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Compléments de cours
Thermodynamique statistique

On considère un fluide de N atomes (ou particules) identiques, chacun de masse m. Ce fluide est contenu dans
un récipient de volume V et est en équilibre thermique et mécanique avec un thermostat à la température T.

I) Distribution de Maxwell-Boltzmann
Un état microscopique de ce système est caractérisé par les positions r⃗i et les vitesses v⃗i de chacun des N
atomes. Dans un tel état, le système a pour énergie :

E(r⃗1, r⃗2, ..., r⃗N , v⃗1, v⃗2, ..., v⃗N ) =
N∑

i=1

1
2mv⃗i

2 + U(r⃗1, r⃗2, ..., r⃗N )

où U(r⃗1, r⃗2, ..., r⃗N ) est une énergie potentielle d’interaction des particules entre elles ou due à des forces exté-
rieures (champ de pesanteur, poussée d’Archimède, force d’inertie de rotation, ...). La probabilité dP de trouver
le système dans cet état, ou plus précisément dans un domaine infiniment petit de volume d3τ entourant cet
état dans l’espace des phases (à 6N dimensions), est donnée par la statistique de Boltzmann. Il s’agit d’une
généralisation de ce qui a été vu en cours dans le cas de niveaux d’énergie discrets :

dP (r⃗1, r⃗2, ..., r⃗N , v⃗1, v⃗2, ..., v⃗N ) = A exp
[
−β

(
N∑

i=1

1
2mv⃗i

2 + U(r⃗1, r⃗2, ..., r⃗N )
)]

d3τ (1)

avec d3τ = d3r1 · d3r2...d3rN · d3v1 · d3v2...d3vN .

Remarque : La notation d3ri = dxi · dyi · dzi désigne une variation infinitésimale des trois composantes de la
position de la particule i. La notation est la même pour la vitesse.

Dans l’expression de dP , A est la constante de normalisation :

1
A

=
�

exp
[
−β

(
N∑

i=1

1
2mv⃗i

2 + U(r⃗1, r⃗2, ..., r⃗N )
)]

d3τ

En intégrant l’expression (1) sur toutes les valeurs possibles de position pour les N particules, on obtient la
probabilité pour que les particules aient des vitesses v⃗i déterminées à d3vi près :

dP (v⃗1, v⃗2, ..., v⃗N ) = A exp
[
−β

N∑
i=1

1
2mv⃗i

2
]
d3v1d3v2...d3vN

�
e

−βU(r⃗1,r⃗2,...,r⃗N )d3r1d3r2...d3rN

= B exp
[
−β

N∑
i=1

1
2mv⃗i

2
]
d3v1d3v2...d3vN

(2)

Une nouvelle intégration sur les vitesses de toutes les particules sauf la première, donne la probabilité pour que
cette particule ait la vitesse v⃗1 à d3v1 près :

dP (v⃗1) = B exp
[
−βmv⃗1

2

2

]
d3v1

�
exp

[
−β

N∑
i=2

1
2mv⃗i

2
]
d3v2...d3vN

= C exp
[
−βmv⃗1

2

2

]
d3v1

(3)
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La constante C est alors calculée en utilisant la condition de normalisation :
�

dP (v⃗1) = 1 = C

�
exp

[
−βmv⃗1

2

2

]
d3v1

= C

� +∞

−∞
exp

[
−βmv

2
x1

2

]
dvx1

� +∞

−∞
exp

[
−β

mv2
y1

2

]
dvy1

� +∞

−∞
exp

[
−βmv

2
z1

2

]
dvz1

(4)

Les trois intégrales sont les mêmes, donc il suffit d’en calculer une. Ce type d’intégrale est connue, et on a :
� +∞

−∞
exp

[
−βmv

2
x1

2

]
dvx1 =

√
2π
βm

On trouve C =
(
βm

2π

)3/2
et donc finalement :

dP (v⃗1) =
(

m

2πkBT

)3/2
exp

[
−mv⃗1

2

2kBT

]
d3v1

ou encore (ce raisonnement est vrai quelque soit la particule) :

dP (v⃗) =
(

m

2πkBT

)3/2
exp

−
m
(
v2

x + v2
y + v2

z

)
2kBT

dvxdvydvz (5)

Cette formule caractérise la distribution de Maxwell-Boltzmann des vitesses.

Remarques :
• Pour obtenir ce résultat, on a supposé qu’il n’y a pas de corrélation entre la position r⃗ et la vitesse v⃗ d’une

particule :

dP (r⃗, v⃗) = dP ′(r⃗) · dP ′′(v⃗)

• On a également supposé que l’énergie cinétique d’une particule donnée (donc sa vitesse) est indépendante
de la vitesse des autres :

dP (v⃗1, v⃗2) = dP ′(v⃗1) · dP ′(v⃗2)

La probabilité (2) concernant les N particules s’écrit donc comme le produit de N termes analogues à (5),
un pour chaque particule.

• Le nombre moyen dN(v⃗) de particules du système ayant la vitesse v⃗ (à d3v près) est :

dN(v⃗) = N · dP (v⃗)

• La probabilité (5) peut aussi se mettre sous la forme :

dP (v⃗) = f(v⃗)d3v

où la fonction f(v⃗) est appelé densité de probabilité de vitesse.
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II) Distribution statistique d’une composante de la vitesse
La probabilité dP (vx) pour qu’une particule ait la composante de sa vitesse suivant l’axe Ox égale à vx à dvx

près se déduit de la distribution de Maxwell-Boltzmann par intégration sur vy et vz :

dP (vx) =
√

m

2πkBT
exp

(
− mv2

x

2kBT

)
dvx = φ(vx)dvx

(par définition de la constante de normalisation). La fonction φ(vx) est la densité de probabilité de la vitesse
suivant Ox, représentée sur la figure ci-dessous pour deux températures dans un gaz d’oxygène.

Il s’agit d’une gaussienne centrée en vx = 0. Par propriété des gaussiennes, l’écart quadratique moyen est connu
et vaut :

∆vx =
√
v2

x − vx
2 =

√
kBT

m

Cela permet de trouver la vitesse quadratique moyenne sur Ox : v2
x = kBT

m
.

Remarque : Ces résultats sont en accord avec le théorème d’équipartition de l’énergie puisque l’énergie cinétique

de la particule suivant l’axe Ox est dans ce cas égale à kBT

2 . Il en est de même suivant les axes Oy et Oz.

III) Distribution statistique du module de la vitesse
On cherche la probabilité dP (v) pour qu’une particule ait une vitesse dont le module est compris entre v et
v+ dv. On utilise pour cela un système de coordonnées sphériques (v, θ, ϕ) qui permet de caractériser le vecteur
vitesse par son module et par les angles qu’il fait avec les différents axes. Par définition de ce système, on a

d3v = v2 sin θ dv dθ dϕ
La statistique de Maxwell-Boltzmann se réécrit donc :

dP (v⃗) =
(

m

2πkBT

)3/2
exp

(
− mv2

2kBT

)
v2 sin θ dv dθ dϕ

Si l’on somme sur toutes les directions possibles, on obtient :

dP (v) =
�

Ω
dP (v⃗) = 4π

(
m

2πkBT

)3/2
v2 exp

(
− mv2

2kBT

)
dv = ψ(v)dv
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La fonction ψ(v) (que l’on appelle parfois une "maxwellienne") est représentée sur la figure ci-dessous pour deux
températures dans un gaz d’oxygène.

On obtient la vitesse la plus probable (vitesse pour laquelle la densité de probabilité est la plus grande) en

dérivant cette fonction, ce qui donne vm =
√

2kBT

m
. De plus, on calcule les valeurs moyennes de v et v2 (les

intégrales sont données dans des tables) :

v =
� ∞

0
v · dP (v) = 4π

(
m

2πkBT

)3/2 � ∞

0
v3 exp

(
− mv2

2kBT

)
dv = 2

√
2kBT

πm

puis

v2 =
� ∞

0
v2 · dP (v) = 4π

(
m

2πkBT

)3/2 � ∞

0
v4 exp

(
− mv2

2kBT

)
dv = 3kBT

m

Remarque : On constate que v2 = v2
x +v2

y +v2
z = 3v2

x, ce qui était attendu en vertu du principe d’équipartition
de l’énergie.
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