Séries numériques et familles sommables

Nature et somme d'une série :

Exercice 1 Étudier la nature de la série de terme général :

1.
$$\ln\left(\frac{1}{\sqrt{n}}\right) - \ln\left(\sin\frac{1}{\sqrt{n}}\right)$$

$$2. \ \frac{n^n}{(2n)!}$$

3. (CCP)
$$\frac{n^{\alpha}(\ln n)^n}{n!}$$
 $(\alpha \in \mathbb{R})$

4. (ENSEA)
$$\sqrt{n^2 + n + 1} - \sqrt[3]{n^3 + \alpha n^2 + \beta n + \gamma}$$

5.
$$\tan \frac{1}{n} + \ln \left(\frac{n^{\alpha} + \sqrt{n}}{n^{\alpha} - \sqrt{n}} \right)$$

6. (CCP)
$$(-1)^n \left(\sin \left(\frac{1}{\sqrt{n}} \right) - \tan \left(\frac{1}{\sqrt{n}} \right) \right)$$

7. (CCP-Mines)
$$\ln \left(1 + \sin \left(\frac{(-1)^n}{n^{\alpha}}\right)\right) (\alpha > 0)$$

8. (IMT)
$$\sin\left(\frac{\pi}{n}(n^2+an+b)\right)$$
, $(a,b) \in \mathbb{R}^2$

9. (IMT)
$$\frac{1}{\sum_{k=2}^{n} \ln k}$$

10. (Mines)
$$\frac{(-1)^n}{\sqrt{n}+(-1)^n n^{\alpha}}$$
, $n \geq 2$ et $\alpha \in \mathbb{R}$.

11. (Mines)
$$\frac{(-1)^n}{n^{\frac{1}{3}} + (-1)^n}$$

12. (Mines)
$$\frac{(-1)^n}{\sqrt{n+(-1)^n}}$$

13. (Mines)
$$\frac{(-1)^n e^{-\lambda \ln n}}{\sqrt{n} + (-1)^n}$$

14. (Mines)
$$\sin\left(\pi\sqrt{n^2+1}\right)$$

15. (Mines)
$$\frac{n^{\ln n}}{(\ln n)^n}$$

16. (Mines)
$$\left(1 + \frac{1}{n+1}\right)^{2n} - \left(1 + \frac{2}{n\alpha}\right)^n$$
 où $\alpha \in \mathbb{R} \setminus \mathbb{Z}$.

17. (Mines)
$$\frac{1}{\sqrt{n \ln^2(n)}}$$

18. (Mines)
$$\operatorname{Arcsin}\left(\frac{n^2}{n^2+1}\right) - \operatorname{Arcsin}\left(\frac{n^2}{n^2+2}\right)$$

19. (Mines)
$$\frac{\sin(2\pi e n!)}{\ln(n)}$$

Exercice 2 (TPE) Nature de la série de terme général $u_n = \int_{n\pi}^{(n+1)\pi} \frac{t \sin t}{t^2 + 1} dt$.

Exercice 3 (X) Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}^{+*})^{\mathbb{N}}$. On pose $a_n=\inf_{p\geq n}\left\{p\left(\frac{u_p}{u_{p+1}}-1\right)\right\}$. On suppose que, pour tout $n,\,a_n>1$. Montrer que $\sum u_n$ converge.

Exercice 4 Montrer la convergence et calculer la somme des séries suivantes (on pourra pour certaines utiliser la valeur de $\sum \frac{1}{n^2}$):

1.
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$$

$$2. \sum_{n=1}^{\infty} \frac{1}{n^2(n+1)^2}$$

3.
$$\sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+3)}$$

4. (TPE)
$$\sum_{n=1, n \neq p}^{\infty} \frac{1}{n^2 - p^2}$$

5. (Mines)
$$\sum_{n\geq 1} \left(\sum_{k=1}^{n} k^2\right)^{-1}$$
.

Exercice 5 (CCPINP)

1. Montrer que la suite de terme général $u_n = \sum_{k \ge n} \frac{(-1)^k}{k^2}$ est définie et que $u_n = O\left(\frac{1}{n^2}\right)$ en $+\infty$.

2. Montrer que
$$\forall N \in \mathbb{N}^*, \sum_{n=1}^{N} \left(\sum_{k=n}^{N} \frac{(-1)^k}{k^2} \right) = \sum_{k=1}^{N} \frac{(-1)^k}{k}$$
.

3. Exprimer
$$\sum_{n=1}^{N} u_n$$
 en fonction de Nu_{N+1} et de $\sum_{k=1}^{N} \frac{(-1)^k}{k}$.

4. Montrer que
$$\sum_{n>1} u_n = -\ln 2$$
.

Exercice 6 (Mines) Soit $(a_n)_{n\in\mathbb{N}^*}\in(\mathbb{R}_+^*)^{\mathbb{N}}$.

- 1. On suppose que la série $\sum a_n^{1-\frac{1}{n}}$ converge. Montrer que la série $\sum a_n$ converge.
- 2. On suppose que $\sum a_n$ converge. Soit $\lambda > 1$. On introduit les ensembles

$$I = \left\{ n \in \mathbb{N}^*, \ a_n^{1 - \frac{1}{n}} \le \lambda a_n \right\} \text{ et } J = \left\{ n \in \mathbb{N}^*, \ a_n^{1 - \frac{1}{n}} > \lambda a_n \right\}.$$

En considérant ces deux ensembles, montrer que $\sum a_n^{1-\frac{1}{n}}$ converge.

3. En déduire que la série $\sum a_n^{1-\frac{1}{n}}$ converge si et seulement si la série $\sum a_n$ converge et que

$$\sqrt{\sum_{n \in \mathbb{N}^*} a_n^{1 - \frac{1}{n}}} \le \sqrt{\sum_{n \in \mathbb{N}^*} a_n} + 1.$$

Exercice 7 (Mines) Soit $f \in \mathcal{C}^1(\mathbb{R}^+, \mathbb{R}^{+*})$. On suppose que $f'(x)/f(x) \to -\infty$ quand $x \to +\infty$.

- 1. Montrer que $\sum f(n)$ converge.
- 2. Donner un équivalent de $\sum_{k=n+1}^{+\infty} f(k)$ quand $n \to +\infty$.

Exercice 8 $(X)^*$ Soit σ une permutation de \mathbb{N}^* . Nature de $\sum \frac{\sigma(n)}{n^2}$?

Exercice 9 (X) Soit $u = (u_n) \in (\mathbb{R}_+)^{\mathbb{N}}$ une suite décroissante telle que $u_0 = 1$ et la série de terme général $\frac{u_n^2}{u_{n+1}}$ converge. Montrer que $\sum_{n=0}^{\infty} \frac{u_n^2}{u_{n+1}} \ge 4$.

Exercice 10 (Mines-ENS P) Soit $\sum a_n$ une série divergente à terme général positif. Déterminer la nature de la série $\sum \frac{a_n}{1+a_n}$.

Exercice 11 $(X)^*$ Soit $\sum_{n\geq 0} x_n$ une série absolument convergente à termes réels.

- 1. Montrer que $\sum_{n\geq 0} |x_n|^p$ converge pour tout réel $p\geq 1$.
- 2. Déterminer la limite, lorsque p tend vers $+\infty$, de $\left(\sum_{n=0}^{+\infty}|x_n|^p\right)^{1/p}$.

Exercice 12 (*Ulm*) Soient $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$ deux suites d'éléments de \mathbb{R}^+ telles que : $\forall n\in\mathbb{N}, a_{n+1}\leq a_n+b_n$ et que $\sum b_n$ converge. Montrer que $(a_n)_{n\geq 0}$ converge.

Exercice 13 (ENS) Soit $u = (u_n) \in (\mathbb{R}_+)^{\mathbb{N}}$ telle que $u_0 = 1$, $\sum u_n$ converge et pour tout $n \in \mathbb{N}$, $u_n \leq u_{2n} + u_{2n+1}$. Calculer $\sum_{n=0}^{+\infty} u_n$.

Exercice 14 $(Lyon)^*$ Soit $(a_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$ telle que $\sum a_n$ converge. Montrer que la série de terme général $\sqrt[n]{\prod_{k=1}^n a_k}$ converge et $\sum_{n=1}^{\infty} \sqrt[n]{\prod_{k=1}^n a_k} \le e \sum_{n=1}^{+\infty} a_n$. La constante e est-elle optimale?

Sommabilité:

Exercice 15 (Mines-X) Déterminer si les familles suivantes sont sommables :

1.
$$\frac{1}{i^{\alpha} + j^{\alpha}}, (i, j) \in (\mathbb{N}^*)^2$$

4.
$$\frac{1}{x^2}$$
, $x \in \mathbb{Q} \cap [1, +\infty[$

$$2. \frac{1}{a^p} \frac{1}{b^q}, (p,q) \in \mathbb{N}^2 \text{ (avec } a > 1 \text{ et } b > 1 \text{ fixés)}$$

5.
$$\left(\frac{1}{a^m + b^n}\right)_{(m,n) \in (\mathbb{N}^*)^2}, (a,b) \in (\mathbb{R}^{+*})^2.$$

3.
$$\frac{1}{a^p + b^q}$$
, $(p,q) \in \mathbb{N}^2$ (avec $a > 1$ et $b > 1$ fixés)

Exercice 16 $(X)^*$ Déterminer si la famille suivante est sommable : $\frac{1}{N(v)^{\alpha}}$, $v \in \mathbb{N}^d \setminus \{0\}$, avec N norme sur \mathbb{R}^d fixée. On admettra que toutes les normes sur \mathbb{R}^d sont équivalentex.

Exercice 17 * On pose pour tout $(p,q) \in \mathbb{N}^2$, $a_{p,q} = \begin{cases} \frac{1}{p^2 - q^2} & \text{si } p \neq q \\ 0 & \text{sinon} \end{cases}$. Calculer $\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{p,q}$ et $\sum_{q=0}^{\infty} \sum_{p=0}^{\infty} a_{p,q}$. En déduire que la famille n'est pas sommable.

Exercice 18 Montrer la convergence et calculer les sommes suivantes (éventuellement en fonction des $\zeta(k)$):

$$1. \sum_{n=0}^{+\infty} \sum_{k=n}^{+\infty} \frac{1}{k!}$$

3.
$$\sum_{\substack{(p,q) \in (\mathbb{N}^*)^2 \\ p|q}} \frac{1}{p^2 q^2}$$

2.
$$\sum_{p=1}^{+\infty} \sum_{q=p}^{+\infty} \frac{(-1)^p}{q^3}$$

4.
$$\sum_{\substack{(p,q) \in (\mathbb{N}^*)^2 \\ p \land q = 1}} \frac{1}{p^2 q^2}.$$

Exercice 19 Pour tout $n \in \mathbb{N}^*$, on note d(n) le nombre de diviseurs de n. Montrer que pour tout $z \in \mathbb{R}$ tel que |z| < 1, $\sum_{n=1}^{\infty} d(n)x^n = \sum_{n=1}^{\infty} \frac{x^n}{1-x^n}$, après avoir montré la convergence des séries.

Exercice 20 Montrer que pour $x \in \mathbb{C}$, |x| < 1, on a l'égalité : $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{1 - x^{2n+1}} = \sum_{n=1}^{+\infty} \frac{x^n}{1 - x^{2n}}$

Exercice 21 (Mines) Calculer $\sum_{n=2}^{+\infty} (n-1) (2^n(\zeta(n)-1)-1)$.

Exercice 22 $(Mines)^*$ On note d(n) le nombre de diviseurs de $n, \varphi(n)$ l'indicatrice d'Euler et ζ la fonction de Riemann.

- 1. Montrer que, pour $\alpha > 1$, $\sum_{n=1}^{+\infty} \frac{d(n)}{n^{\alpha}} = \zeta(\alpha)^2$. Que dire pour $\alpha \le 1$?
- 2. Montrer que, pour $\alpha > 2$, $\sum_{n=1}^{+\infty} \frac{\varphi(n)}{n^{\alpha}} = \frac{\zeta(\alpha-1)}{\zeta(\alpha)}$. Que dire pour $\alpha \le 2$?

Exemples et contre-exemples :

Exercice 23 (Mines) Existe-t-il une suite u à valeurs réelles strictement positives telle que $\sum u_n$ converge et telle que $\ln u_n \sim -\ln n$?

Exercice 24 $(Mines)^*$ Soit (a_n) une suite de réels strictement positifs.

- 1. Suffit-il que (na_n) tende vers 0 pour que la série $\sum a_n$ converge ?
- 2. La convergence de $\sum a_n$ entraı̂ne-t-elle que (na_n) tend vers 0 ?
- 3. Si la suite (a_n) est décroissante, montrer que si $\sum a_n$ converge, alors $\lim_{n\to\infty} na_n = 0$.

Exercice 25 (Mines) Soit u une suite réelle positive décroissante.

- 1. Montrer que $\sum u_n$ converge si et seulement si $\sum nu_{n^2}$ converge.
- 2. Étudier le lien entre la convergence de $\sum u_n$ et celle de $\sum n^2 u_{n^2}$

Exercice 26 (ENS)*

- 1. Soit $u = (u_n) \in \mathbb{R}^{\mathbb{N}}$ famille sommable. Montrer que pour tout $k \geq 2$ la famille (u_n^k) est sommable.
- 2. Soient u et v deux familles sommables telles que pour tout $k \in \mathbb{N}^*$, $\sum_{n=0}^{+\infty} u_n^k = \sum_{n=0}^{+\infty} v_n^k$. Montrer qu'il existe une permutation ϕ de \mathbb{N} telle que pour tout $n \in \mathbb{N}$, $u_n = v_{\phi(n)}$.
- 3. Soit A une partie finie de \mathbb{N} . Montrer qu'il existe N et deux suites $(u_n)_{0 \le k \le N}$ et $(v_n)_{0 \le k \le N}$ telles que pour tout $k \in A$, $\sum_{n=0}^{N} u_n^k = \sum_{n=0}^{N} v_n^k$, mais qu'il n'existe aucune permutation de [0, N] telle que pour tout $n, u_n = v_{\phi(n)}$.
- 4. Trouver une partie infinie de A et deux suitess complexes u et v telles que pour tout $k \in A$, $\sum_{n=0}^{+\infty} u_n^k = \sum_{n=0}^{+\infty} v_n^k$, mais telles que u ne soit pas une permutation des éléments de v.

Autour de Raab-Duhamel :

Exercice 27 $(Mines)^*$ Soient 0 < a < b et (u_n) définie par $u_0 > 0$ et, pour $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}$. Déterminer une CNS pour que la série de terme général u_n converge. Dans ce cas, donner la somme $\sum n(u_{n+1} - u_n)$. Puis calculer la somme $\sum u_n$.

Exercice 28 (Mines)* Soient, pour $n \in \mathbb{N}^*$, $u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$ et $v_n = \ln\left(\frac{u_{n+1}}{u_n}\right)$.

- 1. Montrer que la série de terme général v_n est convergente.
- 2. En déduire l'existence de C > 0 tel que $n! \sim C\sqrt{n} \, n^n e^{-n}$.

Exercice 29 (SR)

- 1. Soient (a_n) et $(b_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$. On suppose que, à partir d'un certain rang, $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. Que peut-on dire des séries de termes généraux a_n et b_n ?
- 2. Soit $(a_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$. On suppose que $\frac{a_{n+1}}{a_n} = 1 + \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$, avec $\alpha > -1$. Montrer que $\sum a_n$ diverge.
- 3. Que peut-on dire si $\alpha < -1$?

Comparaison séries-intégrales :

Exercice 30 (CCPIN)*

- 1. Expliquer que pour tout $x \in [0,1[$ la série $\sum \frac{x^n}{1+x^n}$ converge. Que peut-on dit pour x=1?
- 2. On note, pour tout $x \in [0,1[$, $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{1+x^n}$. En utilisant la fonction $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ t \mapsto \frac{\mathrm{e}^{-ut}}{1+\mathrm{e}^{-ut}} \end{cases}$ (pour un u bien choisi), trouver un équivalent simple de f(x) quand x tend vers 1.

Exercice 31 (Mines) Soit f une fonction continue et croissante de \mathbb{R}^+ dans \mathbb{R}^{+*} .

- 1. On suppose que $f(x+1) \underset{x\to +\infty}{\sim} f(x)$. Montrer que $\sum_{k=1}^{n} f(k) \underset{n\to +\infty}{\sim} \int_{0}^{n} f(x) f(x)$.
- 2. Le résultat subsiste-t-il sans l'hypothèse $f(x+1) \underset{x \to +\infty}{\sim} f(x)$?

Exercise 32 (Mines)* Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{(-1)^k \ln(k)}{k}$, $x_n = \sum_{k=1}^n \frac{1}{k+n}$, $v_n = \sum_{k=1}^n \frac{\ln(k)}{k}$, $w_n = \sum_{k=1}^n \frac{\ln(2k)}{k}$ et $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer l'existence de $\ell \in \mathbb{R}$, que l'on déterminera, tel que $x_n = \ell + O\left(\frac{1}{n}\right)$.
- 2. Exprimer u_n en fonction de v_n et de w_n .
- 3. Montrer qu'il existe $\gamma \in \mathbb{R}$ tel que $H_n = \ln(n) + \gamma + o(1)$.
- 4. Montrer que la suite (u_n) converge et exprimer sa limite en fonction de γ .

Exercice 33 (X) * Pour $n \in \mathbb{N}^*$, soit $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$.

1. Montrer que la suite $(u_n)_{n\geq 1}$ converge, on note ℓ sa limite.

2. Montrer que
$$\ell = -(1 + \sqrt{2}) \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{\sqrt{k}}$$
.

Exercice 34 (X-ENS-Mines)**

- 1. Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ telle que $\sum u_n$ diverge. En fonction des valeurs de α , quelle est la nature de la série $\sum \frac{u_n}{S^{\alpha}}$?
- 2. Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ telle que $\sum u_n$ converge. En fonction des valeurs de α , quelle est la nature de la série $\sum \frac{u_n}{R_n^{\alpha}}$?

Exercice 35 (X) Soit $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ vérifiant : pour tout $(y_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ telle que $\sum y_n^2$ converge, la série $\sum x_ny_n$ converge. Montrer que $\sum x_n^2$ converge.

Indication: on pourra poser $y_n = \frac{x_n}{\sum_{k=0}^n x_k^2}$.

Sommation des relations de comparaison :

Exercice 36 (Centrale) Soient $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels strictement positifs. Pour $n\in\mathbb{N}^*$, soit $S_n=\sum_{k=1}^n a_k^2$. On suppose que $a_nS_n \underset{n\to+\infty}{\longrightarrow} 1$.

- 1. Montrer que $\sum a_k^2$ diverge.
- 2. Donner un équivalent de a_n .

Exercice 37 (Mines) Soit $f \in C^1(\mathbb{R}, \mathbb{R}^{+*})$ telle que f(0) = 1 et f' < 0. On considère la suite (a_n) définie par $a_0 = 1$ et, pour $n \in \mathbb{N}$, $a_{n+1} = a_n f(a_n)$.

- 1. Montrer que (a_n) est une suite décroissante positive convergeant vers 0.
- 2. Montrer que $\sum a_n$ diverge.

Exercice 38 (X) Soit $a \in \mathbb{R}^*$. On définit par récurrence la suite u par les conditions $u_0 = a$ et, pour $n \ge 1$, $u_n = \tanh(u_{n-1})$.

- 1. Montrer la convergence de la suite u.
- 2. Donner un équivalent puis un développement asymptotique à deux termes de u_n .

Exercice 39 $(X)^*$ Soient c>0 et $f:[0,c] \longrightarrow [0,c]$ une fonction continue, admettant en 0 un développement asymptotique de la forme $f(x)=x-ax^{1+\alpha}+o(x^{1+\alpha})$ avec a>0 et $\alpha>0$.

- 1. Montrer que, pour u_0 assez petit, la suite (u_n) définie par $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, converge vers 0.
- 2. Montrer que $u_n \underset{n \to +\infty}{\sim} \left(\frac{1}{a\alpha n}\right)^{1/\alpha}$.
- 3. Traiter l'exemple de la fonction $x \mapsto \ln(1+x)$ puis de la fonction $x \mapsto \frac{x}{1+2x}$.

Exercice 40 (Mines-Centrale)* Soit $\alpha > 0$ et $(u_n)_{n \ge 1}$ la suite définie par : $u_1 > 0$ et :

$$\forall n \ge 1, \ u_{n+1} = u_n + \frac{1}{n^{\alpha} u_n}.$$

- 1. Pour quelles valeurs de α la suite (u_n) converge-t-elle? (On pourra montrer que (u_n) converge pour $\alpha > 1$ vers une limite notée ℓ .)
- 2. Trouver un équivalement de $(u_n \ell)$ dans le cas où (u_n) converge.
- 3. Trouver un équivalent de u_n dans le cas où la suite (u_n) diverge, vers ℓ . (on pourra étudier $u_{n+1}^2 u_n^2$).

Exercice 41 (X) Soit (a_n) une suite décroissante positive, 0 < a < 1 et c > 0. Montrer que $a_n \sim c/n^a$ si et seulement si $\sum_{k=1}^n a_k \sim \frac{c \, n^{1-a}}{1-a}$.

$Transformation\ d\ 'Abel:$

Exercice 42 $(Mines)^*$ Soit $(u_n)_{n\geq 1}$ une suite réelle décroissante qui converge vers 0. Pour $n\in\mathbb{N}$, on pose $v_n=n(u_n-u_{n+1})$. Montrer que $\sum u_n$ converge si et seulement si $\sum v_n$ converge et que dans ce cas les deux séries ont la même somme et que $nu_n\to 0$.

Exercice 43 (X) Soient A une partie de \mathbb{N}^* , et f, g définies par : $\forall n \geq 2$,

$$f(n) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{k \in A} \text{ et } g(n) = \frac{1}{\ln(n)} \sum_{k=1}^{n} \frac{\mathbb{1}_{k \in A}}{k}.$$

Pour $l \in \mathbb{R}_+$, comparer les assertions $\lim_{n \to +\infty} f(n) = l$ et $\lim_{n \to +\infty} g(n) = l$.

Exercice 44 (Ulm) Soient ω une racine complexe de l'unité et $u \in \mathbb{R}^{\mathbb{N}}$ une suite décroissante. Étudier la nature de la série $\sum \omega^n u_n$.

Exercice 45 (Centrale) Si $(u_n)_{n\geq 0} \in \mathbb{R}^{\mathbb{N}}$ vérifie $u_0 = 0$, soit $(v_n)_{n\geq 1}$ la suite définie par $\forall n \in \mathbb{N}^*$, $v_n = n(u_n - u_{n-1})$. On note \mathcal{P}_1 (resp. \mathcal{P}_2) la propriété : $\sum v_n$ converge (resp. il existe $\ell \in \mathbb{R}$ tel que $u_n \to \ell$ et $\sum (\ell - u_n)$ converge).

- 1. On suppose qu'il existe $\alpha \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}^*, \ u_n = \arctan(n^{\alpha})$. Étudier \mathcal{P}_1 et \mathcal{P}_2 .
- 2. Soit $(a_n)_{n\geq 1}$ une suite réelle telle que $\sum a_n$ converge. Montrer que $\sum \frac{a_n}{n}$ converge et que $\sum_{k=n}^{+\infty} \frac{a_k}{k} = o\left(\frac{1}{n}\right)$.
- 3. Comparer les propriétés \mathcal{P}_1 et \mathcal{P}_2 .

Exercice 46 (Ulm) Soient $(\epsilon_n)_{n\in\mathbb{N}}$ une suite à termes dans $\{-1,1\}$, et $(a_n)_{n\in\mathbb{N}}$ une suite décroissante de réels positifs telle que $\sum \epsilon_n a_n$ converge. Montrer que $a_n \sum_{k=0}^n \epsilon_k \underset{n \to +\infty}{\longrightarrow} 0$.

Décomposition d'un réel :

Exercice 47 (Centrale) Déterminer la nature des séries $\sum u_n$ où :

1.
$$u_n = \begin{cases} \frac{1}{n} & \text{si } n \text{ a un 9 dans son \'ecriture d\'ecimale} \\ 0 & \text{sinon} \end{cases}$$
 2. $u_n = \begin{cases} \frac{1}{n} & \text{si } n \text{ n'a pas de 9 dans son \'ecriture d\'ecimale} \\ 0 & \text{sinon} \end{cases}$

Exercice 48 (Centrale) Pour $n \in \mathbb{N}^*$, on note u_n le nombre de 1 dans l'écriture de n en base 2. Par exemple $25 = \overline{11001}^2$, donc $u_{25} = 3$.

- 1. Montrer que $\forall n \in \mathbb{N}^*$, $u_n \leq 1 + \log_2(n)$.
- 2. Déterminer la nature de $\sum_{n} \frac{u_n}{n(n+1)}$. On note $S = \sum_{n=1}^{+\infty} \frac{u_n}{n(n+1)}$.
- 3. Exprimer u_{2n} et u_{2n+1} en fonction de u_n
- 4. Montrer que $S = \frac{S}{2} + \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$.
- 5. En déduire que $S = 2 \ln 2$.

Exercice 49 (ULCR) Soit $q \in]1,2[$. Montrer qu'il existe $(\epsilon_n)_{n\geq 1}$, suite à valeurs dans $\{0,1\}$, telle que $\sum_{n=1}^{+\infty} \epsilon_n q^{-n} = 1$.

Exercice 50 (X) Soit $(b_n)_{n\geq 1}$ une suite d'entiers naturels non tous nuls telle que $b_{n+1}\geq 2b_n$ pour tout $n\in\mathbb{N}$. Montrer que $\theta=\sum_{n=1}^{+\infty}10^{-b_n}$ est un irrationnel.

Exercice 51 $(ENS)^*$ Soit $x \in [0,1[$ et soit $(a_n)_{n \in \mathbb{N}}$ les chiffres de son écriture décimale propre. Montrer l'équivalence :

$$(x \in \mathbb{Q}) \Leftrightarrow (\exists N \in \mathbb{N}, \exists q \in \mathbb{N}^*, \forall n \ge N, a_{n+q} = a_n).$$

6

Exercice 52 (X) Si $(u_n)_{n\in\mathbb{N}^*}$ est dans $\mathbb{R}^{\mathbb{N}^*}$, soit $(v_n)_{n\geq 2}$ définie par $\forall n\geq 2,\ v_n=\frac{1}{\ln(n)}\sum_{k=1}^n\frac{u_k}{k}$.

- 1. Que dire de $(v_n)_{n\geq 2}$ si $(u_n)_{n\geq 1}$ converge vers le réel ℓ ?
- 2. On suppose que u_n est égal à 1 si le premier chiffre de l'écriture de n en base 10 est 1, à 0 sinon. On pose, pour $n \in \mathbb{N}^*$, $w_n = \frac{1}{n} \sum_{k=1}^n u_k$. Étudier la convergence de $(v_n)_{n \geq 2}$, puis celle de (w_n) .

Exercice 53 (ULSR)*

- 1. On considère un réel $x \geq 1$ et $Q \in \mathbb{N}^*$. Montrer qu'il existe $(p,q) \in \mathbb{Z} \times [1,Q]$ tel que $\left|x \frac{p}{q}\right| \leq \frac{1}{qQ}$.
- 2. Montrer que $\sum_{n=1}^{+\infty} 10^{-n!}$ (nombre de Liouville) est transcendant.

Applications:

Exercice 54 (Centrale-X)* Pour tout $n \ge 2$, on note $P(n) = \max\{p \text{ premier}, \ p|n\}$. On souhaite étudier la convergence de la série $\sum \frac{1}{nP(n)}$ (on pourra utiliser des regroupements par paquets).

1. On note q_n le n-ième nombre premier; montrer que $\forall k \geq 1, q_k \geq 2k-1$.

On pose
$$A_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{q_k}}$$
.

- 2. Montrer que $\sum \frac{1}{nP(n)}$ converge si et seulement si $\sum \frac{A_n}{q_n^2}$ converge et qu'elles ont même somme en cas de convergence.
- 3. Montrer l'existence d'une constante C telle que : $\forall n \geq 2$, $\ln(A_n) \leq C_1 + \frac{1}{2} \sum_{j=1}^{n-1} \frac{1}{j} \leq C + \frac{1}{2} \ln(n)$.
- 4. Conclure.

Exercice 55 (X) Si $k \in \mathbb{N}^*$, soit d(k) le nombre de diviseurs de k dans \mathbb{N}^* .

- 1. Pour $n \in \mathbb{N}^*$, soit $D_n = \sum_{k=1}^n d(k)$. Donner un équivalent de D_n .
- 2. Soit γ la constante d'Euler. Montrer que $D_n = n \ln(n) + (2\gamma 1)n + O(\sqrt{n})$.

Exercice 56 $(X)^*$ On rappelle que μ désigne la fonction de Möbius et ζ la fonction de Riemann.

- 1. Montrer que $\frac{1}{\zeta(s)} = \sum_{n=1}^{+\infty} \frac{\mu(n)}{n^s}$.
- 2. On rappelle que ϕ désigne la fonction indicatrice d'Euler. Montrer que pour tout $n \in \mathbb{N}^*$, $\frac{\phi(n)}{n} = \sum_{d|n} \frac{\mu(d)}{d}$.
- 3. Montrer que $\frac{1}{n^2} \sum_{k=1}^n \phi(k) \xrightarrow[n \to +\infty]{} \frac{3}{\pi^2}$.
- 4. Pour tout $n \in \mathbb{N}^*$, on considère deux variables aléatoires indépendantes X_n et Y_n suivant la loi uniforme sur [1, n], et on note p_n la probabilité de l'événement $(X_n \wedge Y_n = 1)$. Montrer que la suite (p_n) converge et préciser sa limite.

Exercice 57 (Centrale)* On note r_n la probabilité que deux nombres aléatoires dans [1, n] soient premiers entre eux. Et on souhaite montrer que $\lim_{r\to\infty} r_n = \frac{6}{\pi^2}$.

- 1. Pour $n \in \mathbb{N}^*$, on note $A_n = \{(a,b) \in \llbracket 1,n \rrbracket^2, \ a \wedge b = 1\}$. En notant $(p_1,\ldots p_k)$ les nombres premiers inférieurs ou égaux à n, on pose pour $1 \le i \le k$, $U_i = \{(a,b) \in \llbracket 1,n \rrbracket^2, \ p_i | a \text{ et } p_i | b\}$. Exprimer A_n en fonction des U_i .
- 2. Soit $l \in \mathbb{N}^*$. Déterminer le nombre de multiples de l inférieurs ou égaux à n.
- 3. En déduire le cardinal de $\bigcap_{i \in I} U_i$ où I est une partie non vide de [1, k].
- 4. On admet la formule du crible (pour des ensembles finis): Card $\left(\bigcup_{j=1}^{n} F_{j}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} < \ldots < i_{k} \leq n} \operatorname{Card}\left(\bigcap_{j=1}^{k} F_{i_{j}}\right)$.

Montrer que
$$\operatorname{Card}(A_n) = \sum_{d=1}^n \mu(d) \left\lfloor \frac{n}{d} \right\rfloor^2$$
.

5. Montrer que
$$\lim_{n\to\infty} r_n = \sum_{d=1}^{\infty} \mu(d) \frac{1}{d^2}$$
.

6. Montrer que pour
$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{si } n=1 \\ 0 & \text{sinon} \end{cases}$$
. Conclure.

Étude de suites et développements asymptotiques :

Exercice 58 (CCINP) La suite $(u_n)_{n\geq 0}$ est définie par $u_0>0$ et $\forall n\in\mathbb{N}, u_{n+1}=u_ne^{-u_n}$.

- 1. Montrer que $(u_n)_{n>0}$ converge et déterminer sa limite.
- 2. Déterminer un équivalent de u_n .

Exercice 59 (CCINP) On considère la suite définie par $u_0 \in]0,1[$ et pour tout $n \in \mathbb{N}, u_{n+1} = u_n - u_n^2$.

- 1. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ (monotonie, limite). Puis donner un équivalent de u_n .
- 2. Quelle est la nature de la série $\sum u_n$? $\sum u_n^2$?
- 3. Donner un développement asymptotique à deux termes de u_n .

Exercice 60 (Mines) Soit $u_0 = x \in \mathbb{R}_+$. On définit une suite par : $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{1 + \left(\sum_{k=0}^n u_k\right)^2}$.

- 1. Montrer que : $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{\sin(\theta_n)}$ avec $\theta \in]0; \pi/2].$
- 2. Montrer que $\forall n \in \mathbb{N}, \frac{1}{\tan(\theta_{n+1})} = \frac{1}{\tan(\theta_n)} + \frac{1}{\sin(\theta_n)}.$
- 3. Determiner θ_n et trouver un équivalent de u_n

Exercice 61 (X) On définit par récurrence la suite u par $u_1 > 0$ et pour tout $n \in \mathbb{N}^*$,

$$u_{n+1} = \frac{u_n}{n} + \frac{1}{n^2}.$$

Étudier la convergence de la suite u.

Exercice 62 (Centrale)

- 1. Montrer que pour tout $n \in \mathbb{N}$, il existe un unique $u_n \in \mathbb{R}$ tel que $u_n^5 + nu_n 1 = 0$.
- 2. Étudier la monotonie puis la convergence de cette suite.
- 3. En donner un développement asymptotique à deux termes.

Exercice 63 (Mines) Soit $k \in \mathbb{N}$, montrer que l'équation $x + \ln(x) = k$ a une unique solution $x_k \in \mathbb{R}_+^*$. Montrer que (x_k) admet un développement asymptotique en $+\infty$ du type : $x_k = ak + b\ln(k) + c\frac{\ln(k)}{k} + o\left(\frac{\ln(k)}{k}\right)$ (en déterminant les constantes a, b, c).

Exercice 64 (Mines)

- 1. Soit $n \in \mathbb{N}^*$. Montrer que l'équation $\tan x = \sqrt{x}$ admet une unique solution dans l'intervalle $]n\pi \pi/2, n\pi + \pi/2[$. Elle est notée u_n .
- 2. Donner un développement asymptotique à quatre termes de la suite $(u_n)_{n\geq 1}$.

Exercice 65 (Mines) Soit $n \in \mathbb{N}$. Montrer que l'équation $x - n \ln(x) = 0$ a deux solutions $x_n < y_n \in \mathbb{R}$. Donner un développement asymptotique en $+\infty$ de (x_n) en $\frac{1}{n^2}$; puis donner un équivalent de y_n .

Exercice 66 (Centrale) Montrer que pour tout $n \in \mathbb{N}$, il existe un unique $u_n \in \mathbb{R}_+^*$ tel que $u_n^n - u_n - 1 = 0$. Étudier la monotonie et la convergence de la suite. Puis donner un développement asymptotique à deux termes de cette suite.

8