
Exercice 1 : Projection dans un cinéma

Dans une salle de cinéma, on lit, à l'aide d'un projecteur, une pellicule de largeur b sur un écran (E) de largeur L. On le modélise par une source lumineuse et une lentille convergente suivant le schéma ci-contre. On note d la distance de la pellicule à l'objectif et D celle de la pellicule à l'écran.

- 1. Tracer l'image A'B' de AB à l'aide de 3 rayons différents.
- **2.** Montrer que, pour que d existe, il faut une condition sur D et f'.
- 3. Donner l'expression du grandissement transversal G_t et montrer qu'une seule valeur de d est possible.
- 4. Calculer d et f' pour $b = 24 \,\mathrm{mm}$, $L = 5 \,\mathrm{m}$ et $D = 40 \,\mathrm{m}$.

Exercice 2: Barreau

On dispose d'un barreau de section $s=2\,\mathrm{cm}^2$ composé de deux parties :

- une première en cuivre de conductivité $\lambda_1(Cu) = 380 \,\mathrm{W} \cdot \mathrm{K}^{-1} \cdot \mathrm{m}^{-1}$ et de longueur $L_1 = 80 \,\mathrm{cm}$;
- une seconde en aluminium de conductivité $\lambda_2(Al) = 200 \,\mathrm{W} \cdot \mathrm{K}^{-1} \cdot \mathrm{m}^{-1}$ et de longueur $L_2 = 50 \,\mathrm{cm}$.

La surface latérale du barreau est isolée. On maintient les extrémités libres à la température $T_1=0\,^{\circ}\mathrm{C}$ pour le cuivre, et $T_2=180\,^{\circ}\mathrm{C}$ pour l'aluminium.

- 1. Déterminer la température T_s de la soudure entre les deux métaux.
- 2. Déterminer le gradient de température dans la partie en cuivre et celle en aluminium.
- 3. Déterminer la densité de courant thermique et le transfert thermique Q qui traverse la jonction chaque minute.
- 4. Déterminer La résistance thermique de l'ensemble.
- **5.** Applications numériques. Calculer T_s et Q.