Problème 1 (Irrationnalité de π et transcendance de e)

I. Résultats préliminaires :

Soit $P \in \mathbb{R}_d[X]$, avec $d \in \mathbb{N}^*$.

- (1) Si $P = \sum_{k=0}^{d} c_k X^k$, donner une expression de $P^{(k)}(0)$.
- (2) On définit $Q = \sum_{k=0}^{d} P^{(k)}$. Montrer que pour tout $b \in \mathbb{R}$,

$$I(b) = e^b \int_0^1 b e^{-bx} P(bx) dx = e^b Q(0) - Q(b).$$

(3) On suppose ici d=2n. On définit $F=\sum_{k=0}^n (-1)^k P^{(2k)}(X)$. Montrer que

$$J = \int_0^{\pi} P(x)\sin(x) \, dx = F(\pi) + F(0).$$

II. Irrationnalité de π :

Par l'absurde, on écrit $\pi = \frac{a}{b}$, avec $(a, b) \in (\mathbb{N}^*)^2$.

On considère dans cette partie, pour $n \in \mathbb{N}^*$, $P_n = \frac{1}{n!} X^n (a - bX)^n$.

- (1) Donner les racines du polynôme P_n ainsi que leur multiplicité.
- (2) Donner la valeur, pour $k \in [0, n-1]$, de $P_n^{(k)}(0)$ et $P_n^{(k)}(\pi)$.
- (3) Donner pour $k \in [n, 2n], P_n^{(k)}(0)$
- (4) En déduire que, si on note F_n , le polynôme défini à la question I3 en fonction de P_n , $F_n(0)$ est un entier relatif.
- (5) Montrer que l'on a également $F_n(\pi) \in \mathbb{Z}$.
- (6) En déduire que la suite $K_n = \int_0^{\pi} P_n(x) \sin(x) dx$ est une suite d'entiers strictement positifs.
- (7) Montrer que la suite $(K_n)_{n\in\mathbb{N}}$ tend vers 0 et conclure.

III. Transcendance de e:

On suppose par l'absurde que $e = \exp(1)$ est un nombre algébrique. Ainsi il existe $A \in \mathbb{Z}[X] \setminus \{0\}$ tel que A(e) = 0.

On écrit
$$A = \sum_{k=0}^{m} a_k X^k$$
 avec $(a_j)_{j \in \llbracket 0, m \rrbracket} \in \mathbb{Z}^{m+1}$ et $a_m \neq 0$.

Soit p un nombre premier. On pose dans cette partie

$$P_p = \frac{X^{p-1}}{(p-1)!} \prod_{j=1}^{m} (X-j)^p.$$

- (1) Expliquer que l'on peut supposer $a_0 \neq 0$ (quitte à changer le polynôme A).
- (2) Quel est le degré du polynôme P_p (on notera d_p ce degré)?
- (3) Montrer que pour tout $k \geq p$, $P_p^{(k)}$ est un polynôme à coefficients entiers tous divisibles par p.
- (4) Montrer que pour tout $(i, j) \in [0, d_p] \times [0, m]$ tel que $(i, j) \neq (p 1, 0)$, $P_p^{(i)}(j)$ est un entier divisible par p.

 Que vaut $P^{(p-1)}(0)$?
- (5) Comme à la question I2, on définit le polynôme Q_p associé à P_p . Montrer que $\sum_{j=1}^m a_j Q_p(j)$ est un entier divisible par p.
- (6) Montrer que pour p assez grand, $a_0 P_p^{(p-1)}(0)$ n'est pas divisible par p.
- (7) En déduire que pour p assez grand, $\left| \sum_{j=0}^{m} a_{j} Q_{p}(j) \right| \geq 1$.
- (8) Montrer que pour tout $x \in [0, m], |P_p(x)| \le \frac{m^{d_p}}{(p-1)!}$
- (9) Aboutir à une contradiction et conclure que e est transcendant.