A. GROUPE SYMÉTRIQUE

1. Définitions

On appelle groupe symétrique, l'ensemble des bijections de $\{1, 2, ..., n\}$ dans $\{1, 2, ..., n\}$. Notation : S_n . On a donc :

$$S_n = \left\{ \sigma : \{1, 2, \dots, n\} \longrightarrow \{1, 2, \dots, n\} \text{ tel que } \sigma \text{ soit bijective } \right\}.$$

<u>Vocabulaire</u>: Les éléments de S_n (des applications bijectives) sont appelés des <u>permutations</u> de [1, n] et notés:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$$

Le produit de composition \circ est une loi de composition interne sur S_n .

Exemple de manipulation :

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

2. <u>Structure - cardinal</u>

<u>**Théorème**</u> : (S_n, \circ) est un groupe de cardinal n!.

De plus dès que $n \geq 3$, (S_n, \circ) n'est pas commutatif.

Remarque : \circ représente la composition des applications. On note souvent $\sigma \circ \tau = \sigma \tau$

3. Cycle, Transpositions

Soit $(a_1, \ldots, a_p) \in \{1, 2, \ldots, n\}^p$, 2 à 2 distincts (donc $p \leq n$).

On appelle Cycle de longueur p et de support (a_1, \ldots, a_p) , l'unique permutation $s \in \mathcal{S}_n$ vérifiant :

(i)
$$s(a_1) = \overline{a_2}$$
, $s(a_2) = a_3$, ..., $s(a_{p-1}) = \overline{a_p}$ et $s(a_p) = a_1$,

(ii)
$$s(x) = x$$
 pour tous les autres entiers de $\{1, 2, \dots, n\} - \{a_1, \dots, a_p\}$.

Notation: On note ce cycle: $s = (a_1, \ldots, a_p)$.

On appelle **Transposition** tout cycle de longueur 2 :

$$s = (a \ b) \ (\overline{\text{c'est-à-dire} : s(a)} = b \ \text{et} \ s(b) = a \ \text{et} \ s(x) = x \ \text{pour} \ x \in \{1, 2, \dots, n\} - \{a, b\}).$$

Théorèmes de décomposition :

Théorème 1 :

Toute permutation de S_n se décompose en produit (de composition) de cycles de supports disjoints 2 à 2. De plus ces cycles commutent 2 à 2 et cette décomposition est unique (aux permutations de cycles près).

Démonstration (non exigible) 1

$Th\acute{e}or\grave{e}me 2$:

Toute permutation se décompose en produit (de composition) de transpositions (mais cette décomposition n'est pas unique).

Démonstration 2

Exemple : Décomposer σ_0 en produit de cycles puis en produit de transpositions, avec :

$$\sigma_0 = \begin{pmatrix} 1 & 5 & 7 \end{pmatrix} \circ \begin{pmatrix} 2 & 3 & 8 \end{pmatrix} \circ \begin{pmatrix} 4 & 18 & 17 \end{pmatrix} \circ \begin{pmatrix} 6 & 9 & 12 & 10 \end{pmatrix} \circ \begin{pmatrix} 11 & 13 \end{pmatrix} \circ \begin{pmatrix} 15 \end{pmatrix} \circ \begin{pmatrix} 16 \end{pmatrix}.$$

<u>Exercice</u>: Si $\sigma \in \mathcal{S}_n$. On suppose que $\sigma \neq Id$. Quel est le premier indice s tel que $\sigma^s = Id$?

4. Signature (+ ou -)

Définition 1

Soit $\sigma \in \mathcal{S}_n$. On dit qu'un couple (i, j) de $\llbracket 1, n \rrbracket$ est une **inversion** de σ si i < j et $\sigma(i) > \sigma(j)$. On note $I(\sigma)$ le nombre d'inversions de σ .

Exemples: Déterminer
$$I(\sigma) \in \mathcal{S}_4$$
 lorsque $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$ puis $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$.

Définition 1

On appelle **signature** d'une permutation $\sigma \in \mathcal{S}_n$, l'entier relatif noté $\varepsilon(\sigma) = (-1)^{I(\sigma)}$.

Si $\varepsilon(\sigma) = 1$, on dit que la permutation est **paire** et si $\varepsilon(\sigma) = -1$, on dit que la permutation est **impaire**.

Proposition

La signature d'une transposition est égale à -1

Soit $\tau = (k, \ell)$ avec $k < \ell$. Les inversions de τ sont les couples :

- $(k, k+1), \ldots, (k, \ell) \longrightarrow \operatorname{donc} \ell k$,
- $(k+1,\ell), \dots (\ell-1,\ell) \longrightarrow \text{donc } \ell-1-k \text{ et donc en tout } 2(\ell-k)-1 \text{ qui est impair.}$

Théorème :

La signature est un morphisme de groupe de $\varepsilon: \mathcal{S}_n \longrightarrow \{-1,1\}$, on a donc :

 $\forall (\sigma, \sigma') \in \mathcal{S}_n^2 : \varepsilon(\sigma \circ \sigma') = \varepsilon(\sigma) \cdot \varepsilon(\sigma') \text{ (morphisme de groupes)}.$

De plus la signature est l'unique morphisme de groupe de S_n dans $\{-1,1\}$ tel que pour toute transposition τ , $\varepsilon(\tau) = -1.$

Démonstration (non exigible) 4

Soit $(\sigma, \sigma') \in \mathcal{S}_n^2$. On considère l'ensemble $A = \{(i,j) \in [\![1,n]\!] \text{ tel que } i < j \}$ et 4 sous ensembles de A:

$$A_1 = \Big\{ (i,j) \in A \text{ tel que } \sigma'(i) < \sigma'(j) \text{ et } \sigma \circ \sigma'(i) < \sigma \circ \sigma'(j) \ \Big\} \ ,$$

$$A_2 = \Big\{ (i,j) \in A \text{ tel que } \sigma'(i) < \sigma'(j) \text{ et } \sigma \circ \sigma'(i) > \sigma \circ \sigma'(j) \ \Big\} \ ,$$

$$A_3 = \left\{ (i,j) \in A \text{ tel que } \sigma'(i) > \sigma'(j) \text{ et } \sigma \circ \sigma'(i) < \sigma \circ \sigma'(j) \right\}$$

$$A_4 = \Big\{ (i,j) \in A \text{ tel que } \sigma'(i) > \sigma'(j) \text{ et } \sigma \circ \sigma'(i) > \sigma \circ \sigma'(j) \Big\}.$$

Notons n_i le cardinal de A_i . On a $I(\sigma') = n_3 + n_4$ et $I(\sigma \circ \sigma') = n_2 + n_4$. Évaluons $I(\sigma)$.

On remarque que $(i,j) \longmapsto {\sigma(i), \sigma(j)}$ est une bijection de l'ensemble des couples (i,j) de

 $[\![1,n]\!]$ tels que i < j dans l'ensemble des paires de \mathcal{S}_n par bijectivité de σ .

Or compter les couples (k, ℓ) , $k < \ell$ tels que $\sigma(k) > \sigma(\ell)$ revient

• à compter les paires $\{k,\ell\}$ distinctes telles que

$$\left\{ \begin{array}{l} k < \ell \\ \sigma(k) > \sigma(\ell) \end{array} \right. \quad \text{ou} \quad \left\{ \begin{array}{l} k > \ell \\ \sigma(k) < \sigma(\ell) \end{array} \right.$$

• ou encore, par la bijection précédente, à compter les couples (i,j) de [1,n] tels que i < j et

$$\left\{ \begin{array}{l} \sigma'(i) < \sigma'(j) \\ \sigma \circ \sigma'(i) > \sigma \circ \sigma'(j) \end{array} \right. \qquad \text{ou} \qquad \left\{ \begin{array}{l} \sigma'(i) > \sigma'(j) \\ \sigma \circ \sigma'(i) < \sigma \circ \sigma'(j) \end{array} \right.$$

On en déduit que $I(\sigma) = n_2 + n_3$ et donc que $\varepsilon(\sigma)\varepsilon(\sigma') = (-1)^{2n_3+n_2+n_4} = (-1)^{n_2+n_4} = \varepsilon(\sigma \circ \sigma')$

Exemple : Calculer la signature de σ_0 ci dessus.

Il suffit de compter dans la décomposition de σ_0 le nombre de cycles de longueur paire : il y en 2. On en déduit que $\varepsilon(\sigma_0) = +1$

Groupe Alterné:

On appelle groupe alterné, le sous-groupe de S_n constitué des permutations de signature +1.

Notation:
$$A_n$$
. On a donc $A_n = \{ \sigma \in \mathcal{S}_n / \varepsilon(\sigma) = +1 \}$

Proposition:
$$\forall n \ge 2 : \text{ card } (\mathcal{A}_n) = \frac{n!}{2}.$$

Démonstration 6

Soit $\tau_0 = (1 \ 2)$, l'application $f : \sigma \longmapsto \sigma \circ \tau_0$ est bijective de \mathcal{A}_n dans $\mathcal{S}_n - \mathcal{A}_n$. On en déduit donc que $|\mathcal{A}_n| = |\mathcal{S}_n - \mathcal{A}_n| = \frac{n!}{2}.$

Un exemple complet Donner en extension A_6 et $S_6 - A_6$ (on écrira les permutations à l'aide de leur décomposition en produit de cycles à support disjoints et par ordre alphabétique (exemple: (1 2 4) avant (1 3 2))

2

$$\mathcal{A}_{4} = \left\{ \text{Id} , \left(1 \ 2 \ 3 \right), \left(1 \ 2 \ 4 \right), \left(1 \ 3 \ 2 \right), \left(1 \ 3 \ 4 \right), \left(1 \ 4 \ 2 \right), \left(1 \ 4 \ 3 \right), \left(2 \ 3 \ 4 \right), \left(2 \ 4 \ 3 \right), \left(1 \ 2 \right) \circ \left(3 \ 4 \right), \left(1 \ 3 \right) \circ \left(2 \ 4 \right), \left(1 \ 4 \ 3 \right), \left(1 \ 2 \ 3 \ 4 \right), \left(1 \ 2 \ 3 \ 4 \right), \left(1 \ 2 \ 4 \ 3 \right), \left(1 \ 3 \ 2 \ 4 \right), \left(1 \ 3 \ 4 \ 2 \right), \left(1 \ 4 \ 2 \ 3 \right), \left(1 \ 4 \ 3 \ 2 \right) \right\}$$

B. DÉTERMINANTS

1. Forme n-linéaire alternée

Soit E un $\mathbb{K} - ev$ de dimension n.

Soit f une application de E^n dans \mathbb{K} .

(a) On dit que f est **n-linéaire** si l'expression de $f(x_1, x_2, ..., x_n)$ est linéaire par rapport aux variables $x_1, x_2, ...$ et x_n .

C'est-à-dire : $\forall (x_1, x_2, \dots, x_n) \in E^n$ et $\forall i \in [\![1, n]\!]$, l'application :

 $t \longmapsto f(x_1, x_2, \dots, x_{i-1}, \mathbf{t}, x_{i+1}, \dots, x_n)$ est <u>linéaire</u>.

(b) On dit que f est **alternée** si

 $\forall (x_1, x_2, \dots, x_n) \in E^n$ tel que s'il existe $i \neq j$ avec $x_i = x_j$ alors on a $f(x_1, x_2, \dots, x_n) = 0$.

(c) On dit que f est **antisymétrique** si $\forall (x_1, x_2, \dots, x_n) \in E^n, \forall \sigma \in \mathcal{S}_n$:

$$f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \varepsilon(\sigma) \cdot f(x_1, x_2, \dots, x_n).$$

<u>Théorème 1</u>: Si f est n-linéaire alors f est alternée <u>SSI</u> f est antisymétrique.

<u>Démonstration 7</u>

 $=] \ \forall (x_1, x_2, \dots, x_n) \in E^n \ \text{tel qu'il existe} \ i \neq j \ \text{avec} \ x_i = x_j. \ \text{Posons} \ \sigma = (i \ j) \ \text{on a alors} \ \varepsilon(\sigma) = -1 \ \text{et}$ $f(x_1, x_2, \dots, x_j, \dots, x_i, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \varepsilon(\sigma) f(x_1, x_2, \dots, x_n) = -f(x_1, x_2, \dots, x_j, \dots, x_j).$ On en déduit donc que $f(x_1, x_2, \dots, x_n) = 0 \ \text{car} \ x_i = x_j \ \text{et} \ f(x_1, x_2, \dots, x_n) \in \mathbb{K}.$

 \Rightarrow] Montrons d'abord que $f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \varepsilon(\sigma) f(x_1, x_2, \dots, x_n)$ pour une transposition $\sigma = (k \ \ell)$ avec $k < \ell$. $f(x_1, x_2, \dots, x_k + x_\ell, \dots, x_k + x_\ell, \dots, x_n) = 0$.

On développe par n-linéarité en 4 termes T_1, T_2, T_3, T_4 :

 $f(x_1, x_2, \dots, \underline{x_k}, \dots, \underline{x_k}, \dots, x_n) + f(x_1, x_2, \dots, \underline{x_\ell}, \dots, \underline{x_\ell}, \dots, x_n) + f(x_1, x_2, \dots, \underline{x_k}, \dots, \underline{x_k}, \dots, \underline{x_\ell}, \dots, x_n) + f(x_1, x_2, \dots, \underline{x_\ell}, \dots, \underline{x_k}, \dots, \underline{x_k$

Passons au cas général. $\forall \sigma \in \mathcal{S}_n$, on décompose σ en produit de transpositions : $\sigma = \tau_1 \circ \cdots \circ \tau_p$.

$$f(x_{\tau_1 \circ \cdots \circ \tau_p(1)}, \dots, x_{\tau_1 \circ \cdots \circ \tau_p(n)}) = \varepsilon(\tau_p) f(x_{\tau_1 \circ \cdots \circ \tau_{p-1}(1)}, \dots, x_{\tau_1 \circ \cdots \circ \tau_{p-1}(n)}) = \varepsilon(\tau_p) \varepsilon(\tau_{p-1}) f(x_{\tau_1 \circ \cdots \circ \tau_{p-2}(1)}, \dots, x_{\tau_1 \circ \cdots \circ \tau_{p-2}(n)})$$

$$= \varepsilon(\sigma) f(x_1, x_2, \dots, x_n).$$

$$currence finie$$

$\underline{\text{Th\'eor\`eme 2}}$:

Si f est n-linéaire et alternée alors $\forall (x_1, x_2, \dots, x_n) \in E^n : (x_1, x_2, \dots, x_n)$ liée $\Longrightarrow f(x_1, x_2, \dots, x_n) = 0$.

Démonstration 8

Il existe $j_0 \in [\![1,n]\!]$ et il existe des scalaires λ_i tels que $x_{j_0} = \sum_{i=1, i \neq j_0}^n \lambda_i x_i$.

On a alors
$$f(x_1, ..., x_{j_0}, ..., x_n) = f(x_1, ..., \sum_{i=1, i \neq j_0}^n \lambda_i x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_i, ..., x_n) = \sum_{i=1, i \neq j_0}^n \lambda_i f(x_1, ..., x_i, ..., x_i, ..., x_i, ..., x_i)$$

$$\sum_{i=1, i \neq j_0}^{n} \lambda_i f(x_1, \dots, x_i, \dots, x_n) = 0 \text{ par le caractère alterné.}$$

Exemples : Soit f une forme n-linéaire et alternée. Soient $u, v, x, y, z, u', v', x_i$ des vecteurs de E et a, b, c, d des éléments de \mathbb{K} . Développer :

- (a) f(u+v,y,z)=f(u,y,z)+f(v,y,z).
- (b) f(u+v,u'+v',z) = f(u,u',z) + f(u,v',z) + f(v,u',z) + f(v,v',z).
- (c) $f(x_4, x_3, x_2, x_1) = \varepsilon(s) f(x_1, x_2, x_3, x_4)$ avec $s = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (1 \ 4) \circ (2 \ 3)$ et $\varepsilon(s) = (-1)^2 = 1$.
- (d) Soit (u, v) une base de E (E de dimension 2). $f(au + bv, cu + dv) = acf(u, u) + adf(u, v) + bcf(v, u) + bdf(v, v) = \left\lceil ad bc \right\rceil f(u, v).$

2. Forme n-linéaire alternée en dimension n: notion de déterminant

Théorème fondamental - définition :

Soit $b = (e_1, \dots, e_n)$ une base de E, un \mathbb{K} -espace vectoriel (donc de dimension n).

Il existe une unique forme *n*-linéaire alternée φ_0 de E^n dans \mathbb{K} telle que : $\varphi_0(e_1,\ldots,e_n)=1$.

 $\forall f: E^n \longrightarrow \mathbb{K}$ une forme n-linéaire alternée, il existe un unique $\lambda \in \mathbb{K}$ tel que

$$\forall (x_1, x_2, \dots, x_n) \in E^n, \quad f(x_1, x_2, \dots, x_n) = \lambda \varphi_0(x_1, x_2, \dots, x_n) \text{ et } \lambda = f(e_1, e_2, \dots, e_n)$$
. $\varphi_0 \text{ est not\'ee } \det_b$.

 $\det_b(x_1, x_2, \dots, x_n)$ s'appelle le <u>déterminant</u> de (x_1, x_2, \dots, x_n) dans la base $b = (e_1, \dots, e_n)$. En d'autre terme l'espace vectoriel des formes n-linéaires alternées sur E est de dimension 1.

Démonstration (existence non exigible) 9

Si
$$x_1 = \sum_{i=1}^n a_{i,1} e_i$$
, ..., $x_j = \sum_{i=1}^n a_{i,j} e_i$, ...et $x_n = \sum_{i=1}^n a_{i,n} e_i$.

Alors on "éclate" $f(x_1, x_2, ..., x_n)$ en une Méga-somme :

$$f(x_1, x_2, \dots, x_n) = f\left(\sum_{i=1}^n a_{i,1}e_i, \dots, \sum_{i=1}^n a_{i,n}e_i\right) = f\left(\sum_{i=1}^n a_{i_1,1}e_{i_1}, \dots, \sum_{i=1}^n a_{i_n,n}e_{i_n}\right)$$

$$= \sum_{i_1=1}^{n} a_{i_1,1} f\left(e_{i_1}, \sum_{i_2=1}^{n} a_{i_2,2} e_{i_2}, \dots, \sum_{i_n=1}^{n} a_{i_n,n} e_{i_n}\right)$$

$$= \sum_{i_1=1}^n a_{i_1,1} \sum_{i_2=1}^n a_{i_2,2} f(e_{i_1}, e_{i_2}, \dots, \sum_{i_n=1}^n a_{i_n,n} e_{i_n}) = \dots$$

$$= \sum_{i_1=1}^n a_{i_1,1} \sum_{i_2=1}^n a_{i_2,2} \cdots \sum_{i_n=1}^n a_{i_n,n} f(e_{i_1}, e_{i_2}, \dots, e_{i_n})$$

$$= \sum_{i_1=1}^n \sum_{i_2=1}^n \cdots \sum_{i_n=1}^n a_{i_1,1} a_{i_2,2} \cdots a_{i_n,n} f(e_{i_1},e_{i_2},\ldots,e_{i_n}) \text{ on a donc une somme de } n^n \text{ termes.}$$

Ensuite $f(e_{i_1}, e_{i_2}, \dots, e_{i_n})$ est nul à chaque fois que dans le n-uplet $(e_{i_1}, e_{i_2}, \dots, e_{i_n})$ il y a deux indices (au moins) qui sont égaux. Autrement dit il y a exactement autant de n-uplets $(e_{i_1}, e_{i_2}, \dots, e_{i_n})$ où les éléments sont 2 à 2 distincts que de n-uplets $(e_{\sigma(1)}, e_{\sigma(2)}, \dots, e_{\sigma(n)})$ avec $\sigma \in \mathcal{S}_n$.

Donc
$$f(x_1, x_2, \dots, x_n) = \sum_{\sigma \in \mathcal{S}_n} a_{\sigma(1), 1} a_{\sigma(2), 2} \cdots a_{\sigma(n), n} f(e_{\sigma(1)}, e_{\sigma(2)}, \dots, e_{\sigma(n)})$$

D'autre part par antisymétrie : $f(e_{\sigma(1)},e_{\sigma(2)},\ldots,e_{\sigma(n)})=\varepsilon(\sigma)f(e_1,e_2,\ldots,e_n)$. En conséquence :

$$f(x_1, x_2, \dots, x_n) = \left[\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1), 1} a_{\sigma(2), 2} \cdots a_{\sigma(n), n} \right] f(e_1, e_2, \dots, e_n).$$

Posons:

$$\varphi_0(x_1, x_2, \dots, x_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1), 1} a_{\sigma(2), 2} \cdots a_{\sigma(n), n}$$

cette expression s'appelle le <u>déterminant</u> de (x_1, x_2, \ldots, x_n) dans la base $b = (e_1, \ldots, e_n)$.

On a donc <u>l'unicité</u> de $\lambda : f = \lambda \varphi_0$.

Montrons que φ_0 est bien une forme *n*-linéaire alternée de E^n dans \mathbb{K} telle que : $\varphi_0(e_1,\ldots,e_n)=1$.

- φ_0 est clairement une forme n-linéaire car $\varphi_0(x_1, x_2, \dots, y, \dots, x_n)$ est de la forme $\alpha_1 y_1 + \dots + \alpha_n y_n$ avec (y_1, \dots, y_n) les coordonnées de y dans b.
- Soit (k,ℓ) avec $k < \ell$ et soit $(x_1, x_2, \dots, x_n) \in E^n$ tels que $x_k = x_\ell$.

Posons
$$\tau = (k \ \ell)$$
, on a $S_n - A_n = \{ \sigma \tau , \sigma \in A_n \}$

$$\varphi_0(x_1, x_2, \dots, x_n) = \sum_{\sigma \in S} \varepsilon(\sigma) a_{\sigma(1), 1} a_{\sigma(2), 2} \cdots a_{\sigma(n), n}$$

$$= \sum_{\sigma \in \mathcal{A}_n} a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n} - \sum_{\sigma \in \mathcal{A}_n} a_{\sigma\tau(1),1} a_{\sigma\tau(2),2} \cdots a_{\sigma\tau(n),n}.$$

Comme $x_k = x_\ell$, $a_{\sigma\tau(k),k} = a_{\sigma(\ell),k} = a_{\sigma(\ell),\ell}$, $a_{\sigma\tau(\ell),\ell} = a_{\sigma(k),\ell} = a_{\sigma(k),k}$. et que d'autre part $a_{\sigma\tau(j),j} = a_{\sigma(j),j}$ pour tout $j \notin \{k,\ell\}$. On en déduit que $\varphi_0(x_1,x_2,\ldots,x_n) = 0$ et donc que φ_0 est alternée.

• $\varphi_0(e_1, e_2, \dots, e_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \delta_{\sigma(1), 1} \delta_{\sigma(2), 2} \cdots \delta_{\sigma(n), n} = 1$ (le produit $\delta_{\sigma(1), 1} \delta_{\sigma(2), 2} \cdots \delta_{\sigma(n), n}$ est nul dès que $\sigma \neq \text{Id et } \delta_{i,j} \text{ symbole de Kronecker }).$

3. Formule de changement de bases - théorème fondamental de la liberté

Théorème de changement de bases :

```
Soit b = (e_1, \dots, e_n) et b' = (e'_1, \dots, e'_n) deux bases de E, un \mathbb{K}-espace vectoriel (dimE = n).
On a la formule : \det_{b'}(x_1, x_2, ..., x_n) = \det_{b'}(b) \cdot \det_b(x_1, x_2, ..., x_n)
```

<u>Démonstration 10</u>

 $(x_1,x_2,\ldots,x_n) \longmapsto \det_{b'}(x_1,x_2,\ldots,x_n)$ est une forme n-linéaire alternée de E^n dans \mathbb{K} , on a donc par le théorème fondamental : $\det_{b'}(x_1, x_2, \dots, x_n) = \lambda \det_{b}(x_1, x_2, \dots, x_n)$ avec $\lambda = \det_{b'}(e_1, e_2, \dots, e_n) = \det_{b'}(b)$.

Théorème fondamental de la liberté:

Soit
$$b = (e_1, \ldots, e_n)$$
 une base de E , un \mathbb{K} -espace vectoriel $(\dim E = n)$. $\forall (x_1, x_2, \ldots, x_n) \in E^n$, $\det_b(x_1, x_2, \ldots, x_n) \neq 0 \iff (x_1, x_2, \ldots, x_n)$ est libre dans E .

Démonstration 11

Si (x_1, x_2, \ldots, x_n) est liée, on a vu au paragraphe 1. que $\det_b(x_1, x_2, \ldots, x_n) = 0$. Si (x_1, x_2, \ldots, x_n) est libre, alors $b' = (x_1, x_2, \ldots, x_n)$ est aussi une base de E et par la formule de changement de base : $\det_{b'}(x_1, x_2, \dots, x_n) = \det_{b'}(b) \cdot \det_b(x_1, x_2, \dots, x_n)$. Or $\det_{b'}(x_1, x_2, \dots, x_n) = \det_{b'}(b') = 1$, on a donc

 $\det_{b'}(b) \cdot \det_b(x_1, x_2, \dots, x_n) = 1 \text{ d'où } \det_b(x_1, x_2, \dots, x_n) \neq 0.$

4. Déterminant d'un endomorphisme - déterminant d'une matrice carrée

Théorème - définition :

Soit f un endomorphisme de E, un \mathbb{K} -espace vectoriel ($\dim E = n$). il existe un unique scalaire λ appelé **déterminant de** f **et noté** $\det(f)$, tel que pour toute base $b = (e_1, \dots, e_n)$ de E et pour tout $(x_1, x_2, \dots, x_n) \in \overline{E^n}$: $\det_b \left(f(x_1), \dots, f(x_n) \right) = \lambda \det_b (x_1, x_2, \dots, x_n)$. On a donc $\det_b \left(f(x_1), \dots, f(x_n) \right) = \det(f) \cdot \det_b (x_1, x_2, \dots, x_n)$.

Démonstration 12

Existence

 $(x_1,x_2,\ldots,x_n)\longmapsto \det_b\Big(f(x_1),f(x_2),\ldots,f(x_n)\Big)$ est une forme n-linéaire alternée de E^n dans \mathbb{K} , on a donc par le théorème fondamental : $\det_b \left(f(x_1), f(x_2), \dots, f(x_n) \right) = \lambda \det_b (x_1, x_2, \dots, x_n)$ avec $\lambda = \det_b \left(f(e_1), f(e_2), \dots, f(e_n) \right)$ que l'on notera $\det_b(f(b))$, d'où l'existence.

Unicité

On a grâce à la formule de changement de base :

$$\det_{b'}(f(b')) = \det_{b'}(b) \cdot \det_{b}(f(b')) = \det_{b'}(b) \cdot [\det_{b}(f(b)) \cdot \det_{b}(b')]. \text{ Or } \det_{b'}(b) \cdot \det_{b}(b') = 1, \text{ d'où } \det_{b'}(f(b')) = \det_{b}(f(b)).$$

Exemples: Soit E un K-ev de dimension n et soient F et G tel que $E = F \oplus G$.

Calculer les déterminants det(f) lorsque :

 $f = \mathrm{Id}_{\mathrm{E}}$, f est la symétrie par rapport à F parallèlement à G et f est l'endomorphisme de matrice dans une

base de
$$E: \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{pmatrix}$$
.

Définition :

On appelle déterminant d'une matrice carrée A de taille $n \times n$, le déterminant de ses vecteurs colonnes dans la base canonique de \mathbb{K}^n .

On le note $\det(A)$ ou $\det A$. Si $A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix}$ le déterminant de A se note aussi : $\begin{vmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & & \vdots & & \vdots \end{vmatrix} = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}$ $\vdots & \vdots & \vdots & \vdots \end{vmatrix}$

$$\begin{vmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{vmatrix} = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}$$

$\underline{\mathbf{Exemples}}$: Calculer les déterminants suivant :	a	b	et	λ_1	٠.	*	
	c	d		0	••	λ_n	

5. Propriétés des déterminants

Soient E un \mathbb{K} -ev de dimension n, $(x_1, \ldots, x_n) \in E^n$, $b = (e_1, \ldots, e_n)$ une base de E, $(f, g) \in \mathcal{L}(E)^2$, $\lambda \in \mathbb{K}$ et $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$.

P₁ lien vecteur/endo/matrice

Si $A = M_b(f)$, alors $\det(A) = \det(f) = \det_b(C_1, \dots, C_n)$ où C_1, \dots, C_n sont les vecteurs colonnes de A et b_0 base canonique de $\mathcal{M}_{n,1}(\mathbb{K})$

$$\mathbf{P_2}$$
 $\det(\lambda f) = \lambda^n \det(f) \operatorname{et} \det(\lambda A) = \lambda^n \det(A)$.

$$\overline{\mathbf{P_3}}$$
 $\det(f \circ g) = \det(f) \cdot \det(g)$ et $\det(AB) = \det(A) \cdot \det(B)$ et donc $\det(AB) = \det(BA)$.

$$P_4$$
 $f \in GL(E) \iff \det(f) \neq 0 \text{ et } A \in GL_n(\mathbb{K}) \iff \det(A) \neq 0$.

$$\mathbf{P_5}$$
 Si f ou A est inversible, $\det(f^{-1}) = \frac{1}{\det(f)}$ et $\det(A^{-1}) = \frac{1}{\det(A)}$.

$$\mathbf{P_6}$$
 $\det(A^{\mathrm{T}}) = \det(A)$.

 $\overline{\mathbf{P_7}}$ Le déterminant est une forme n-linéaire de ses lignes et de ses colonnes .

 $\mathbf{P_8}$ • On peut utiliser les opérations élémentaires du pivot de Gauss pour faire apparaître des zéros soit sur une ligne soit sur une colonne.

- Un déterminant qui a deux colonnes (respectivement deux lignes) identiques est nul.
- \bullet L'échange de deux colonnes (respectivement deux lignes) multiplie le déterminant par -1.

Démonstration 13

$$\boxed{\mathbf{P_2}} \det(\lambda A) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma)(\lambda a_{\sigma(1),1})(\lambda a_{\sigma(2),2}) \cdots (\lambda a_{\sigma(n),n}) = \lambda^n \det(A)$$

$$\begin{array}{l}
\mathbf{P_3} & \det(f \circ g) = \det_b(f \circ g(e_1), \dots, f \circ g(e_n)) = \det(f) \det_b(g(e_1), \dots, g(e_n)) = \det(f) \det(g) \det_b(e_1, \dots, e_n) \\
& = \det(f) \det(g).
\end{array}$$

$$\mathbf{P_4}$$
 $f \in \mathrm{GL}(\mathrm{E}) \iff (f(e_1), \dots, f(e_n))$ base de $E \iff \det_b(f(e_1), \dots, f(e_n)) \neq 0 \iff \det(f) \neq 0$.

$$\mathbf{P_5}$$
 $\det(f) \det(f^{-1}) = \det(f \circ f^{-1}) = \det I_n = 1.$

$$\boxed{\mathbf{P_6}} \det(A^{\mathrm{T}}) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}$$

Or $a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)} = a_{\sigma^{-1}(1),1}a_{\sigma^{-1}(2),2}\cdots a_{\sigma^{-1}(n),n}$, avec le changement de variable **bijectif** de S_n dans $S_n: \sigma \longmapsto \sigma^{-1}$ et $\varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$, $\det(A^T) = \sum_{\sigma^{-1} \in S_n} \varepsilon(\sigma^{-1})a_{\sigma^{-1}(1),1}a_{\sigma^{-1}(2),2}\cdots a_{\sigma^{-1}(n),n} = \det(A)$.

6. Mineur - cofacteur - comatrice

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ et $(i,j) \in [1,n]^2$, on appelle :

- mineur de $a_{i,j}$, le déterminant $\Delta_{i,j}$ de la matrice extraite de A obtenues en supprimant la i-ième ligne et la j-ième colonne,
- <u>cofacteur</u> de $a_{i,j}$, le scalaire $(-1)^{i+j}\Delta_{i,j}$,
- <u>comatrice de A</u>, la matrice Com(A) des cofacteurs : $Com(A) = ((-1)^{i+j}\Delta_{i,j}) \in \mathcal{M}_n(\mathbb{K})$

Développement selon une ligne ou une colonne :

Lemme:

Si
$$A$$
 est une matrice carrée de la forme : $A = \begin{pmatrix} & & 0 \\ & A' & \vdots \\ & & 0 \\ \hline * & \cdots & * & a_{n,n} \end{pmatrix}$ avec $A' \in \mathcal{M}_{n-1}(\mathbb{K})$ alors det $A = a_{n,n} \det A'$.

Démonstration 14

On a par définition : $\det A = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \dots a_{\sigma(n),n}$ et comme par hypothèse :

$$\forall \sigma \in \mathcal{S}_n, \sigma(n) \neq n \Longrightarrow a_{\sigma(n),n} = 0$$
, la relation précédente s'écrit : $\det A = \sum_{\substack{\sigma \in \mathcal{S}_n \\ \sigma(n) = n}} \varepsilon(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \dots a_{\sigma(n-1),n-1} a_{n,n}$.

Or la restriction à [1, n-1] de toute permutation σ vérifiant $\sigma(n) = n$ est une permutation s de [1, n-1]. Réciproquement, en prolongeant une permutation $s \in \mathcal{S}_{n-1}$ par s(n) = n, on obtient une permutation $\sigma \in \mathcal{S}_n$. De plus, on a alors $\varepsilon(s) = \varepsilon(\sigma)$ puisqu'une décomposition de s en produit de s transpositions donne également une décomposition de σ en s transpositions. On a alors :

$$\det A = \sum_{s \in \mathcal{S}_{n-1}} \varepsilon(s) a_{s(1),1} a_{s(2),2} \dots a_{s(n-1),n-1} a_{n,n} = a_{n,n} \det A'$$

Proposition:

Soit
$$A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$$
 et $(i_0, j_0) \in [1, n]^2$, on a :

• $\det A = \sum_{i=1}^n (-1)^{i+j_0} a_{i,j_0} \Delta_{i,j_0}$ (développement selon la j_0 -ième colonne)

• $\det A = \sum_{j=1}^n (-1)^{i_0+j} a_{i_0,j} \Delta_{i_0,j}$ (développement selon la i_0 -ième ligne)

Démonstration 15

Désignons par b la base canonique de \mathbb{K}^n et par C_1, C_2, \ldots, C_n les colonnes de A. Pour tout entier $j \in [1, n]$, on a $C_j = \sum_{i=1}^n a_{i,j} e_i$, ce qui donne :

$$\det A = \det_b \left(C_1, C_2, \dots, C_{j-1}, \sum_{i=1}^n a_{i,j} e_i, C_{j+1}, \dots, C_n \right)$$
$$= \sum_{i=1}^n a_{i,j} \det_b \left(C_1, C_2, \dots, C_{j-1}, e_i, C_{j+1}, \dots, C_n \right)$$

Notons:

$$D_{i,j} = \det_b \left(C_1, C_2, \dots, C_{j-1}, e_i, C_{j+1}, \dots, C_n \right)$$

$$= \begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,j-1} & 0 & a_{1,j+1} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,j-1} & 0 & a_{2,j+1} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ a_{i-1,1} & a_{i-1,2} & \cdots & a_{i-1,j-1} & 0 & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i,1} & a_{i,2} & \cdots & a_{i,j-1} & 1 & a_{i,j+1} & \cdots & a_{i,n} \\ a_{i+1,1} & a_{i+1,2} & \cdots & a_{i+1,j-1} & 0 & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,i-1} & 0 & a_{n,i+1} & \cdots & a_{n,n} \end{vmatrix}$$

On peut opérer sur $D_{i,j}$ une suite de n-j échanges de colonnes pour amener la j ime en dernière position, puis une suite de n-i échanges de lignes pour amener la i ème en dernière position. Le déterminant est alors multiplié par $(-1)^{n-j}(-1)^{n-i} = (-1)^{i+j}$ et l'on a :

ce qui entraı̂ne, d'après le lemme, $D_{i,j} = (-1)^{i+j} \Delta_{i,j}$ et donc :

$$\det A = \sum_{i=1}^{n} a_{i,j} (-1)^{i+j} \Delta_{i,j}.$$

En appliquant ce résultat à la transposée, on obtient le développement suivant une ligne.

Inverse d'une matrice carrée :

Soit
$$A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$$
 on a :
• $A \times \operatorname{Com}(A)^T = \operatorname{Com}(A)^T \times A = (\det A)\operatorname{I}_n$ • Si $A \in \operatorname{GL}_n(\mathbb{K})$, on a : $A^{-1} = \frac{1}{\det A} \left(\operatorname{Com}(A)\right)^T$

<u>Démonstration 16</u>

Posons B = Com(A) et $AB^T = (c_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$. Étant donnés deux entiers i et k de $[\![1,n]\!]$, on a par définition :

$$c_{i,k} = \sum_{j=1}^{n} a_{i,j} b_{k,j} = \sum_{j=1}^{n} (-1)^{j+k} \Delta_{k,j} a_{i,j}$$

- Si k = i la dernière somme ci-dessus représente le développement du déterminant de A suivant la i ème ligne, ce qui implique $c_{i,i} = \det A$.
- Si $k \neq i$, soit $A' = (a'_{i,j})$ la matrice obtenue à partir de A en recopiant la i-ième ligne dans la k-ième ligne. Comme A' admet deux lignes identiques, son déterminant est nul et en développant ce déterminant suivant sa k^{ème} ligne, on a :

$$0 = \det A' = \sum_{i=1}^{n} (-1)^{j+k} \Delta'_{k,j} a'_{k,j}.$$

Par construction, on a $a'_{k,j} = a_{i,j}$ et, puisque les lignes de A et de A' autres que les $k^{\text{èmes}}$ sont identiques, on a $\Delta'_{k,j} = \Delta_{k,j}$. Par suite la relation précédente devient

$$0 = \det A' = \sum_{i=1}^{n} a_{i,j} (-1)^{j+k} \Delta_{k,j} = c_{i,k}.$$

On a donc l'égalité $AB^{\mathrm{T}} = (\det A)I_n$.

On démontre de manière analogue, en utilisant des développements par rapport aux colonnes la relation $B^{T}A = (\det A)I_{n}$.

$$\underline{\mathbf{Application}}: \quad \text{Si } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{K}) \text{ alors } A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} .$$

7. Résolution d'un système S avec les déterminants (Formules de Cramer)

Soit à résoudre le système de <u>Cramer</u> : \mathcal{S} $\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \dots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n \end{cases}$

$$\Delta = \begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{vmatrix} \text{ et pour } i \in \llbracket 1,n \rrbracket : \Delta_{x_i} = \begin{vmatrix} a_{1,1} & \cdots & a_{1,i-1} & b_1 & a_{1,i+1} & \cdots & a_{1,n} \\ a_{2,1} & \cdots & a_{2,i-1} & b_2 & a_{2,i+1} & \cdots & a_{2,n} \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & \cdots & a_{n,i-1} & b_n & a_{n,i+1} & \cdots & a_{n,n} \end{vmatrix}.$$

On alors l'unique solution (x_1, \ldots, x_n) du système \mathcal{S} donné par les formules dites de Cramer :

$$x_1 = \frac{\Delta_{x_1}}{\Delta}$$
, $x_2 = \frac{\Delta_{x_2}}{\Delta}$, ..., $x_n = \frac{\Delta_{x_n}}{\Delta}$.

Démonstration 17

Posons
$$A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K}), B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et b la base canonique de \mathbb{K}^n . Comme S est de Cramer,

A est inversible et l'on a :

 $A = \begin{pmatrix} C_1 & | & \cdots & | & C_n \end{pmatrix}$ où C_1, \dots, C_n sont les colonnes de A et (x_1, \dots, x_n) est (l'unique) solution du système

S si et seulement si AX = B. Ensuite $AX = B \iff \sum_{j=1}^{n} x_j C_j = B$.

Enfin
$$\Delta_{x_i} = \det_b \left(C_1, \dots, \sum_{j=1}^n x_j C_j, \dots, C_n \right) = \sum_{j=1}^n x_j \det_b \left(C_1, \dots, C_j, \dots, C_n \right).$$

Pour $j \neq i$, $\det_b \left(C_1, \dots, C_j, \dots, C_n \right) = 0$ car il y a deux colonnes égales et pour j = i, $\det_b \left(C_1, \dots, C_i, \dots, C_n \right) = \Delta$. On en déduit que $\Delta_{x_i} = x_i \Delta$, d'où le résultat.