SPE MP · · · · · 2025-2026

PROGRAMME DE COLLE 3

1 UN EXERCICE SUR LE DÉNOMBREMENT

2. COURS & EXERCICES SUR LES SUITES DE IR et C

Suites de IR et C

- * Convergence-Divergence vers $\pm \infty$.
- * Théorèmes Généraux : somme-produit-quotient de suites convergentes, valeur absolue.............
- \bullet * Critère séquentiel pour la limite et pour la continuité de f:

f converge vers ℓ en a <u>SSI</u> toute suite (u_n) qui converge vers a vérifie $(f(u_n))$ converge vers ℓ (valable avec $\ell \in \overline{\mathbb{R}}$).

- * Sommes de Riemann (admis).
- * Suites de ZZ.
- * Densité et suites de \mathbb{Q} .
- * Théorème de Cesàro : (HPTS mais à savoir démontrer)

Si (u_n) converge vers $\ell \in \overline{\mathbb{R}}$ alors (v_n) définie par $v_n = \frac{u_1 + \cdots + u_n}{n}$ converge aussi vers ℓ .

- * Théorème de la limite monotone.
- * Suite adjacentes. Segments emboités.
- * Théorème d'encadrement.
- * Définition des valeurs d'adhérence d'une suite, Caractérisations :
- i) $\forall \varepsilon > 0 : \{ n \in \mathbb{N} \text{ tel que } |u_n \lambda| \leq \varepsilon \} \text{ est infini.}$
- ii) $\forall \varepsilon > 0$, $\forall N \in \mathbb{N}$, $\exists \geq N$ tel que $|u_n \lambda| \leq \varepsilon$
- * **Théorème**: Si (u_n) converge vers ℓ alors toute suite extraite converge aussi vers ℓ .
- * Théorème de Bolzano-Weierstrass (l'une des démonstrations au choix de l'étudiant doit être parfaitement sue)
- * Critères séquentiels :
- o Si $f: I \longrightarrow \mathbb{R}$, si $a \in \overline{\mathbb{R}}$ (aux bords de I, I étant un intervalle), si $\ell \in \overline{\mathbb{R}}$ et si $\lim_{x \to a} f(x) = \ell$, alors pour toutes suites (u_n) de I telle que $\lim_{n \to +\infty} u_n = a$ alors $\lim_{n \to \infty} f(u_n) = \ell$, ainsi que la réciproque. Les étudiants doivent être capable de faire les 9 cas selon a et ℓ réel ou ±∞.
- * Comparaisons des suites : O; o (ou <<); \sim
- * Croissances comparées (+les démonstrations) :

$$\begin{array}{l} (\ln n)^a = o(n^b) \ , \ n^b = o(q^n) \ , \ q^n = o(n!) \ \text{avec} \ a,b > 0 \ \text{et} \ q > 1 \\ \frac{1}{n!} = o(\frac{1}{q^n}) \ \frac{1}{q^n} = o(\frac{1}{n^b}) \ \frac{1}{n^b} = o(\frac{1}{(\ln n)^a}) \ , \ , \ \text{avec} \ a,b > 0 \ \text{et} \ 0 < q < 1 \end{array}$$

- * Formule de Stirling (admise provisoirement)
- * Suites récurrentes : Bien insister sur la stabilité d'un intervalle (pour la bornitude, la monotonie...). Limites possibles. Tracé sur le graphe de f des valeurs de la suite (escalier ou escargot).
- * <u>Suites complexes</u> : Intervention de la partie réelle, imaginaire, du module et de l'argument. Repasse du chapitre : valeur d'adhérence- **BW** (Bien savoir le démontrer) O,o,~...
- * Suites récurrentes linéaires d'ordre 2 : $u_{n+2} = au_{n+1} + bu_n$.

Prévisions : Fonctions de la variable réelle et DL.