Optimisation d'un procédé chimique Chapitre 6

I - Second principe (révisions)

1 Cuisson des frites

On plonge 300 g de frites (de pommes de terre ou de plantains selon les goûts) à température $T_{F0} = 0.00^{\circ}$ C dans un bain d'huile de 2.00 L à la température initiale $T_{H0} = 180^{\circ}$ C.

Données: $c_{\text{huile}} = 4.80 \,\text{kJ} \,\text{K}^{-1} \,\text{kg}^{-1}$, $c_{\text{frite}} \approx c_{\text{eau}} = 4.20 \,\text{kJ} \,\text{K}^{-1} \,\text{kg}^{-1}$, $\rho_{\text{huile}} = 920 \,\text{g/L}$.

Dans un premier temps, la température de l'ensemble s'homogénéise jusqu'à la valeur

- T_1 . On néglige les transferts thermiques avec l'extérieur durant cette transformation.
 - 1. Déterminer l'expression de T_1 et effectuer l'application numérique.
 - 2. Déterminer et calculer l'entropie créée durant cette étape.

Afin d'assurer la cuisson, la résistance électrique de la friteuse se remet à chauffer avec une puissance $P = 1500 \,\mathrm{W}$, elle s'éteint dès que la température atteint T_{H0} . On suppose que la température de la résistance est égale à celle de l'huile T_{H0} .

- 3. Déterminer la capacité thermique de l'ensemble { huile + frites }.
- 4. Combien de temps la friteuse va-t-elle rester allumée ?
- 5. Déterminer et calculer l'entropie créée durant cette étape.
- 6. Conclure : la cuisson des frites est-elle une transformation réversible ?

2 Mélange de deux gaz

Un cylindre, thermodynamiquement isolé, de volume total $2V_0 = 20 \,\mathrm{L}$, est séparé en deux compartiments par une paroi escamotable.

À l'état initial, chaque compartiment a un volume V_0 et la même température $T_0 = 300$ K. L'un des compartiments contient de l'hélium sous une pression $P_1 = 10$ atm, l'autre contient de l'argon sous une pression $P_2 = 20$ atm. Les deux gaz sont assimilables à des gaz parfaits de même capacité molaire à volume constant $C_{v,m}$.

On enlève la paroi. Les deux gaz se mélangent jusqu'à uniformisation de la température et de la pression.

1. Montrer que la température finale T_f est égale à la température initiale T_0 .

- 2. Déterminer la pression finale P_f du système global, puis les pressions partielles $P_{f,He}$ et $P_{f,Ar}$.
- 3. Exprimer la variation d'entropie $\Delta S_{\rm He}$ du système constitué uniquement de l'hélium.
- 4. Exprimer, puis calculer, la variation d'entropie ΔS du système global. Conclure. Préciser les sources éventuelles d'irréversibilité.

3 Vers une transformation quasi-statique

On place une masse $m=100\,\mathrm{g}$ d'huile dans un récipient rigide à la température initiale $T_i=300\,\mathrm{K}$ et on souhaite élever cette température jusqu'à la température $T_f=400\,\mathrm{K}$. On dispose pour cela d'un thermostat dont la température peut être réglée précisément et qui peut être placé au contact du récipient. Dans tout l'exercice, on négligera la capacité thermique du récipient (il est infiniment fin) par rapport à celle de l'huile. On note $c_h=2.00\,\mathrm{J\,K^{-1}\,g^{-1}}$ la capacité calorifique massique de l'huile et on supposera que cette dernière restera sous forme liquide tout au long de l'expérience.

1. Montrer l'expression de la variation d'entropie d'une phase condensée de masse m et de capacité thermique massique c:

$$S(T_f) - S(T_i) = mc \ln \frac{T_f}{T_i} \tag{1}$$

- 2. On se propose premièrement de choisir la température T_f pour le thermostat et d'attendre que l'huile atteigne un nouvel équilibre thermodynamique. On supposera dans toute la suite de l'exercice que l'équilibre thermodynamique est atteint au bout d'un temps τ qui ne dépend ni de T_i , ni de T_f .
 - (a) Montrer que l'entropie créée (notée $S_{c,1}$) au cours de cette transformation pour l'huile s'exprime :

$$S_{c,1} = mc_h \left(\ln \frac{T_f}{T_i} - 1 + \frac{T_i}{T_f} \right) \tag{2}$$

- (b) Montrer à partir du résultat obtenu que l'on a bien une entropie créée nulle lorsque $T_i = T_f$, et positive lorsque $T_i \neq T_f$. Commenter.
- (c) Réaliser alors l'application numérique pour $S_{c,1}$.

- 3. Dans toute la suite de l'exercice, on note $x = T_f/T_i$, le rapport des températures à l'état final et à l'état initial. On cherche à réduire l'entropie créée au cours de cette transformation. On se propose pour cela d'effectuer deux étapes distinctes au lieu d'une seule.
 - Pour la première étape, on règle le thermostat sur $T = \Theta$ (avec $T_i < \Theta < T_f$) puis on attend que l'équilibre thermodynamique s'établisse pour l'huile.
 - Pour la seconde étape, on règle le thermostat sur $T=T_f$ puis on attend encore une fois que l'équilibre thermodynamique s'établisse pour l'huile.
 - (a) Montrer que l'entropie créée (notée $S_{c,2}$) au cours de la transformation complète (étape 1 + étape 2) peut se mettre sous la forme :

$$S_{c,2} = mc_h \left(\ln(x) - 2 + \frac{\Theta}{T_f} + \frac{T_i}{\Theta} \right)$$
 (3)

- (b) Exprimer Θ en fonction de T_i et T_f afin de minimiser l'entropie créée lors des deux étapes. Effectuer ensuite les applications numériques pour θ et $s_{c,2}(\theta)$ puis commenter ce dernier résultat.
- (c) La transformation en deux étapes est-elle plus longue que celle en une étape?
- 4. Passer de une à deux étapes a permis de réduire l'entropie créée au cours de la transformation. On peut essayer de généraliser cette idée en utilisant n étapes associées à des températures $T_i = T_0 < T_1 < T_2 < \cdots < T_n = T_f$.

Comme le suggère le résultat obtenu à la question 2b, on se propose d'utiliser une progression géométrique pour les températures T_k telles que $T_{k+1} = \alpha T_k$, $\forall k \in [|0, n-1|]$, $T_0 = T_i$ et $T_n = T_f$.

- (a) Exprimer α en fonction de $x = T_f/T_i$ et n. Vérifier ensuite que l'on retrouve bien le résultat obtenu dans la question 2b pour n = 2 en comparant T_1 et Θ .
- (b) Exprimer ensuite l'entropie créée au cours de la transformation complète en fonction de m, c_h , x et n.
- (c) En déduire que $S_{c,n} \sim mc_h \frac{\ln^2(x)}{2n}$. Que dire lorsque l'on augmente indéfiniment le nombre d'étapes ?
- (d) Effectuer l'A.N. de l'entropie créée pour n=50 étapes. A votre avis, quel est l'inconvénient de ce procédé ?

5. On souhaite maintenant réaliser une transformation entre T_i et T_f de manière quasistatique en imposant au thermostat une température T variant très lentement de T_i à T_f . Établir l'expression de l'entropie créée au cours de cette dernière transformation puis faire le lien avec les résultats obtenus précédemment. La température de surface variant au cours du temps, on pourra utiliser le premier et le second principe dans leurs versions infinitésimales :

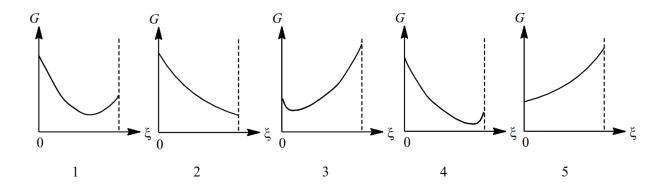
$$dS = \frac{\delta Q}{T} + \delta S_c \quad \text{ et } \quad mc_h dT = dU = \delta Q + \delta W$$
 (4)

II - Potentiels chimiques

4 Réaction d'isomérisation

On étudie à 25°C, sous 5 bar, la réaction d'isomérisation entre l'isobutane A (gaz) et la butane B (gaz) :

$$A(g) = B(g) \tag{5}$$


Initialement, on part de 1.0 mol d'isobutane. On donne $\mu_A^{\circ} = -17.98 \,\mathrm{kJ \cdot mol^{-1}}$ et $\mu_B^{\circ} = -15.71 \,\mathrm{kJ \cdot mol^{-1}}$.

- 1. Calculer l'enthalpie libre standard de réaction $\Delta_r G^{\circ}$ à 25°C.
- 2. Exprimer l'enthalpie libre G du système chimique étudié, pour un avancement ξ à un instant t.
- 3. Exprimer l'enthalpie libre de réaction $\Delta_r G$ au même instant t.
- 4. En déduire la valeur de l'avancement à l'équilibre ξ_e et la constante d'équilibre K° à 25°C.
- 5. Tracer le graphe $G(\xi)$.
- 6. Tracer le graphe $\Delta_r G(\xi)$ en fonction de ξ .

III - Equilibre chimique

5 Différents états finaux

On représente l'évolution de l'enthalpie libre G d'un système en fonction de l'avancement ξ dans cinq cas. Initialement $\xi_i=0$ mol.

- 1. Pour chaque cas, indiquer la position de ξ_f . Préciser si l'état final est un état d'équilibre ou non.
- 2. Associer les cinq termes suivants aux cinq cas:
 - réaction totale
 - réaction peu avancée
 - réaction moyennement avancée
 - réaction quantitative
 - repos chimique.

6 Critère pour une réaction quantitative

Usuellement on affirme "si $K^{\circ} > 10^3$ on peut supposer la réaction quantitative". Alors $\xi_{eq} = \xi_{max}$.

Pourquoi a-t-on choisi cette valeur de 10^3 ?

- 1. On considère la réaction A (aq) = B (aq) de constante thermodynamique K° avec une concentration apportée de A notée c. Calculer le taux d'avancement à l'équilibre α défini par $\alpha = \frac{x}{x_{max}}$, où x est l'avancement de la réaction en unité de concentration. Conclure. Pourquoi doit-on se méfier de ce critère ?
- 2. La réaction étudiée est rarement du type A (aq) = B (aq). On considère la réaction A (aq) + B (aq) = C (aq) + D (aq) de constante thermodynamique K° avec des concentrations apportées de A et B identiques notées c. Calculer le taux d'avancement à l'équilibre α . Conclure.
- 3. Il faut se méfier des solides. On considère la réaction A (aq) + B (aq) = C (aq) + D (s) de constante thermodynamique K° avec des concentrations apportées de A et B identiques notées c. Calculer le taux d'avancement à l'équilibre α pour $c = 0.010 \, \text{mol} \cdot \text{L}^{-1}$. Conclure.

- 4. Il faut se méfier des coefficients stœchiométriques. On considère la réaction 2A (aq) = B (aq) de constante thermodynamique K° avec une concentration apportée de A notée c. Calculer le taux d'avancement à l'équilibre α pour $c = 0.010 \,\mathrm{mol \cdot L^{-1}}$. Conclure.
- 5. Il faut se méfier des concentrations. On considère la réaction A (aq)+B (aq) = C (aq) de constante thermodynamique K° avec des concentrations apportées de A et B identiques notées c. Calculer le taux d'avancement à l'équilibre α pour $c = 0.20 \,\mathrm{mol}\cdot\mathrm{L}^{-1}$ puis pour $c = 0.010 \,\mathrm{mol}\cdot\mathrm{L}^{-1}$. Conclure.

7 Rupture d'équilibre

On considère la réaction de formation du zinc :

$$C(s) + ZnO(s) = CO(g) + Zn(g)$$
(6)

À 1300 K, la constante d'équilibre vaut $K^{\circ} = 11.8$. On place dans une enceinte initialement vide, de volume invariable $V = 10 \,\mathrm{L}$, à $T = 1300 \,\mathrm{K}$, n_0 mol de carbone graphite et n_0 mol d'oxyde de zinc.

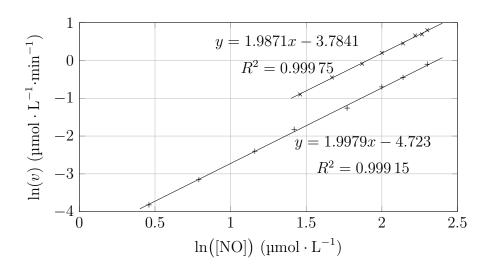
- 1. Calculer la pression à l'équilibre P_{eq} .
- 2. On prend $n_0 = 0.500 \,\text{mol}$, quelle est la pression finale du mélange obtenu ? A-t-on atteint l'équilibre ?
- 3. On suppose maintenant que n_0 varie de 0 à 2.0 mol, déterminer la pression du mélange en fonction de n_0 . On précisera dans quel domaine l'équilibre est atteint et dans quel domaine il y a rupture d'équilibre.

8 Kérosène et pollution

En consommant du kérosène, les moteurs d'avions entraînent le rejet de nombreux polluants parmi lesquels les monoxyde d'azote NO et dioxyde d'azote NO₂, regroupés sous l'appellation NOx. Ces composés sont responsables d'une augmentation de la production d'ozone O₃, gaz à effet de serre, dans la basse atmosphère.

Le monoxyde d'azote NO est obtenu par oxydation du diazote N_2 à haute température lors de la phase de combustion, modélisée par l'équation de réaction

$$N_{2(g)} + O_{2(g)} = 2 NO_{(g)}$$
 $K_1^{\circ} = 6.0 \times 10^{-6} \text{ à } 1450 \text{ K}$ (7)


- 1. La réaction se produit dans l'air. Rappeler la fraction molaire du diazote et du dioxygène dans l'air.
- 2. Faire le tableau d'avancement de la réaction. On notera n_0 la quantité de matière initiale en O_2 .
- 3. En faisant une hypothèse sur l'avancement à l'équilibre, évaluer la fraction molaire de monoxyde d'azote NO présente à l'équilibre dans de l'air chauffé à 1450 K.

Dans un deuxième temps, il y a production de dioxyde d'azote NO_2 à partir du monoxyde d'azote NO, modélisée par l'équation de réaction

$$2 \text{ NO}_{(g)} + \text{O}_{2(g)} = 2 \text{ NO}_{2(g)}$$
 $K_2^{\circ} = 2.0 \times 10^7 \text{ à } 400 \text{ K}$ (8)

La figure 3 fournit pour cette réaction les résultats d'une étude cinétique réalisée à $400\,\mathrm{K}$, où v représente la dérivée temporelle de l'avancement volumique de la réaction. Les concentrations initiales utilisées dans cette étude sont

- expérience 1 (tracé avec ×) : $[O_2]_0 = 5.0 \times 10^{-3} \,\text{mol} \cdot L^{-1}$, $[NO]_0 = 10 \,\mu\text{mol} \cdot L^{-1}$, $[NO_2]_0 = 0$;
- expérience 2 (tracé avec +) : $[O_2]_0 = 2.0 \times 10^{-3} \,\text{mol} \cdot L^{-1}$, $[NO]_0 = 10 \,\mu\text{mol} \cdot L^{-1}$, $[NO_2]_0 = 0$.

- 4. La réaction peut-elle être considérée comme quasi-totale à cette température ?
- 5. Utiliser les résultats précédents pour proposer une loi de vitesse pour la réaction. Déterminer la valeur numérique de la constante de vitesse à la température considérée. La forme obtenue pour la loi de vitesse était-elle prévisible?

9 Synthèse industrielle de l'éthanol

L'éthanol est un alcool pouvant être obtenu par fermentation, ce n'est donc qu'assez tardivement qu'on l'obtint par synthèse. La première synthèse dite "procédé sulfurique" est obtenue par absorption de l'éthène C_2H_4 dans l'acide sulfurique suivie de l'hydrolyse des sulfates obtenus. Une alternative consiste à effectuer une hydratation directe de l'éthène. La première unité fut réalisée par la société Shell en 1948 aux Etats-Unis. BP Chemicals fit de même en Ecosse à partir de 1951.

On s'intéresse ici à la thermodynamique de cette alternative. L'équation-bilan de la réaction est :

$$C_2H_4(g) + H_2O(g) = C_2H_5OH(g)$$
 (9)

La réaction s'effectue à 600 K sous une pression de 70 bars.

Les données thermodynamiques sont les enthalpies standard de formation $\Delta_f H^{\circ}(298 \text{ K})$ à 298 K et les entropies molaires standard $S^{0}(298 \text{ K})$ à 298 K :

	$C_2H_4(g)$	$H_2O(g)$	$C_2H_5OH(g)$
$\Delta_f H^0(298 \mathrm{K}) (\mathrm{kJ \cdot mol^{-1}})$	52,5	-241,8	-235,1
$S^0(298 \mathrm{K}) (\mathrm{J \cdot mol^{-1}.K^{-1}})$	219,6	188,8	282,7

1. Calculer l'enthalpie standard de réaction $\Delta_r H^0$ et l'entropie standard de réaction $\Delta_r S^0$ à 298 K. Commenter les signes de ces deux grandeurs.

On supposera dans la suite que ces grandeurs sont constantes sur l'intervalle de températures considéré.

- 2. Déterminer la constante d'équilibre K° de cette réaction à 298 K.
- 3. Calculer la valeur de K° à 600 K. Commenter.
- 4. On introduit l'éthène et l'eau dans les proportions stœchiométriques. Déterminer l'équation dont la résolution donne la composition du système à l'équilibre. On notera p_t la pression totale dans l'enceinte et on introduira ξ l'avancement de la réaction.
- 5. On introduit une mole d'éthène. Déterminer la composition du système à l'équilibre par une résolution numérique.
- 6. Comment évolue le système si on diminue la température à pression constante lorsque le système est fermé ?
- 7. Même question si on diminue la pression à température constante.
- 8. Conclure sur le choix des conditions de pression et de température retenues.

10 Nickel sur une aile d'avion

Certaines ailes d'avions sont constituées de matériaux composites, qui peuvent être détériorés par la foudre. Pour les protéger on les recouvre d'une fine couche de métal. La pièce a protéger est placée dans une enceinte contenant du tétracarbonyle de nickel gazeux $Ni(CO)_{4(g)}$ et chauffée. Le tétracarbonyle de nickel se dissocie selon la réaction :

$$Ni(CO)_{4(g)} = Ni(s) + 4 CO_{(g)}$$
 (10)

- 1. Calculer l'enthalpie de réaction standard $\Delta_r H^{\circ}$ à 298 K.
- 2. Calculer l'entropie de réaction standard $\Delta_r S^{\circ}$ à 298 K. Commenter son signe. La réaction a lieu dans une enceinte dans laquelle la pression p et la température T sont fixées. On suppose qu'initialement, l'enceinte ne contient que du Ni(CO)_{4(g)}.

On note n_i la quantité de Ni(CO)_{4(g)} initialement présente dans l'enceinte, et ξ_{eq} l'avancement de réaction à l'équilibre. On définit alors le taux de dissociation α :

$$\alpha = \frac{\xi_{eq}}{n_i} \tag{11}$$

- 3. Que vaut le taux de dissociation si la réaction est supposée totale ? Si la réaction n'a pas lieu ?
- 4. Déterminer la relation entre α , p et K° la constante d'équilibre de la réaction.
- 5. Pour quelle Température T_1 a-t-on $\alpha=0,05$ à l'équilibre sous p=1 bar ? Pour quelle Température T_2 a-t-on $\alpha=0,95$ à l'équilibre sous p=1 bar ?

Données numériques :

- Constante des gaz parfaits : $R = 8.314 \,\mathrm{J\cdot K\cdot mol^{-1}}$
- Données thermodynamiques à 298 K:

	$Ni(CO)_{4(g)}$	$CO_{(g)}$	Ni(s)
$\Delta_f H^{\circ} \text{ (kJ·mol}^{-1})$	-602	-111	0
$S_m^0 (\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1})$	409	198	30

11 Synthèse de l'hydrogène à partir du méthane

On s'intéresse dans cet exercice au reformage du méthane à la vapeur d'eau (vaporeformage) sur catalyseur au nickel, réaction la plus appropriée à la production de dihydrogène.

A l'entrée de l'unité de traitement, le mélange gazeux renferme 75 % d'eau et 25 % de méthane (fractions molaires). Ce mélange est porté à 1273 K sous pression constante puis injecté au niveau du catalyseur. Il se produit alors la réaction suivante :

$$CH_{4(g)} + H_2O_{(g)} = CO_{(g)} + 3H_{2(g)}$$
 (12)

- 1. Exprimez, puis calculez, à 298 K, l'enthalpie standard de réaction et l'entropie standard de réaction. Commenter le signe de ces 2 grandeurs.
- 2. Exprimez l'enthalpie libre standard de réaction $\Delta_r G^{\circ}(T)$. La calculer à 1273 K.
- 3. Donnez l'expression de la constante d'équilibre de la réaction puis calculez sa valeur à 1273 K. Commentez.
- 4. Quelle est l'influence d'une élévation de température, à pression constante, sur la conversion du méthane?
- 5. Quelle est l'influence d'une élévation de pression, à température constante, sur la conversion du méthane?
- 6. Le reformage s'effectue à une température de 1273 K et sous une pression totale constante égale à 5 bar. Déterminez la composition du mélange gazeux à la sortie du reformeur. Exprimer cette composition en pourcentages molaires.
- 7. Pourquoi est-on parti d'un mélange enrichi en eau?

Données à 298 K

	$H_{2(g)}$	$\mathrm{CO}_{(\mathrm{g})}$	$\mathrm{H_2O}_{(\mathrm{g})}$	$\mathrm{CH}_{4(g)}$
$\Delta_f H^0 \text{ (kJ/mol)}$		-110	-242	-75
$S_m^0 (\mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1})$	131	198	189	186