Lycée Baimbridge, MP 2025-2026

à rendre pour le 11 septembre 2025

Physique Chimie

DM 1

Oscillateur à frottement solides (adapté du concours petites Mines 2009)

Dans ce problème, on s'intéresse à un système masse-ressort en contact avec un solide. C'est le cas, par exemple, des accéléromètres et des sismomètres modernes. Nous voulons caractériser la réponse d'un tel système à une perturbation, et en particulier identifier l'effet des frottements solides sur le mouvement.

Un solide M, assimilé à un point matériel de masse m, est mobile sur un plan selon un axe horizontal (Ox) et relié à un ressort de constante de raideur k et de longueur à vide ℓ_0 , dont l'autre extrémité est attachée à un point fixe. On choisit comme origine O de l'axe la position du solide lorsque le ressort est à sa longueur à vide ℓ_0 (voir figure 1).

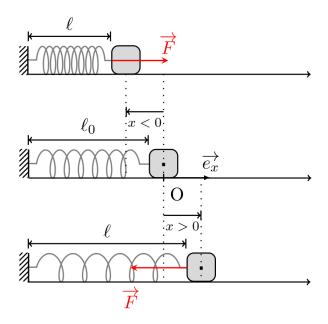


Figure 1: Oscillateur à frottement solide. La force \overrightarrow{F} indiquée en rouge correspond à la force de rappel du ressort.

Dans un premier temps, on néglige les frottements entre la masse et le support.

- \Box 1 Représenter, sur un dessin, les forces exercées sur M dans le cas où x>0, faire un bilan de ces forces, puis, par application de la relation fondamentale de la dynamique, déterminer l'équation différentielle vérifiée par x(t).
- \square 2 Donner l'expression de l'énergie potentielle élastique emmagasinée dans le ressort en fonction de k et x.
- \square 3 Exprimer l'énergie mécanique du système masse + ressort en fonction de m, k, x et de sa dérivée \dot{x} . Est-elle conservée au cours du mouvement ? (justifier)
- \square 4 De ce qui précède, déduire à nouveau l'équation différentielle du mouvement de M.

\square 5 - Résoudre l'équation différentielle et obtenir l'équation horaire $x(t)$ du mouvement de M dans le cas où M est lâchée à $t=0$ de l'abscisse x_0 avec la vitesse $\dot{x}_0\vec{e_x}$.
On prend maintenant en compte les frottements. Des frottements solides de coefficient de frottement f existent entre le mobile et le plan. On néglige la différence entre coefficient de frottement statique et dynamique.
\square 6 — Grâce à un schéma des forces quand M est en mouvement, et en précisant le sens du mouvement, déterminer l'angle ϕ entre la réaction du support et la verticale en fonction de f .
\Box 7 — On donne à M l'élongation (l'abscisse) x_0 , positive ou négative, et on l'abandonne sans vitesse. A quelles conditions sur x_0 , M démarrera-t-elle? Entre quelles limites de x se situera donc la position d'équilibre finale de M ?
\square 8 — Du fait que les frottements n'ont pas toujours le même sens, montrer que la force de frottement $\overrightarrow{F_f}$ peut s'écrire :
$\overrightarrow{F_f} = -\epsilon f m g \overrightarrow{e_x} \tag{1}$
où le coefficient ϵ est tel que $\epsilon=+1$ si $\dot{x}>0$ et $\epsilon=-1$ si $\dot{x}<0$. Écrire alors l'équation différentielle en x du mouvement de M .
\square 9 — Pour toute la suite du problème, on prendra x_0 positive et très supérieure à la limite de démarrage de M , de telle façon que M effectue plusieurs oscillations. Écrire puis résoudre l'équation sur l'intervalle x_0, x_1 où x_1 est l'abscisse de M quand M s'arrête pour la première fois. Quelle est la durée de cette première étape ? Trouver la valeur de x_1 .
\square 10 – Le phénomène se reproduisant de x_1 à x_2 où M s'arrête à nouveau, etc., le mouvement de M est pseudo périodique. Déterminer la pseudo période T des oscillations.
\square 11 — Exprimer le travail de $\overrightarrow{F_f}$ sur le parcours x_1, x_2 en fonction de f, x_1 et x_2 . Sans rechercher à nouveau l'équation horaire du mouvement de M , déterminer alors grâce à un théorème énergétique, l'élongation x_2 quand M s'arrête pour la deuxième fois. (En fonction de x_0, f et k)
\square 12 — De l'étude qui précède, déduire la nature de la décroissance de l'amplitude du mouvement au cours du temps. Déterminer l'équation $x_{max}(t)$ de la courbe reliant les maxima de x .
\Box 13 — Quelle est la différence, au niveau de l'enveloppe de $x(t)$, pour un oscillateur amorti par frottements solides avec un oscillateur amorti par frottements visqueux (loi de frottement proportionnelle à la vitesse)? Tracer l'allure de la réponse du système et son

enveloppe dans les deux cas.