de E défini par $\forall f \in E$, $\Phi(f) = f \circ g$. Soit V un sous-espace de dimension finie de E stable par Φ .

- 1. Montrer que 1 est la seule valeur propre de ϕ .
- 2. En déduire que $\phi = \mathrm{Id}_V$.
- 3. Que peut-on dire des valeurs propres possibles de ϕ si q n'est plus supposée surjective?

Exercice 6 (X) On considère $A \in \mathbb{C}_{n-1}[X]$. On note ϕ_A qui à $P \in \mathbb{C}_{n-1}[X]$ associe le reste de la division euclidienne de AP par $X^n - 1$.

- 1. Montrer que ϕ_A est un endomorphisme de $\mathbb{C}_{n-1}[X]$ et déterminer sa matrice dans la base canonique.
- 2. Montrer que ϕ_A est diagonalisable et déterminer ses valeurs et vecteurs propres.

Exercice 7 (X) On considère la matrice
$$M = \binom{i-1}{j-1}_{1 \le i, j \le n+1} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

- 1. La matrice M est-elle diagonalisable?
- 2. Déterminer l'ordre de nilpotence de $M I_{n+1}$.
- 3. Calculer M^{-1} .

Exercice 8 (X) On considère la matrice $M = (\delta_{i+j,n+1})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{R})$.

- 1. Calculer le déterminant de M.
- 2. Montrer que M est diagonalisable, déterminer son spectre et ses sous-espaces propres.

Éléments propres : étude théorique

Exercice 9 (Centrale-X) * Soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que

$$\forall (i,j) \in \{1,\ldots,n\}^2, \ a_{i,j} \ge 0 \quad \text{et} \quad \forall i \in \{1,\ldots,n\}, \ \sum_{j=1}^n a_{i,j} = 1.$$

- 1. Montrer que 1 est valeur propre et que les valeurs propres complexes de A sont de module inférieur ou égal à 1.
- 2. On suppose dans cette question que pour tout (i, j), $a_{i,j} > 0$. Montrer que 1 est la seule valeur propre de M sur le cercle unité.
- 3. Soit λ une valeur propre de A de module 1. Montrer qu'il existe $m \in \{1, \ldots, n\}$ tel que $\lambda^m = 1$.

Exercice 10 (Mines) Existe-t-il une forme linéaire Φ sur $\mathcal{M}_n(\mathbb{C})$ telle que $\forall A \in \mathcal{M}_n(\mathbb{C})$, $\Phi(A) \in \operatorname{sp}(A)$?

Exercice 11 (TPE) Soient n et q dans \mathbb{N}^* , $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^q = I_n$. Montrer que l'espace propre de A associé à 1 a pour dimension $\frac{1}{q} \sum_{i=1}^{q} \operatorname{Tr}(A^k)$.

Exercice 12 (X) Soit $(A, B, M) \in \mathcal{M}_n(\mathbb{C})^3$ tel que AM = MB et $\chi_A = \chi_B$. Montrer que A - MX et B - XM ont même polynôme caractéristique pour tout $X \in \mathcal{M}_n(\mathbb{C})$.

Exercice 13 (Mines) *

Soient $A \in \mathcal{M}_{n,p}(\mathbb{C})$ et $B \in \mathcal{M}_{p,n}(\mathbb{C})$.

- 1. Montrer que si $p \neq n$, alors AB ou BA est non inversible.
- 2. Montrer que $X^p \chi_{AB} = X^n \chi_{BA}$.
- 3. En déduire que si A et B sont dans $\mathcal{M}_n(\mathbb{C})$, $\chi_{AB} = \chi_{BA}$ et que AB et BA ont les mêmes valeurs propres.

Exercice 14 (Mines)

- 1. Soit $n \in \mathbb{N}^*$. Montrer que $\forall (A,t) \in \mathcal{M}_n(\mathbb{R}) \times \mathbb{R}^+$, $\det(A^2 + tI_n) \geq 0$.
- 2. On suppose $n \in \mathbb{N}$ impair. Montrer que $-I_n$ n'est pas somme de deux carrés de $\mathcal{M}_n(\mathbb{R})$.

Exercice 15 (SR)

1. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Pour $(i,j) \in \{1,\ldots,n\}^2$, on pose $L_i(A) = \sum_{k \in \{1,\ldots,n\} \setminus \{i\}} |a_{i,k}|$ et $C_j(A) = \sum_{k \in \{1,\ldots,n\} \setminus \{j\}} |a_{k,j}|$. Montrer que toute valeur propre de A appartient à $\bigcup_{i=1}^n D_f(a_{i,i},L_i)$ et à $\bigcup_{j=1}^n D_f(a_{j,j},C_j)$.

2. Soit a_0, \ldots, a_{n-1} dans \mathbb{C} . On pose $P = X^n - \sum_{k=0}^{n-1} a_k X^k$ ainsi que

$$C(P) = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \ddots & \vdots & a_1 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & & \ddots & 0 & a_{n-2} \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}. \text{ Montrer que } \chi_{C(P)} = P.$$

- 3. Avec les données de la question précédente, montrer que toute racine de P est dans $D_f(0, M)$ où $M = \max_{0 \le i \le n-1} (1 + i)$ $|a_i|$).
- 4. Soit $P \in \mathbb{R}[X]$ unitaire de degré n. Soit $(P_k)_{k \geq 0}$ une suite de polynômes unitaires de degré n convergeant vers P(au sens d'une norme arbitraire sur $\mathbb{R}_n[X]$). Soit z_0 une racine de P de multiplicité d. Soit $\varepsilon > 0$. Montrer que, pour k assez grand, $D_o(z_0, \varepsilon)$ contient au moins d racines de P_k comptées avec multiplicité.

Exercice 16 (Centrale) * Soient $n \in \mathbb{N}^*$, $M \in \mathcal{M}_n(\mathbb{Z})$ dont toutes les valeurs propres (complexes) sont de module au plus 1.

- 1. Montrer que $\chi_A \in \mathbb{Z}[X]$ et que $\text{Tr}(A^k) \in \mathbb{Z}$ pour tout $k \in \mathbb{N}$.
- 2. Montrer que les valeurs propres non nulles de A sont de module 1, puis que ce sont des racines de l'unité.
- 3. Exhiber $A \in \mathcal{M}_n(\mathbb{Z})$ dont l'ensemble des valeurs propres est \mathbb{U}_n .

Exercice 17 (X) * Soient $\lambda_1, \ldots, \lambda_d$ des nombres complexes de module au plus 1, $P = \prod_{i=1}^{d} (X - \lambda_i)$. Pour $n \in \mathbb{N}$, soit

$$f(n) = \sum_{i=1}^{d} \lambda_i^{\ n}$$
. On suppose que $P \in \mathbb{Z}[X]$.

- 1. Montrer que $f(\mathbb{N}) \subset \mathbb{Z}$.
- 2. Montrer que f est périodique à partir d'un certain rang.
- 3. Montrer que, pour tout $i \in \{1, \ldots, d\}$, λ_i est nul ou racine de l'unité.

Exercice 18 (Lyon-PLSR) Soient $n \in \mathbb{N}^*$, $A \in GL_n(\mathbb{Z})$. Montrer que soit A a une valeur propre de module strictement supérieur à 1, soit il existe $k \in \mathbb{N}^*$ tel que $A^k - I_n$ est nilpotente.

Exercice 19 (PLSR) Soient $n \in \mathbb{N}^*$ impair, A et B dans $\mathcal{M}_n(\mathbb{R})$ telles que AB = BA. Montrer que A + iB admet un vecteur propre réel.

Exercice 20 (Mines) Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Étudier le caractère diagonalisable de $M = \begin{pmatrix} 0 & a & b \\ -1/a & 0 & c \\ -1/b & -1/c & 0 \end{pmatrix}$ pour $(a,b,c) \in (\mathbb{K}^*)^3$.

Exercice 21 (CCINP) Soient $n \in \mathbb{N}^*$, a et b dans \mathbb{C} , M la matrice de $\mathcal{M}_n(\mathbb{C})$ dont les termes diagonaux (resp. non diagonaux) valent a (resp. b).

- 1. Calculer le polynôme caractéristique de M.
- 2. La matrice M est-elle diagonalisable?
- 3. Calculer le polynôme minimal de M.
- 4. Calculer le déterminant de $I_n + M$.

Exercice 22 (X) Soient $n \in \mathbb{N}^*$, $(\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n$, $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A_{i,i} = \lambda_i$ si $1 \leq i \leq n$, $A_{i,i+1} = 1$ si $1 \leq i \leq n-1$ et $A_{i,j} = 0$ si $j \notin \{i, i+1\}$. À quelle condition A est-elle diagonalisable?

Exercice 23 (Centrale) Soient $n \geq 2$ un entier et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note $d_n(\mathbb{K})$ la dimension maximale d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ ne contenant que des matrices diagonalisables.

- 1. Que dire du spectre réel d'une matrice antisymétrique rélle? Dans le cas où n est impair, peut-on être plus précis?
- 2. Déterminer $d_n(\mathbb{R})$.
- 3. Déterminer $d_2(\mathbb{C})$.

Exercice 24 (CCP-Mines-Centrale-X) * Soit $f \in \mathcal{L}(E)$, avec E \mathbb{C} -espace vectoriel.

- 1. On suppose $\det(f) \neq 0$ et f^2 diagonalisable. Trouver un polynôme annulateur de f et en déduire que f est diagonalisable.
- 2. Dans le cas général, montrer que : f est diagonalisable si et seulement si f^2 est diagonalisable et $\ker(f) = \ker(f^2)$.
- 3. Qu'en est-il si E est un \mathbb{R} -espace vectoriel?

Exercice 25 (Mines) Soient $n \in \mathbb{N}^*$, A et B dans $\mathcal{M}_n(\mathbb{R})$ telles que B soit diagonalisable et $AB^3 = B^3A$. Montrer que AB = BA. Proposer une généralisation.

Exercice 26 (Mines) Soient E un \mathbb{R} -espace vectoriel de dimension n et f un endomorphisme de E. Montrer que f est diagonalisable si et seulement s'il existe n hyperplans H_1, \ldots, H_n de E stables par f tels que $H_1 \cap \cdots \cap H_n = \{0\}$.

Exercice 27 (PLSR) Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle que $|\det A| = 1$. On suppose que les valeurs propres complexes de \mathbb{C} sont de module différent de 1. Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.

Exercice 28 (P) Soit $M \in \mathcal{M}_n(\mathbb{R})$ diagonalisable sur \mathbb{C} . Donner une matrice de $\mathcal{M}_n(\mathbb{R})$ simple semblable à M sur \mathbb{R} .

Polynômes d'endomorphismes

Exercice 29 (Mines) Soit E un \mathbb{C} -espace vectoriel de dimension finie, soit $u \in \mathcal{L}(E)$ et soit $x \in E$. On note :

$$I_x = \{ P \in \mathbb{C}[X], \ P(u)(x) = 0 \} \ \text{ et } E_x = \{ P(u)(x), \ P \in \mathbb{C}[X] \}.$$

- 1. Montrer que I_x est un idéal non nul de $\mathbb{C}[X]$. On note μ_x le polynôme minimal unitaire qui l'engendre.
- 2. Soient $x, y \in E$ tels que $\mu_x \wedge \mu_y = 1$. Montrer que $\mu_{x+y} = \mu_x \mu_y$, puis que $E_{x+y} = E_x \oplus E_y$.
- 3. Que dire dans le cas de n éléments $(x_1, \ldots x_n) \in E^n$?
- 4. Montrer que si π_u est le polynôme minimal de u, il existe $x \in E$ tel que $\mu_x = \pi_u$.

Exercice 30 (X) *Soient \mathbb{K} un corps, E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$.

- 1. Quels sont les $P \in \mathbb{K}[X]$ tels que $P(u) \in GL(E)$?
- 2. À quelle condition sur u est-il vrai que $\mathbb{K}[u] \subset \mathrm{GL}(E) \cup \{0\}$?

Exercice 31 (X) * Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Soient $P \in \mathbb{K}[X]$ son polynôme minimal et p l'exposant de X dans sa décomposition en irréductibles (la valuation de ce polynôme).

- 1. Si p = 0 que dire de u?
- 2. Montrer que $E = \ker u^p \oplus \operatorname{Im} u^p$.

- 3. Montrer que le projecteur sur ker u^p parallèment à $\operatorname{Im} u^p$ est un polynôme en u.
- 4. Montrer que $p = \min\{k \in \mathbb{N}, \ker u^k = \ker u^{k+1}\}.$

Exercice 32 (CCINP) Soit $A \in \mathfrak{M}_n(\mathbb{C})$ telle que $A^n = I_n$ et (I_n, A, \dots, A^{n-1}) est une famille libre. Montrer que $\operatorname{tr}(A) = 0$.

Exercice 33 (IMT) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A + I_n$. Montrer que $\det(A) > 0$.

Exercice 34 (Mines)

- 1. Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{C})$ telles que $\operatorname{Tr} M = 0$ et $M(M I_n) = 0$.
- 2. Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{C})$ telles que $\operatorname{Tr} M = n$ et $M^n = I_n$.

Exercice 35 (Mines) Déterminer les $A \in \mathcal{M}_n(\mathbb{R})$ telles que $A^5 - 2A^4 - 2A^3 + A^2 + 4A + 4I_n = 0$, Tr(A) = 0 et $det(A) = \pm 1$.

Exercice 36 (Mines) Soient $n \in \mathbb{N}^*$, $E_n = \{A \in \mathcal{M}_n(\mathbb{R}) ; A^3 + A = 10 I_n \}$. Déterminer l'image de E_n par det.

Exercice 37 (Centrale) Soit $n \in \mathbb{N}^*$.

- 1. Soit $M \in \mathcal{M}_n(\mathbb{R})$ nilpotente d'indice de nilpotence d.
 - (a) Montrer que $d \leq n$.
 - (b) Montrer que $M^2 I_n$ est inversible, formuler son inverse.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^4 + M^3 + M^2 + M + I_n = 0$.
 - (a) Montrer que $|\text{Tr}(M)| \leq n$.
 - (b) Étudier le cas d'égalité.
 - (c) Étudier le cas $M \in \mathcal{M}_n(\mathbb{R})$.

Exercice 38 (Mines) À quelle condition sur n existe-il $M \in \mathcal{M}_n(\mathbb{R})$ telle que $A^5 - 2A^4 - 2A^3 + A^2 + 4A + 4I_n = 0$, $\text{Tr}(A^3) = 0$ et $\det(A) = 1$?

Exercice 39 (Mines) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Montrer que A est de rang pair.

Exercice 40 (CCINP) * Soit $A \in \mathfrak{M}_n(\mathbb{R})$ antisymétrique. Étudier la parité du polynôme caractéristique χ_A . Montrer que si n est impair alors det A = 0.

Exercice 41 (CCP-Mines) Soit E un \mathbb{R} -espace vectoriel de dimension finie. Et soit $u \in \mathcal{L}(E)$ tel que $u^3 + u = 0_{\mathcal{L}(E)}$.

- 1. Montrer que le rang de u est pair (on pourra considérer l'application induite par u sur $\operatorname{Im} f$ et montrer qu'il s'agit d'un automorphisme de $\operatorname{Im} f$).
- 2. Montrer qu'il existe une base e de E telle que la matrice de u dans e soit de la forme $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -I_s \\ 0 & I_s & 0 \end{pmatrix}$.

Exercice 42 (Mines)

- 1. Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{C})$ diagonalisable, $P \in \mathbb{C}[X]$ non constant. Montrer qu'il existe $M \in \mathcal{M}_n(\mathbb{C})$ tel que P(M) = A.
- 2. Donner un exemple montrant que le résultat précédent ne se généralise pas au cas où A n'est pas diagonalisable.

Exercice 43 (X) Déterminer les $n \in \mathbb{N}^*$ tels qu'existe $A \in \mathcal{M}_n(\mathbb{R})$ de polynôme minimal $X^3 + 2X + 2$. Même question dans $\mathcal{M}_n(\mathbb{Q})$.

Matrices par blocs

Exercice 44 (Mines) * Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} A & 2A \\ 0 & 3A \end{pmatrix}$.

- 1. Montrer que B est semblable à $\begin{pmatrix} A & 0 \\ 0 & 3A \end{pmatrix}$.
- 2. Montrer que A est diagonalisable si et seulement si B l'est.

Exercice 45 (X-Mines) * Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{C})$ et $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$. Á quelle *CNS* sur A, B est-elle diagonalisable?

Exercice 46 (Mines) Soient A, B et C, trois matrices complexes de taille n tells que AB = BC; trouver une CNS pour que $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ soit diagonalisable.

Exercice 47 (Mines) Soient A et B dans $\mathcal{M}_n(\mathbb{K})$ (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). On suppose B diagonalisable et AB = BA. Trouver une CNS pour que $M = \begin{pmatrix} A & B \\ 0 & A \end{pmatrix}$ soit diagonalisable.

Exercice 48 (Mines)

- 1. Donner le rang de $A = \begin{pmatrix} I_n & I_n \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$, $C = \begin{pmatrix} I_n & I_n \\ 0 & I_n \end{pmatrix}$ et $D = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.
- 2. Sont-elles inversibles? Si oui, calculer leur inverse.
- 3. Sont-elles diagonalisables?

Exercice 49 (Mines) Soient $A \in GL_n(\mathbb{C})$, $B = \begin{pmatrix} A & A^2 \\ A^{-1} & I_n \end{pmatrix}$. Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

Exercice 50 (Mines) Soient $A \in \mathcal{M}_n(\mathbb{C})$, $B = \begin{pmatrix} 0 & A \\ I_n & 0 \end{pmatrix}$. Donner une condition nécessaire et suffisante portant sur A pour que B soit diagonalisable.

Exercice 51 (Mines) Soient $n \in \mathbb{N}^*$, $m \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{C})$, $B \in \mathcal{M}_m(\mathbb{C})$, $C \in \mathcal{M}_{n,m}(\mathbb{C})$. Montrer que $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ est diagonalisable si et seulement si A et B sont diagonalisables et il existe $X \in \mathcal{M}_{n,m}(\mathbb{C})$ tels que AX - XB = C.

Exercice 52 (X) Soit $A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$ une matrice diagonalisable. On définit une suite $(A_n)_{n\geq 1}$ de matrices en posant $A_1 = A$ et

$$\forall n \in \mathbb{N}, \qquad A_{n+1} = \begin{pmatrix} a_{1,1}A_n & a_{1,2}A_n \\ a_{2,1}A_n & a_{2,2}A_n \end{pmatrix}.$$

Déterminer les valeurs propres de A_n en fonction des valeurs propres de A_1 .

Sous-espaces stables

Exercice 53 (CCP-Mines) * Soit $f \in \mathcal{L}(E)$, E K-espace vectoriel de dimension finie; on note μ_f son polynôme minimal.

- 1. Soit P un diviseur de μ_f dans $\mathbb{K}[X]$. Expliquer qu'il existe $v \in E \setminus \{0_E\}$ tel que $P(f)(v) = 0_E$.
- 2. On suppose $\mathbb{K} = \mathbb{R}$. Montrer que f admet au moins une droite vectorielle ou un plan vectoriel stable.

Exercice 54 (CCINP) * Soit E un \mathbb{R} -espace vectoriel de dimension finie n, impaire; et soit $u \in \mathcal{L}(E)$. Montrer qu'il existe un hyperplan de E que u laisse stable.

Exercice 55 (Mines) Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ -3 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- 1. Déterminer les sous-espaces de \mathbb{R}^3 stables par A.
- 2. Déterminer les $M \in \mathcal{M}_3(\mathbb{R})$ telles que AM = MA.

Exercice 56 (Mines) Soient E un espace vectoriel réel de dimension finie $n, u \in \mathcal{L}(E)$ dont le polynôme minimal μ est de degré 2 et est irréductible sur \mathbb{R} .

- 1. Montrer que, pour tout $x \in E \setminus \{0\}$, $P_x = \text{Vect}(x, u(x))$ est un plan stable par u
- 2. Montrer que, si F est un sous-espace stable par u et $x \notin F$ alors $F \cap P_x = \{0\}$.
- 3. Montrer qu'il existe une base dans laquelle la matrice de u est diagonale par blocs de taille 2, le polynôme minimal de chaque bloc étant μ .

Exercice 57 (Centrale/Mines) * Soit $u \in \mathcal{L}(E)$, E de dimension finie.

- 1. Montrer que si u est diagonalisable alors tout sous-espace de E admet un supplémentaire stable par u.
- 2. Montrer que u est diagonalisable si et seulement si tout sous-espace F de E admet un supplémentaire stable par u.

- 3. Montrer l'équivalence entre
 - Tout F sous-espace vectoriel de E stable par y et non réduit à $\{0_E\}$ admet au moins un vecteur propre.
 - Le polynôme caractéristique χ_u est scindé.
- 4. On suppose χ_u scindé. Montrer que u est diagonalisable si et seulement si tout sous-espace de E, stable par u, admet un supplémentaire stable par u.

Exercice 58 (Mines) Soit $f \in \mathcal{L}(E)$, E de dimension finie. Montrer l'équivalence entre

- χ_f est irréductible.
- Les seuls sous-espaces vectoriels stables par f sont E et $\{0_E\}$.

Exercice 59 (Ulm) * Soient \mathbb{K} un corps, E un \mathbb{K} -espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$. Montrer qu'il y a équivalence entre les deux conditions suivantes :

- tout sous-espace de E stable par u a un supplémentaire stable par u;
- le polynôme minimal de u est produit de facteurs irréductibles unitaires distincts.

Endomorphismes cycliques

Exercice 60 (Mines) Soit u un endomorphisme diagonalisable d'un espace vectoriel de dimension n. Démontrer l'équivalence entre :

- (i) ($\operatorname{Id}, u, \dots u^{n-1}$) est une famille libre;
- (ii) il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ soit une famille libre.

Exercice 61 (X-Mines-ENS) * Soient E un \mathbb{C} -espace vectoriel de dimension finie. Soit $u \in \mathcal{L}(E)$. On dit que u est cyclique s'il existe $x \in E$ tel que $E = \{P(f)(x) \; ; \; P \in \mathbb{C}[X]\}$.

- 1. On suppose que u est cyclique. Montrer que tout endomorphisme induit par u est cyclique.
- 2. Montrer que $I \mapsto \{Q(u)(x), \ Q \in I\}$ réalise une correspondance bijective entre les idéaux de $\mathbb{R}[X]$ contenant P et les sous-espaces de E stables par u.
- 3. Montrer que l'ensemble des sous-espaces de E stables par u est fini.
- 4. Réciproquement, montrer que si l'ensemble des sous-espaces de E stables par u est fini, alors u est cyclique.

Exercice 62 (SR) Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$. Un élément u de $\mathcal{L}(E)$ est dit cyclique s'il existe $x \in E$ tel que $(u^k(x))_{0 \leq k \leq n-1}$ soit une base de E.

- 1. Quels sont les endomorphismes de E diagonalisables et cycliques?
- 2. Montrer que, si u est cyclique, le commutant C(u) de u dans $\mathcal{L}(E)$ est égal à $\mathbb{K}[u]$.
- 3. Montrer que, si $u \in \mathcal{L}(E)$, il existe $r \in \mathbb{N}^*$ et des sous-espaces E_1, \ldots, E_r de E stables par u, tels que $E = \bigoplus_{i=1}^r E_i$ et que, pour tout $i \in [1, r]$, l'induit de u sur E_i soit cyclique.

Exercice 63 (Lyon) Soit $P = X^n + \sum_{k=0}^{n-1} a_k X^k$ dans $\mathbb{K}[X]$. On note x_1, \dots, x_n ses racines comptées à mesure de leur

multiplicité, et on pose $S_k = \sum_{i=1}^n (x_i)^k$ pour tout $k \in \mathbb{N}$. En considérant la matrice

$$C = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ 0 & 0 & & 0 & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix},$$

montrer la relation $\forall k \geq n, \ S_k + a_{n-1}S_{k-1} + \dots + a_0S_{k-n} = 0.$ Facultatif : Démontrer que $\forall k \in [1, n-1], \ S_k + a_{n-1}S_{k-1} + \dots + a_{n-k+1}S_1 = -k \, a_{n-k}.$

Sous-groupes de
$$GL_n(\mathbb{K})$$
 et matrices de $M_n(\mathbb{Z})$

Exercice 64 (Mines-X) *Soit E un \mathbb{R} -espace vectoriel de dimension finie n.

- 1. Soit $u \in \mathcal{L}(E)$ tel que $u^2 = \text{Id. Montrer que } u$ est diagonalisable. Quelle est la nature de $\frac{u+\text{Id}}{2}$?
- 2. Montrer que le cardinal d'une famille d'endomorphismes distincts $u \in \mathcal{L}(E)$ tels que $u^2 = \mathrm{Id}$ et commutant deux à deux est majoré par une constante que l'on déterminera.

- 3. Soit G un sous-groupe fini de GL(E) tel que, pour tout $g \in G$, $g^2 = Id_E$ Montrer que G est abélien et que son cardinal est une puissance de 2. Quel est le cardinal maximal d'un tel sous-groupe?
- 4. Que peut-on dire de m et n dans \mathbb{N}^* tels que $\mathrm{GL}_m(\mathbb{C})$ et $\mathrm{GL}_n(\mathbb{C})$ soient isomorphes?

Exercice 65 (ULSR) Soit
$$H = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
. On note $C_H = \{M \in GL_2(\mathbb{Z}), MH = HM\}$.

- 1. Montrer que C_H est un sous-groupe infini de $GL_2(\mathbb{Z})$.
- 2. Montrer que $C_H = \mathbb{Z}(H) \cap GL_2(\mathbb{Z})$, où $\mathbb{Z}(H) = \{xI + yH, (x,y) \in H^2\}$.
- 3. Montrer que C_H est isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$ et donner un système de générateurs.

Exercice 66 (PLSR) * Soit
$$A = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{F}_3)$$
. On admet que $A^{13} = -I_3$.

- 1. Quels calculs auriez-vous fait pour justifier que $A^{13} = -I_3$?
- 2. Montrer que $A \in GL_3(\mathbb{F}_3)$ et que A est d'ordre 26 dans ce groupe.
- 3. On note G le sous-groupe de $GL_3(\mathbb{F}_3)$ engendré par A, et on pose $V = G \cup \{0\}$. Montrer que $V = \text{Vect}(I_3, A, A^2)$.
- 4. On pose $W = \text{Vect}(I_3, A)$. Montrer que, pour tout $M \in G$, il existe $N, P \in W \setminus \{0\}$ telles que $M = P^{-1}N$.
- 5. On note H le sous-groupe de $GL_3(\mathbb{F}_3)$ engendré par A^2 . Montrer que H est isomorphe à $\mathbb{Z}/13\mathbb{Z}$, puis que $|H \cap W| = 4$.

Exercice 67 (X) * Soient G un groupe fini et V un \mathbb{C} -espace vectoriel de dimension finie.

Soit $\rho: G \to \operatorname{GL}(V)$ un morphisme de groupes. On dit que ρ est irréductible lorsque les seuls sous-espaces vectoriels de V stables par tous les éléments de l'image de ρ sont V et $\{0\}$. On note $\chi(\rho): s \in G \mapsto \operatorname{Tr}(\rho(s))$.

- 1. Montrer que $\chi(1_G) = \dim(V)$. Montrer que $\chi(s^{-1}) = \overline{\chi(s)}$ pour tout $s \in G$. Montrer que $\chi(st) = \chi(ts)$ pour tout $(s,t) \in G^2$.
 - Dans la suite, on se donne deux morphismes irréductibles $\rho_1:G\to \operatorname{GL}(V_1)$ et $\rho_2:G\to \operatorname{GL}(V_2)$, où V_1 et V_2 sont des $\mathbb C$ -espaces vectoriels de dimension finie, ainsi qu'une application linéaire $f:V_1\to V_2$ telle que $\forall s\in G,\ \rho_2(s)\circ f=f\circ \rho_1(s)$. On dit que ρ_1 et ρ_2 sont isomorphes lorsqu'une telle fonction linéaire bijective existe.
- 2. Montrer que f est bijective ou nulle.
- 3. Montrer que si $\rho_1=\rho_2$ et $V_1=V_2$ alors f est une homothétie.

On fixe désormais
$$h: V_1 \to V_2$$
 et on pose $h_0 = \frac{1}{|G|} \sum_{s \in G} \rho_2(s)^{-1} \circ h \circ \rho_1(s)$.

- 4. On suppose que ρ_1 et ρ_2 ne sont pas isomorphes. Montrer que $h_0=0$.
- 5. On suppose que $\rho_1 = \rho_2$ et $V_1 = V_2$. Montrer que $h_0 = \frac{\operatorname{Tr}(h)}{\dim V_1} \operatorname{Id}_V$.

Exercice 68 (Paris) * Soient E un \mathbb{R} -espace vectoriel de dimension finie et G un sous-groupe fini de $\operatorname{GL}(E)$. Montrer que si F un sous-espace vectoriel de E stable par tous les éléments de G alors F possède un supplémentaire stable par tous les éléments de G.

Exercice 69 (SR)

- 1. Si $n \in \mathbb{N}^*$, montrer que le groupe $GL_n(\mathbb{Z})$ des inversibles de l'anneau $\mathcal{M}_n(\mathbb{Z})$ est l'ensemble des matrices de $\mathcal{M}_n(\mathbb{Z})$ de déterminant ± 1 .
- 2. Soit $M \in GL_3(\mathbb{Z})$ n'admettant ni 1 ni -1 comme valeur propre. Montrer que M est diagonalisable sur \mathbb{C} .

Exercice 70 (X) Soit G un sous-groupe de $\mathrm{GL}_n(\mathbb{C})$ engendrant l'espace vectoriel $\mathcal{M}_n(\mathbb{C})$. On se donne une base $(g_i)_{i\in I}$ de $\mathcal{M}_n(\mathbb{C})$ formée d'éléments de G.

- 1. Montrer que la fonction $M \in G \mapsto (\operatorname{tr}(Mg_i))_{i \in I} \in \mathbb{C}^I$ est injective.
- 2. Montrer que, si l'ensemble des classes de similitude des éléments de G est fini, alors G est fini.

Exercice 71 (X) . Soit V un \mathbb{C} -espace vectoriel de dimension finie. On considère G un sous-groupe de $GL_n(V)$.

- 1. On suppose que $G = GL_n(V)$. Que vaut Vect(G)? La réciproque est-elle vraie?
- 2. On suppose que pour tout $q \in G$, $q \mathrm{Id}_V$ est nilpotent. Quels sont les éléments diagonalisables de G?
- 3. On suppose que G est fini et que Vect(G) = End(V). Quelle est la dimension de V?
- 4. Si G n'est plus fini mais que Vect(G) = End(V), quelle est la dimension de V?

Exercice 72 (ENS Lyon) * Soit G un sous-groupe de $GL_n(\mathbb{C})$ dont tous les éléments d'ordre fini, majoré par $m \in \mathbb{N}^*$.

- 1. Que peut-on dire de $\{Tr(g), g \in G\}$?
- 2. Montrer que G est un groupe fini (théorème de Burnside).

Exercice 73 (X) * Soient $n \in \mathbb{N}^*$, G un sous-groupe fini de $GL_n(\mathbb{Z})$. Montrer que $|G| \leq \prod_{i=0}^{n-1} (3^n - 3^i)$.

Exercice 74 (X) * Soit $R \in \mathcal{M}_n(\mathbb{Z})$ non nulle et $M = I_n + 3R$. Montrer que, pour tout $k \in \mathbb{N}^*$, $M^k \neq I_n$.

Exercice 75 (ULSR-X) * Soit p premier et $A \in \mathcal{M}_n(\mathbb{Z})$. Montrer que $\operatorname{Tr}(A^p) \equiv \operatorname{Tr}(A)[p]$.

Calculs de puissances de matrices et Équations matricielles

Exercice 76 (Mines) Calculer les puissances A^n $(n \in \mathbb{N})$:

1.
$$M = \begin{pmatrix} 0 & 1 & 1 \\ -2 & 3 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$
 2. $M = \begin{pmatrix} a+b & 0 & a \\ 0 & b & 0 \\ a & 0 & a+b \end{pmatrix}$

Exercice 77 (CCINP) Soit $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- 1. Trouver un polynôme annulateur P de A
- 2. Si $k \in \mathbb{N}$, effectuer la division euclidienne de X^k par P. En déduire A^k .
- 3. On définit (X_n) par $X_0 = {}^t (1,1,1)$ et $\forall k \in \mathbb{N}, X_{k+1} = AX_k$. Calculer X_k pour $k \in \mathbb{N}$.

Exercice 78 (Mines) Soit $P = (n+1)X^{n+1} - \sum_{j=0}^{n} X^{j} \in \mathbb{C}[X]$.

- 1. Montrer que toutes les racines de P sont simple et de module inférieur à 1. Quelles sont les racines de P de module 1.
- 2. Soit u une suite définie par $(u_0, \ldots, u_n) \in \mathbb{C}^{n+1}$ et pour tout $p \in \mathbb{N}$ $u_{p+n+1} = \frac{1}{n+1} \sum_{j=0}^{n} u_{p+j}$. Déterminer la limite de la suite $(u_p)_{p \in \mathbb{N}}$.

Exercice 79 (CCP-Centrale) Soit $M \in \mathfrak{M}_n(\mathbb{K})$ $(n \geq 2)$ nilpotente d'ordre n. Peut-il exister $A \in \mathfrak{M}_n(\mathbb{K})$ telle que $A^2 = M$?

Exercice 80 (Mines) Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Trigonaliser A.
- 2. Résoudre $X^n = A$, avec $n \in \mathbb{N}^*$ et $X \in \mathcal{M}_3(\mathbb{R})$.

Exercice 81 (IMT)

- 1. Diagonaliser $A = \begin{pmatrix} 3 & -3 \\ -1 & 5 \end{pmatrix}$.
- 2. Montrer que -2, 1, 2, -3 sont les valeurs propres possibles de M, vérifiant $M^2 + M = A$.
- 3. Montrer que M est diagonalisable et résoudre l'équation $M^2+M=A$.

Exercice 82 (Mines) Résoudre l'équation $X^2 - 2X = A$ dans $\mathcal{M}_2(\mathbb{R})$, où $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.

Exercice 83 (Mines) Résoudre l'équation $X^2 + X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Exercice 84 (Centrale-Mines) Déterminer les matrices A telles que $A^2 = M$ où :

1.
$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$
. 2. $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix}$ 3. $M = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 4 \end{pmatrix}$

8

4.
$$M = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$$
 5. $M = \begin{pmatrix} 4 & 5 & 5 \\ 5 & 4 & 5 \\ -5 & -5 & -6 \end{pmatrix}$

Exercice 85 (SR) * Soient $p \in \mathbb{N}^*$, \mathbb{K} un sous-corps de \mathbb{C} , $A \in \mathcal{M}_p(\mathbb{K})$. On dit que A est toute puissante sur le corps \mathbb{K} (TP \mathbb{K}) si, pour tout $n \in \mathbb{N}^*$, il existe $B \in \mathcal{M}_p(\mathbb{K})$ telle que $B^n = A$.

- 1. Traiter le cas p = 1 pour $\mathbb{K} = \mathbb{C}, \mathbb{R}, \mathbb{Q}$.
- 2. On suppose que $\chi_A = \prod_{i=1}^k (X \lambda_i)^{\alpha_i}$ où les λ_i sont distincts dans \mathbb{K} et les α_i dans \mathbb{N}^* .
 - (a) Montrer qu'il existe N_1, \ldots, N_k nilpotentes telles que A soit semblable à une matrice diagonale par blocs avec comme blocs diagonaux $\lambda_1 I_{\alpha_1} + N_1, \ldots, \lambda_k I_{\alpha_k} + N_k$.
 - (b) Montrer que A est TPK si et seulement si les $\lambda_i I_{\alpha_i} + N_i$ le sont.

On dit que $M \in \mathcal{M}_p(\mathbb{K})$ est unipotente si $M-I_p$ est nilpotente et on note $\mathcal{U}_p(\mathbb{K})$ l'insemble des matrices unipotentes de $\mathcal{M}_p(\mathbb{K})$.

Pour
$$A \in \mathcal{U}_p(\mathbb{K})$$
, on pose $\ln(A) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} (A - I_p)^n$.

- 3. Justifier la définition de ln(A) pour $A \in \mathcal{U}_p(\mathbb{K})$. Montrer que exp est une bijection de $\mathcal{N}_p(\mathbb{K})$ sur $\mathcal{U}_p(\mathbb{K})$.
- 4. Montrer que les matrices unipotentes sont TPK.

Exercice 86 (PLSR) Soient $A \in \mathcal{M}_n(\mathbb{C})$ non inversible et m la multiplicité de 0 dans χ_A . Montrer l'équivalence entre les propriétés suivantes :

- (i) $\ker A = \ker A^2$,
- (ii) il existe $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^m = A$,
- (iii) pour tout $k \geq 1$, il existe $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^k = A$.

Exercice 87 (X) On note $E = \mathcal{F}(\mathbb{N}^*, \mathbb{R})$. Pour $f \in E$, on pose $M(f) : n \in \mathbb{N}^* \mapsto \frac{1}{n} \sum_{k=1}^n f(k) \in E$.

- 1. Montrer que pour tout $f \in E$, pour tout $n \in \mathbb{N}^*$, $M^k(f)(n) \xrightarrow[k \to +\infty]{} f(1)$.
- 2. Montrer que si f est polynomiale, M(f) l'est également.

Matrices de petit rang

Exercice 88 (CCINP-ENS Lyon)

- 1. * Montrer que A, matrice carrée complexe de rang 1, est diagonalisable si et seulement si sa trace est non nulle.
- 2. Donner le rang de la matrice complexe $M = \begin{pmatrix} x^2 & xy & xz \\ yx & y^2 & yz \\ zx & zy & z^2 \end{pmatrix}$

À quelle(s) condition(s) est-elle diagonalisable? Qu'en est-il s'il s'agit d'une matrice réelle?

Exercice 89 (Mines) Soit $A \in \mathcal{M}_n(\mathbb{C})$ de rang 2. Exprimer son polynôme caractéristique en fonction de $\operatorname{Tr} A$ et $\operatorname{Tr}(A^2)$.

Exercice 90 (Mines) Soit $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant $\operatorname{rg}(A) = 2$, $\operatorname{Tr}(A) = 0$, $A^n \neq 0$.

- 1. Montrer que A est diagonalisable
- 2. Calculer la dimension de $C(A) = \{M \in \mathcal{M}_n(\mathbb{C}), AM = MA\}.$
- 3. On suppose de plus que $Tr(A^2) = 2$. Calculer A^k pour tout $k \in \mathbb{N}$.

Exercice 91 (X) Soient E un espace vectoriel de dimension finie sur un sous-corps de \mathbb{C} , et f un endomorphisme de E dont le polynôme caractéristique est irréductible. Montrer que $\operatorname{rg}(fg-gf)\neq 1$ pour tout $g\in\mathcal{L}(E)$.

Commutant et bicommutant

Exercice 92 (CCINP-Mines) * Soient u et v deux endomorphismes qui commutent, u ayant n valeurs propres distinctes (avec n dimension de E).

- 1. Montrer que u et v sont codiagonalisables.
- 2. Montrer que le commutant de u est $\mathbb{R}[u]$ et en déduire qu'il est de dimension n.

3. Soient $A \in \mathcal{M}_n(\mathbb{C})$ diagonalisable et $P \in \mathbb{C}[X]$ non constant. Montrer qu'il existe $M \in \mathcal{M}_n(\mathbb{C})$ tel que A = P(M).

Exercice 93 (X) Soit $(f_i)_{i\in I}$ une famille d'endomorphismes diagonalisables d'un \mathbb{C} -espace vectoriel E de dimension finie, et qui commutent deux à deux. Montrer qu'il existe $g \in \mathcal{L}(E)$ tel que $\forall i \in I, f_i \in \mathbb{C}[g]$.

Exercice 94 (Centrale-Mines-X) *Soit $f \in \mathcal{L}(E)$ un endormophisme diagonalisable. On note :

 $Com(f) = \{g \in \mathcal{L}(E), \ f \circ g = g \circ f\}$. On note $(\lambda)_{1 \leq j \leq p}$ les valeurs propres deux à deux distinctes de f, et pour tout j, E_j l'espace propre associé à la valeur propre λ_j , et $d_j = \dim(E_j)$.

- 1. Montrer qu'un endomorphisme g appartient à Com(f) si et seulement si il laisse stable tous les sous-espaces propres E_i .
- 2. On considère e une base de diagonalisation de f (obtenue comme union de bases des E_j), et $D = Mat_{\mathcal{B}}(f)$. Caractériser les matrices dans la base \mathcal{B} des $g \in Com(f)$.
- 3. En déduire la dimension de Com(f). A-t-on $Com(f) = \mathbb{K}[f]$?
- 4. Soit $Bicom(f) = \{g \in \mathcal{L}(E), \ \forall h \in Com(f), \ h \circ g = g \circ h\}$. Montrer que $Bicom(f) = \mathbb{K}[f]$.

Exercice 95 (Mines) Soient $n \in \mathbb{N}^*$, $M \in \mathcal{M}_n(\mathbb{R})$ diagonalisable, $\mathcal{C}(M) = \{A \in \mathcal{M}_n(\mathbb{R}), AM = MA\}$. Montrer que les propositions suivantes sont équivalentes :

- (i) M possède n valeurs propres distinctes,
- (ii) $\dim \mathcal{C}(M) = n$,
- (iii) $\forall A \in \mathcal{C}(M), \exists P \in \mathbb{R}[X], A = P(M),$
- (iv) $\forall (A, B) \in \mathcal{C}(M)^2$, AB = BA.

Exercice 96 (X) Soient E un espace vectoriel de dimension finie $n, u \in \mathcal{L}(E), C(u)$ la sous-algèbre des endomorphismes de E commutant à u.

- 1. On suppose que u est diagonalisable. À quelle condition a-t-on $C(u) = \mathbb{K}[u]$?
- 2. On revient au cas général. Montrer que, si $\mathbb{K}[u]$ est de dimension n, alors $C(u) = \mathbb{K}[u]$. La réciproque est-elle vraie?

Classes de similitude

Exercice 97 (Mines) Soient $n \in \mathbb{N}^*$, A et B dans $\mathcal{M}_n(\mathbb{C})$ admettant même polynôme minimal et même polynôme caractéristique. Les matrices A et B sont-elles semblables?

Exercice 98 (Mines) Soient A une matrice carrée à coefficients complexes; montrer que si $M = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ et $N = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ sont semblables, alors A est nilpotente.

Exercice 99 (Centrale) Soit E un espace vectoriel de dimension finie.

- 1. Soit $u \in \mathcal{L}(E)$ nilpotent d'indice de nilpotence égal à k. Montrer que $k \leq \operatorname{rg}(u) + 1$
- 2. Soient u, v nilpotents de rang 1. Montrer qu'il existe deux bases dans lesquelles u et v ont la même matrice. On dira que u et v sont semblables.
- 3. Soient u et v deux endomorphismes de rang 2.
 - (a) On suppose que u et v ont pour polynôme minimal $X^2(X-1)$. Montrer que u et v sont semblables.
 - (b) On suppose que u et v sont nilpotents de même indice k. Montrer que u et v sont semblables.

Exercice 100 (X) Quelles sont les $M \in \mathcal{M}_n(\mathbb{C})$ telles que M soit semblable à 2M?

Exercice 101 (ENS) * Déterminer les matrices de $GL_n(\mathbb{C})$ qui commutent avec tous les éléments de leur classe de conjugaison.

Exercice 102 (ENS) * Déterminer les matrices de $GL_n(\mathbb{C})$ dont la classe de similitude est finie.

Exercice 103 (Lyon) Montrer que deux matrices de $\mathcal{M}_2(\mathbb{Q})$ qui ont le même polynôme caractéristique, de discriminant non nul, sont semblables.

Exercice 104 (X) * Pour $\sigma \in \mathcal{S}_n$, on note $P_{\sigma} \in \mathcal{M}_n(\mathbb{C})$ la matrice de permutation associée à σ . Montrer que, si σ et σ' sont dans \mathcal{S}_n , σ et σ' sont conjuguées dans \mathcal{S}_n si et seulement si P_{σ} et $P_{\sigma'}$ sont semblables.

Trigonalis abilit'e~;~endomorphismes~nil potents

Exercice 105 (Mines) Soient A et B dans $\mathcal{M}_{2n}(\mathbb{C})$ telles que $A^2 = B^2 = 0$, $\operatorname{rg} A \geq n$ et $\operatorname{rg} B \geq n$. Montrer que A et B sont semblables.

Exercice 106 (CCP-Centrale) * Soient u et v deux endomorphismes d'un \mathbb{C} -espace vectoriel E tels que uv = vu et v est nilpotente. Montrer que $\chi_{u+v} = \chi_u$ (et que $\det(u+v) = \det(u)$). Qu'en est-il pour un \mathbb{R} -espace vectoriel?

Exercice 107 (Mines-X) Soient A et B dans $\mathfrak{M}_n(\mathbb{C})$ telles que $AB = 0_{\mathfrak{M}_n(\mathbb{C})}$. Montrer qu'elles admettent un vecteur propre commun, puis que A et B sont cotrigonalisables.

Exercice 108 (X-Mines-Centrale) * Soit E un \mathbb{C} -espace vectoriel de dimension finie. Soit $(u, v) \in (\mathcal{L}(E))^2$ tel que uv - vu = u.

- 1. Calculer pour tout $k \in \mathbb{N}$, $u^k v v u^k$. En déduire que u est nilpotent.
- 2. (ENS) A-t-on le même résultat pour $\mathbb{K} = \mathbb{R}$? $\mathbb{K} = \mathbb{Z}/p\mathbb{Z}$?
- 3. Montrer que u et v ont un vecteur propre commun, puis qu'ils sont cotrigonalisables.
- 4. Montrer le même résultat dans le cas $uv vu \in Vect(u, v)$.

Exercice 109 (Ulm) * Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soit $(u, v) \in (\mathcal{L}(E))^2$ tel que $\operatorname{rg}(uv - vu) \leq 1$. Montrer que u et v sont cotrigonalisables.

Exercice 110 (Mines) Soient $A \in \mathcal{M}_n(\mathbb{C})$ et \mathcal{N} l'ensemble des matrices nilpotentes. Étudier l'équivalence entre :

- (i) A est diagonalisable;
- (ii) $\forall P \in \mathbb{C}[X], \ P(A) \in \mathcal{N} \Rightarrow P(A) = 0.$

Exercice 111 (SR) * Montrer qu'une matrice $N \in M_n(\mathbb{R})$ est nilpotente si et seulement si pour tout $k \in \mathbb{N}^*$ tr $(N^k) = 0$.

Exercice 112 (X-Mines-Centrale) * Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $(\lambda_i)_{1 \leq i \leq n} \in \mathbb{R}^n$. On suppose : $\forall k \in \mathbb{N}$, $\operatorname{Tr}(A^k) = \sum_{i=1}^n \lambda_i^k$.

- 1. Montrer que les λ_i sont les valeurs propres de A avec multiplicité.
- 2. Soient $n \in \mathbb{N}^*$, A et B dans $\mathcal{M}_n(\mathbb{C})$ telles que $\forall k \in \mathbb{N}$, $\text{Tr}(A^k) = \text{Tr}(B^k)$. Les matrices A et B sont-elles semblables? Montrer que $\chi_A = \chi_B$.

Exercice 113 (Ulm) Soient E un \mathbb{C} -espace vectoriel de dimension finie, u et v dans $\mathcal{L}(E)$ admettant exactement les mêmes sous-espace stables. Montrer que u et v sont cotrigonalisables. Commutent-ils?

Exercice 114 (Ulm) Soient E un \mathbb{C} -espace vectoriel de dimension finie, u et v dans $\mathcal{L}(E)$ admettant exactement les mêmes sous-espace stables. Montrer que u et v sont cotrigonalisables. Commutent-ils?

Exercice 115 (ENS)

- 1. Soit $G \in GL_n(\mathbb{C})$. On suppose que G^k est semblable à G pour tout entier $k \geq 1$. Montrer que $G I_n$ est nilpotente.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$ nilpotente. On pose $M = I_n + A$. Montrer que M^k est semblable à M pour tout $k \in \mathbb{N}^*$.

Exercice 116 (PLSR)

- 1. Quelle est la dimension maximale d'une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$ engendrée par une matrice nilpotente?
- 2. Soient $m \in \mathbb{N}^*$, A_1, \ldots, A_m des matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$ qui commutent deux à deux, \mathcal{A} la sous-algèbre de $\mathcal{M}_n(\mathbb{C})$ engendrée par A_1, \ldots, A_m . Montrer que la dimension de \mathcal{A} est majorée par n $(n \min\{ \operatorname{rg}(A_i) ; 1 \le i \le m \})$.

Exercice 117 (PLSR) Soient E un \mathbb{K} -espace vectoriel non nul de dimension finie, $f \in \mathcal{L}(E)$ nilpotent d'indice m, $x \in E$ tel que $f^{m-1}(x) \neq 0$.

- 1. Montrer que la famille $(f^k(x))_{0 \le k \le m-1}$ est libre. On note V le sous-espace de E engendré par cette famille.
- 2. Soit $\varphi \in E^*$ telle que $\varphi(f^{m-1}(x)) \neq 0$, W le sous-espace de E^* engendré par $(\varphi \circ f^i)_{0 \leq i \leq m-1}$, W^{\perp} l'ensemble des $y \in E$ tels que $\forall \psi \in W^{\perp}$, $\psi(y) = 0$. Montrer que W^{\perp} est un supplémentaire de V dans E stable par f.
- 3. Montrer qu'il existe une base de E dans laquelle la matrice de f soit diagonale par blocs, les blocs diagonaux étant de la forme J_k avec $k \in \mathbb{N}^*$, où $J_k \in \mathcal{M}_k(\mathbb{K})$ est une matrice dont tous les coefficients sont nuls en dehors de ceux de la sur-diagonale qui sont égaux à 1.

Applications et sous-algèbre de L(E) ou $\mathcal{M}_n(\mathbb{K})$

Exercice 118 (CCP-Mines-Centrale-X) * Soient $n \in \mathbb{N}^*$, A et B deux matrices de $\mathfrak{M}_n(\mathbb{C})$. On note P_A le polynôme caractéristique de A.

Pour $X \in \mathfrak{M}_n(\mathbb{C})$, on pose u(X) = AX - XB.

- 1. Montrer l'équivalence entre :
 - (a) A et B n'ont aucune valeur propre commune.
 - (b) $P_A(B) \in Gl_n(\mathbb{C})$.
 - (c) $\forall X \in \mathfrak{M}_n(\mathbb{C}), AX = XB \Rightarrow X = 0_{\mathfrak{M}_n(\mathbb{C})}$ (on pourra dans un premier temps vérifier que si $X \in \mathfrak{M}_n(\mathbb{C})$ vérifie AX = XB, alors pour tout $P \in \mathbb{C}[X], P(A)X = XP(B)$).
 - (d) $\forall Y \in \mathfrak{M}_n(\mathbb{C}), \exists ! X \in \mathfrak{M}_n(\mathbb{C}), AX XB = Y.$
- 2. Montrer que, si α est valeur propre de A et β valeur propre de B, $\alpha \beta$ est valeur propre de u.
- 3. Soit λ une valeur propre de u. Montrer que λ s'écrit $\alpha \beta$ où α (resp. β) est valeur propre de A (resp. B).
- 4. Déterminer le spectre de l'endomorphisme de $\mathcal{M}_n(\mathbb{C}): X \mapsto AX XB$.

Exercice 119 (Mines-X-Centrale-ENS) * Soient \mathbb{K} un corps, n, p, r dans \mathbb{N}^* , $M \in \mathcal{M}_n(\mathbb{K})$, $N \in \mathcal{M}_p(\mathbb{K})$, P dans $\mathcal{M}_{n,p}(\mathbb{K})$ de rang r telle que MP = PN. Montrer que $\chi_M \wedge \chi_N$ est de degré supérieur ou égal à r.

Exercice 120 (SR) * On écrit la décomposition du polynôme caractéristique de $A \in \mathcal{M}_n(\mathbb{C})$: $P = \prod_{i=1}^a P_i$, avec $P_i = (X - \lambda_i)^{\alpha_i}$.

1. Expliquer que
$$\mathbb{C}^n = \bigoplus_{i=1}^d \ker(P_i(A))$$
. Dans une base adaptée, $A = P^{-1} \begin{pmatrix} A_1 & 0 \\ & \ddots \\ 0 & A_d \end{pmatrix} P$.

- 2. Montrer que pour tout $i \in [1, d], \chi_{A_i} = P_i$.
- 3. Montrer l'existence de la décomposition de Dunford.
- 4. On pose com_A : $\begin{cases} \mathcal{M}_n(\mathbb{C}) & \to \mathcal{M}_n(\mathbb{C}) \\ X & \mapsto AX XA \end{cases}$. Quelle est la décomposition de Dunford de com_A ?
- 5. On suppose com_A diagonalisable. Trouver une CNS sur A.

Exercice 121 (Mines-Centrale) * Soient E un espace vectoriel de dimension finie et u un endomorphisme de E. On note ϕ l'endomorphisme de $\mathcal{L}(E)$ défini par $\phi(v) = v \circ u - u \circ v$.

- 1. On suppose que u est nilpotent. Montrer que ϕ est nilpotent.
- 2. On suppose que u est diagonalisable. Montrer que ϕ est diagonalisable.
- 3. Étudier les réciproques.

Exercice 122 (X-Lyon) Pour $A \in \mathcal{M}_n(\mathbb{C})$, on note $T_A : M \in \mathcal{M}_n(\mathbb{C}) \mapsto AM - MA \in \mathcal{M}_n(\mathbb{C})$.

- 1. Montrer que si A est nilpotente alors T_A est nilpotent.
- 2. Montrer que si A possède une unique valeur propre alors T_A est nilpotent.
- 3. Montrer que si A possède plusieurs valeurs propres alors T_A n'est pas nilpotent.
- 4. Que peut-on dire de T_A si A est diagonalisable?
- 5. Et si A est trigonalisable?
- 6. Quel est le rang maximal de T_A ?
- 7. Montrer que s'il existe $\lambda \in \operatorname{Spec}(A)$ tel que dim $\ker(A \lambda I_n) \geq 2$, alors T_A n'est pas de rang maximal.

Exercice 123 (Paris) Soient E un \mathbb{Q} -espace vectoriel, $p \in \mathcal{L}(E)$ un projecteur, φ l'élément de $\mathcal{L}(\mathcal{L}(E))$ défini par $\forall u \in \mathcal{L}(E), \ \varphi(u) = u \circ p + p \circ u$. L'endomorphisme φ est-il diagonalisable?

Exercice 124 (ENS-Centrale) * Soient $n \in \mathbb{N}^*$, f un endomorphisme de $\mathcal{M}_n(\mathbb{C})$.

- 1. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est nilpotente si et seulement si pour tout $\mu \in \mathbb{C}$, $I_n \mu A$ est inversible.
- 2. On suppose que $f(GL_n(\mathbb{C})) \subset GL_n(\mathbb{C})$. Montrer que, pour $M \in \mathcal{M}_n(\mathbb{C})$, $\operatorname{rg}(f(M)) = \operatorname{rg}(M)$.

Exercice 125 (X) Soit \mathcal{A} une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$ dont le seul élément nilpotent est la matrice nulle. Montrer que les éléments de \mathcal{A} sont simultanément diagonalisables.

Exercice 126 (Ulm) * Soit $n \in \mathbb{N}^*$ et soit \mathcal{A} une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$. On suppose que pour tout $v \in \mathbb{C}^n$ non nul, on a $\{Mv, M \in \mathcal{A}\} = \mathbb{C}^n$. Montrer que $\mathcal{A} = \mathcal{M}_n(\mathbb{C})$.

Exercice 127 (X MPI) Soit \mathcal{A} un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ stable par crochet de Lie : pour $M, N \in \mathcal{A}$, $[M, N] = MN - NM \in \mathcal{A}$.

- 1. On suppose que, pour tout $M \in \mathcal{A}$, $N \mapsto [M, N]$ induit un endomorphisme diagonalisable de \mathcal{A} . Montrer que $\forall M, N \in \mathcal{A}$, [M, N] = 0.
- 2. On suppose que dim $A \leq 3$ et que, pour tout $M \in A$, $N \mapsto [M, N]$ induit un endomorphisme nilpotent de A. On pose $A_0 = A$ et, pour $j \in \mathbb{N}$, $A_{j+1} = \{[M, N], (M, N) \in A_j^2\}$. Montrer que $A_3 = \{0\}$.