I 1) YNER, n2+13/>0 in ga Thionimes génerary

g est de dasse com R.

2)
$$\forall n \in \mathbb{R}$$
, $\delta'(n) = 1 + \frac{n}{\sqrt{n^2 + 1}} = \frac{\sqrt{n^2 + 1} + n}{\sqrt{n^2 + 1}}$

$$g''(n) = 0 + \frac{1}{\sqrt{n^2 + 1}} - \frac{1}{2} 2 n^2 (n^2 + 1)^{-3/2} = \frac{1}{(n^2 + 1)^{3/2}}$$

$$\int_{0}^{3} (n) = -\frac{3}{2} 2n (n^{2}+1)^{-5/2} = \frac{-32}{(n^{2}+1)^{5/2}}$$

3) La relation est rnaie pour
$$n=2$$
: $P_2(n)=1$, et

pour
$$m=3$$
: $P_3(n)=-3n$. Supposons que la relation

Noir traise pour
$$n \ge 2$$
, $g^{(n+1)}(n) = (g^{(n)})(n) = \left(\frac{P_n(n)}{p_1^2 + 1}\right)^{\frac{n}{2}}$

$$= \frac{P_{3}'(n)}{(a^{2}+1)^{\frac{2n-1}{\lambda}}} - \left(\frac{2n-1}{2}\right)(2n)(n^{2}+1)^{-\frac{2n-1}{\lambda}} - 1$$

$$= \frac{P_{n+1}(h)}{(2c^2+1)^{\frac{2n+1}{2}}} \quad \text{avec} \quad P_{n+1}(h) = (2c^2+1)P'_n(h) - (2n-1)nP_n(h)$$

4) Si
$$\forall n \in \mathbb{R}^{2}$$
, $g^{(n)}(n) = \frac{P_{n}(n)}{(n^{2}+1)^{n}} = \frac{Q_{n}(n)}{(n^{2}+1)^{n}}$ $p = \frac{2n-1}{2}$
 $\forall n \in \mathbb{R}^{2}$, $P_{n}(n) = Q_{n}(n)$ $f^{(n)}(n) = \frac{Q_{n}(n)}{(n^{2}+1)^{n}}$ $f^{(n)}(n) = \frac{Q_{n}(n)}{(n^{2}+1)^{n}}$

$$P_4(n) = (\alpha^2 + 1)(-3) - 5n(-3n)$$

$$P_4(n) = \frac{12n^2 - 3}{4}$$

Montons le por ricomma avec (x) ;

$$S'_{1} \partial^{0} P_{n} = n - 2$$
, $P_{n} = \alpha X^{n-2} + \cdots$, dent $P'_{n} = \alpha (n-2) X^{n-3}$

$$\delta' = \sum_{n=1}^{\infty} P_{n+1}(n) = a(n-2)n^{n-1} - (2n-1)an^{n-1} + \cdots - \frac{1}{2^n \times n-1}$$

$$= \alpha(-n-1)n^{-1} + -11/2 \text{ donc } d^{2}P = n+1-2$$

$$= n+1-2$$

$$= n-2$$

7) Si l'on note à le coefficient daninant de P. (3) $0_{n} \alpha VV \alpha V 6') q V = \alpha_{n+1} = \alpha_{n}(-n-1) = -(n+1)\alpha_{n}(xx)$ On en déduit que $\forall n \neq 3$; $a_{n} = -n a_{n-1} = (-n)(-(n-1)) a_{n-2}$ $\frac{d^{2} \sqrt{3}}{\sqrt{3}} = \frac{(-n)(-(n-1))(-(n-2))----(-(3))}{\sqrt{2}} = \frac{(-1)^{n-2} \frac{1}{2} \times 1}{\sqrt{2}}$ $= \frac{(-1)^{n-2} \frac{1}{2} \times 1}{\sqrt{2}} = \frac{(-1)^{n-1}/2}{\sqrt{2}}$ La relation (***) par l'hérédité et $q_2 = (-1)^2 \frac{2!}{2!} = 1$ permet de roncelver; $U': \forall r \geq 2 \quad \alpha_r = (-1)^r \frac{\alpha!}{2}$ 8) 1 én méthode: si en pose g/n) = \n^2+1, on a g paine, donc g'impaine la dénire la rel. 1/-2/=g/m/ duc g' point, etc., por nivona. Conne g'=1+g/ on n, Yn>2: 8'(1) [n] = g(n) [n] et donc. $\forall n \in \mathbb{R}$; $P_n(n) = g(n) \times (n^2 + 1)^{\frac{2n-1}{2}}$ $P_n(n) = g(n) \times (n^2 + 1)^{\frac{2n-1}{2}}$

2^{én} méthod: Par nievance, à l'ajde de (x)

9) Graa à g', droson les variations de f': $\forall n \in \mathbb{R}$, $\sqrt{n^2+1}$ > $\sqrt{n^2} = |n| \ge -n$ donc g'(n) > 0 d'ai $\frac{2|-\infty}{7'} + \frac{1}{2}$ A a gaillement $\lim_{n \to +\infty} |n| = +\infty$ $|T,G_n| = 0$

 $\frac{\mathbb{E}_{n}-\omega}{n} \cdot \beta(n) = n + \left(n^{2}\left(1+\frac{1}{n^{2}}\right), \forall h < 0$ $= n + |n| \sqrt{1+\frac{1}{n^{2}}}$ $= n - n \sqrt{1+\frac{1}{n^{2}}} \quad \text{for } n < 0$ $= n \left(1-\sqrt{1+\frac{1}{n^{2}}}\right)$

on grand h - 90, $\sqrt{1+h} = 1 + \frac{1}{2}h + o|h|$, d_{nc} $1 - \sqrt{1+h} \frac{1}{n^2} + \frac{1}{n^2} + \frac{1}{n^2} + \frac{1}{n^2} = 0$, n - 1 - a0on $a : \left\{ (n) \frac{1}{n^2} - \frac{1}{2x} \right\} + \frac{1}{n^2} = 0$, n - 1 - a0

Par le thioriene de bijection (8 continue et st aprissent, d bijechen de 12 dan, I=Jo,+00C 10) (1+t) = 1+2t + 2(a-1) +2+ ... + 2(a-1)-..(a-n+1) to +0(t) 2'05 f(n) = x + (1+x2)'2 = $n + 1 + \frac{1}{2}n^2 + \frac{1}{2(\frac{1}{2}-1)}n^2 + \frac{1}{2(\frac{1}{2}-1)[\frac{1}{2}-2]}n^6$ $+\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)(\frac{1}{2}-3)}{4!}$ $n + o(n^{9})$ $d^{2}; \quad \frac{3(n) = 1 + 2 + \frac{1}{2}n^{2} - \frac{1}{8}n^{4} + \frac{1}{16}n^{6} - \frac{5}{128}n^{8} + o(n^{9})}{128}$ 11) $\forall n > 0$, $g(n) = n + n \sqrt{1 + \frac{1}{n^2}} = n + n / 1 + \frac{1}{2n^2} + o(\frac{1}{n^2})$ d': $f(n) = 2n + \frac{1}{2n} + o(\frac{1}{n})$ et $a = 2, b = o(c) = \frac{1}{2}$ par vricité du DL. D/y=2n asymptote à la courbe en +00

II 1')
$$g(-n) = -n + \sqrt{n^2 + 1} = \frac{(-h + \sqrt{n^2 + 1})(-h - \sqrt{n^2 + 1})}{-n - \sqrt{n^2 - 1}}$$

$$= \frac{x^2 - (n^2 + 1)}{-(h + \sqrt{n^2 + 1})} \quad U': \quad g(-n) = \frac{1}{g(h)} \quad (g(n) \neq 0)$$
2') $\forall y \in I = J_0 + \infty [J : h \in \mathbb{R} \setminus y = g(n)] \quad \text{et} \quad n = g(y)$

$$y = g(n) = n + \sqrt{n^2 + 1} \implies \frac{1}{y} = \frac{1}{g(n)} = f(-n) = -n + \sqrt{n^2 + 1}$$

· dinc
$$\begin{cases} n + \sqrt{n^2 + 1} = y \\ -n + \sqrt{n^2 + 1} = y \end{cases} \Rightarrow 2n = y - \frac{y}{y} \Rightarrow n = \frac{y - \frac{y}{y}}{2}$$

Comme n exist et unique, on a $g(y) = \frac{y^2 - 1}{2y}$, $\forall y > 0$

3)
$$\Leftarrow$$
 1 c'est dain Q est stable par + et avec le 9°) $f(x)>0$.

 \Rightarrow 3 of $n \in \mathbb{N}$ tel que $f(n) = y \in \mathbb{Q}^+$, on a

 $\forall v \in \mathbb{C}$ que $n = g(y) = \frac{2y^2-1}{2y} \in \mathbb{Q}$ puis $f(x)=f(n)=1$
 $e(x) \in \mathbb{Q}^+$
 $e(x) \in \mathbb{Q}^+$
 $e(x) \in \mathbb{Q}^+$
 $e(x) \in \mathbb{Q}^+$
 $e(x) \in \mathbb{Q}^+$

(+) analyze soit
$$(\eta, z) \in G_{+}^{2} \setminus n^{2} + 1 = z^{2} dn c$$

 $z = \sqrt{n^{2}+1}$ et $dn \in y = n + \sqrt{n^{2}+1} \in \mathbb{R}^{*}$ et $h = \frac{y^{2}-1}{2y}$

d'où
$$n = \frac{y^2-1}{2y}$$
 et $z = y-n = y-\frac{y^2-1}{2y} = \frac{y^2+1}{2y}$
D'auta part $y = g(n) \in g([0,+\infty[)] = [1,+\infty[)$
 $(n \ge 0)$

cqs, synthise: Si
$$(n/2)$$
 solution du problème, along

il exist $y \in \mathbb{R}$, $[1,+\infty[$ tel que $n=\frac{3^2-1}{27}$ et $z=\frac{y^2+1}{2y}$

Réciprogrement, soit
$$y \in \mathbb{Q} \cap [1, +\infty[$$
, $n = \frac{y^2-1}{2y}$ et $z = \frac{y^2+1}{2y}$ along $n \in \mathbb{Q}^+$, $z \in \mathbb{Q}^+$ et $n^2+1 = \frac{y^4+2y^2+1}{4y^2} = z^2$

$$d';$$
 $\mathcal{Y}=\left\{\left(\frac{y^2-1}{2y},\frac{y^2+1}{2y}\right),y\in\mathbb{Q}n\left[1,+\infty\right[\right\}$

5)
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

Enc (n/2) bolishin de pos (=)
$$\frac{2}{3}$$
 $\frac{2}{3}$ $\frac{2}$

 $d': \int_{a} = \left\{ \left(a \frac{y^{2}-1}{2y}, a \frac{y^{2}+1}{2y} \right), y \in \Re n \left[1, +a \right] \right\}$

Pyton; voir page (13)

2°) Les solutions de α type 5n? : [n, o, n] et (o, n, n)

3) a) si pr (p²-q²) + 1, il existerait un nombre premier d tel que SIp et SIP-gi Lo S/p/p2 donc S/p2 2', \(S/p2-(p2-92)=92

Comme 8 premier (avec Gavss) S/q2 => S/q. h a donc Sjø et sjø; absunde en prø=1.

c95: pr/p-97=1. a fait parcil pour pr/p2+91)=1 Prq=1, pon Govs,, qly, soit ∃ 52 € 22 7, = 972

On an dédist que y=pqy2 et 2 Ez donc pq 1 y 4) Si d=1 alop c'est évident, Norm d>2; évivon, la décomposition de d'i d=pi--ph où pi, "> Ph rount des nombre, premiers distincts et s, EN*. $\forall i \in [1,h], \underline{Z=p_i^2 + i}$ avec $n \in \mathbb{N}$ of $p_i \wedge \overline{Z}_i^2 = 1$ $Z^2 = p_i^2 + i^2, \quad |z| = 2$ Comme 9: 12:=1, par Galss, p: /p: 101/25/27 drc 030; cgs Z=p]...ph et nizoi d'i Z = d x p1 - 11 ph dac | à | 2 € 7ℓ Voir page 14 une solution + simple! 5 a) si dln et dlz almi d' z-n=y amedly d'ot al net ally donc del con my=1 cgs', n, 7=1, on fait paneil pon y, 2=1

```
d': ner y n'ent per m parité
```

() Dapris le II 5 avec "y=a", 3u $\in \mathbb{Q}^*$ \ $n = y \frac{n^2 - 1}{2N}$ et $2 = y \frac{n^2 + 1}{2N}$

 $iu = \frac{\rho}{q}$ aver $(p,q) \in (N^*)^2$ et p,q = 1 donc $n = y \frac{p^2 - q^2}{2pq}$ et $z = y \frac{p^2 + q^2}{2pq}$

Comme $a \in \mathbb{N}$, $pq | y(p^2-q^2)$ et =ver le II3 a) $p^2-q^2 \wedge pq = 1$, lonc pour Gavss pq | y. On a

duc y = kpq over $k \in \mathbb{N}^+$ d'ot

 $n = \frac{k}{2}(p^2 - q^2)$ y = kpq of $z = \frac{k}{2}(p^2 + q^2)$

p et q ne pervent être paris tous le 2 (png=1/ * Si p et q ent une parité d'éférentse, p²-g² est Impain d'iv comme ne N, 21h : h=2d duc n=2 (p²-g²), y=2d pg et 2: 2(p²+g²/

Comme My=1, d=1 et dac ;

n=p^-ql, y=2pg, z=p+q², pq=1 et p>q (n>0)

(11)

3i p et q sont impaine tou le 2, comme y

est pain, on a k=2d et not 2 pain; abjud en n=1Réciposyrement, si $\alpha=p^2-q^2$, y=2pq, $z=p^2+q^2$, $\binom{p,q}{p,q}=1$ et p>qalons $(n,y,z)\in(N^n)^3$, $n^2+y^2=p^4+2p^2q^2+q^6=2^2$, y=pain, n impair, n,y=n,z=y,z ever l III 3 b. Lonc on and l,

P'vier compand our 2 can; a pointingair & y impair/pair $\{f'\}$ Soit $(n, y, z) \in \mathbb{N}^3$ Solution de (F) are $nyz \neq 0$ Poson) $d = n_n y$, $d^2 | z^2 \rangle$ done $d | z \rangle d^2 o z^2$ $\left(\frac{\pi}{d}, \frac{\pi}{d}, \frac{z}{d}\right) \in \mathbb{N}^3$, solution de (F) et $\frac{m}{d}$ $\frac{\pi}{d} = 1$ on $\frac{\pi}{d}$ done name f av can pricedont $d \in F$ or conclut:

$$\begin{array}{c|c}
\mathcal{C} & \mathcal{C} &$$

$$\pi \tilde{J}$$
 Pove $d=1$, $p=8$ et $q=3$, $m=4$
 $m=55$, $y=48$ et $z=73$

8) (risiné) on montre que $n^2+y^4=z^2$ n'a avance solvtion non triviale ($ny \neq \pm 0$).

Comme av Justus in suppose $n_n y = n_n \pm = y_n \pm = 1$ et en suppose \pm minimal ($d_n \in \pm \geq 2$).

Avec $(l_n f') = n^2 = p^2 - q^2 = l_p q = 1 \pm p^2 + q^2$ Find $n = n^2 - \delta^2$, $q = 2r\delta$ et $p = n^2 + \delta^2$, $(2n\delta = 1)$.

Anc $y^2 = 4n\delta(2^2 + \delta^2)$ et en mintre $n_n \delta = n_n \delta^2 + n^2$ Fonc $n = a^2$, $\delta = b^2$, $n^2 + \delta^2 = c^2$ $= \delta n \delta^2 + n^2 = 1$ $= a^2$, $\delta = b^2$, $\delta = c^2$ $= \delta n \delta^2 + n^2 = 1$

```
III.1 (suite) Voici l'algorithme :
```

```
(3)
```

donc
$$\frac{z^2}{J^2} = \left(\frac{z}{J}\right)^2 = q \in \mathbb{N}$$

$$\frac{z}{d} = \frac{a}{b}$$
 avec $\begin{cases} a, b \in \mathbb{N} \\ a, b = 1 \end{cases}$, $dance$

$$\left(\frac{a}{b}\right)^2 = q \implies a^2 = qb^2$$

$$\Rightarrow b \mid a^2 = qb^2$$

donc
$$b=1$$
 et $\frac{z}{d}=a\in IV$

€,