I. Quelques résultats utiles

I.A. Propriétés générales de la loi *

1. Soit $f \in \mathbb{A}$. Soit $n \in \mathbb{N}$. On a:

$$(f * \delta)(n) = f(n)\delta\left(\frac{n}{n}\right) + \sum_{d|n, d \neq n} f(d)\delta\left(\frac{n}{d}\right) = 1f(n) + 0 = f(n)$$

Ainsi
$$f * \delta = f$$
 et $f = \delta * f$ car $(\delta * f)(n) = \delta(1)f(\frac{n}{1}) + \sum_{d|n,d\neq 1} \delta(d)f(\frac{n}{d}) = f(n)$

d'où $\overline{\delta}$ est un élément neutre pour la loi * sur $\mathbb A$

2. Soit $n \in \mathbb{N}^*$. L'application $C_n \longrightarrow \{d \in \mathbb{N} \mid d \mid n\}$ est bien définie

ainsi on a bien $f(f * g)(n) = \sum_{n} f(d)g\left(\frac{n}{d}\right) = \sum_{n} f(d_1)g(d_2)$

3. Soit $f, g \in \mathbb{A}$. Soit $n \in \mathbb{N}^*$

L'application $C_n \longrightarrow C_n \longrightarrow (d_1, d_2) \longmapsto (d_2, d_1)$ est bijective de bijection réciproque elle-même. Ainsi

$$(f * g)(n) = \sum_{(d_1, d_2) \in \mathcal{C}_n} f(d_1)g(d_2) = \sum_{(d_2, d_1) \in \mathcal{C}_n} g(d_2)f(d_1) = (g * f)(n)$$

d'où f * g = g * f et |* est commutative

4. Soit $f, g, h \in \mathbb{A}$. Soit $n \in \mathbb{N}^*$. On a, en utilisant la bijection : $(d_1, d_2, d_3) \in \mathcal{C}'_n \mapsto (d_1, d_1 d_2) \in \{(e, d) \mid d \mid n \text{ et } e \mid d\}$

$$\left[\left(f\ast g\right)\ast h\right]\left(n\right) = \sum_{d\mid n}\left(\sum_{e\mid d}f(e)g\left(\frac{d}{e}\right)\right)h\left(\frac{n}{d}\right) = \sum_{d\mid n,e\mid d}f(e)g\left(\frac{d}{e}\right)h\left(\frac{n}{d}\right) = \sum_{(d_1,d_2,d_3)\in\mathcal{C}_n'}f(d_1)g(d_2)h(d_3)$$

Puis de manière analogue, on obtient : $\sum_{(d_1,d_2,d_3)\in\mathcal{C}'_-} f(d_1)g(d_2)h(d_3) = [f*(g*h)](n)$

d'où (f * g) * h = f * (g * h) et ainsi |* est associative

5. On sait que $(\mathbb{A}, +)$ est un groupe commutatif car pour tout ensemble $X \neq \emptyset$, $(\mathbb{C}^X, +\cdot)$ est un \mathbb{C} espace vectoriel. De plus, * est commutative (3), associative (4) et admet un élément neutre (1).

Soit $f, g, h \in \mathbb{A}$. Soit $n \in \mathbb{N}^*$. On a:

$$[(f+g)*h](n) = \sum_{d|n} (f(d)+g(d)) h\left(\frac{n}{d}\right) = \sum_{d|n} f(d) h\left(\frac{n}{d}\right) + \sum_{d|n} f(d) h\left(\frac{n}{d}\right) = [(f*h)+(f*g)](n)$$

Donc (f+g)*h=(f*h)+(g*h) et h*(f+g)=(h*f)+(f*g) car * commutative. On peut dire que $(\mathbb{A},+,*)$ est un anneau commutatif

I.B. Groupe des fonctions multiplicatives

6. On suppose que $\forall p \in \mathcal{P}, \ \forall k \in \mathbb{N}^*, \ f(p^k) = g(p^k)$. Soit $n \in \mathbb{N}^*$.

Si n = 1, on a $1 \land 1 = 1$ donc $f(1) = f(1^2) = f(1)^2$ or $f(1) \neq 0$ donc f(1) = 1 = g(1) (analogue)

Si n > 2, on écrit la décomposition en facteurs premiers :

$$n = \prod_{i=1}^{r} p_i^{\alpha_i}$$
 avec $r \in \mathbb{N}^*$, les $p_i \in \mathcal{P}$ (distincts deux à deux) et les $\alpha_i \in \mathbb{N}^*$

Par récurrence immédiate, on a $\forall k \in [\![1,r]\!], \ f\left(\prod_{i=1}^k p_i^{\alpha_i}\right) = \prod_{i=1}^k f\left(p_i^{\alpha_i}\right)$

Puis en utilisant l'hypothèse $f(n) = \prod_{i=1}^r f(p_i^{\alpha_i}) = \prod_{i=1}^r g(p_i^{\alpha_i}) = g(n)$ de façon analogue

En conclusion f = g

7. bien définie : Soit $(d_1, d_2) \in \mathcal{D}_n \times \mathcal{D}_m$.

On peut écrire $n = d_1q_1$ et $m = d_2q_2$ avec $q_1, q_2 \in \mathbb{N}^*$

donc $nm = (d_1d_2)(q_1q_2)$

d'où $d_1d_2 \mid nm$ et ainsi $d_1d_2 \in \mathcal{D}_{mn}$

donc π est bien définie.

injective: Soit (d_1, d_2) et $(e_1, e_2) \in \mathcal{D}_n \times \mathcal{D}_m$ tels que $\pi(d_1, d_2) = \pi(e_1, e_2)$

On a $d_1d_2 = e_1e_2$ ainsi $e_1 \mid d_1d_2$

Comme $n \wedge m = 1$, donc n et m n'ont aucun facteurs premiers en commun

comme $e_1 \mid n$ et $d_2 \mid m$, alors e_1 et d_2 n'ont aucun facteurs premiers en commun

donc $e_1 \wedge d_2 = 1$. Ainsi avec le théorème de Gauss, $e_1 \mid d_1$

et de façon analogue $d_1 \mid e_1$

comme $d_1 \in \mathbb{N}$ et $e_1 \in \mathbb{N}$, on a $e_1 = d_1$

puis on obtient $(d_1, d_2) = (e_1, e_2)$

Ce qui prouve l'injectivité de π

surjective : Soit $d \in \mathcal{D}_{mn}$.

On écrit les décompositions en facteurs premiers de n et m : $n = \prod_{i=1}^r p_i^{\alpha_i}$ et $m = \prod_{i=1}^s q_i^{\beta_i}$

Comme $n \wedge m = 1$, les p_i sont distincts des q_i et on peut écrire

$$d = \left(\prod_{i=1}^r p_i^{\alpha_i'}\right) \left(\prod_{i=1}^s q_i^{\beta_i'}\right) \text{ avec } 0 \leqslant \alpha_i' \leqslant \alpha_i \text{ et } 0 \leqslant \beta_i' \leqslant \beta_i$$

Onpose $d_1 = \prod_{i=1}^r p_i^{\alpha_i'}$ et $d_2 = \prod_{i=1}^s q_i^{\beta_i'}$ de sorte que $d = d_1 d_2$, $d_1 \mid n$ et $d_2 \mid m$

d'où $(d_1, d_2) \in \mathcal{D}_n \times \mathcal{D}_m$ et $\pi(d_1, d_2) = d$

Ce qui prouve la surjectivité de π

En conclusion π est bien définie et réalise une bijection entre $\mathcal{D}_n \times \mathcal{D}_m$ et \mathcal{D}_{mn}

8. On suppose que f et g sont deux fonctions multiplicatives. Alors f(1) = 1 = g(1) d'après 6 d'où

$$(f * g)(1) = \sum_{d|1} f(d)g\left(\frac{1}{d}\right) = f(1)g(1) = 1 \neq 0$$

Soit $n, m \in \mathbb{N}^*$ tel que $n \wedge m = 1$. En utilisant la bijectivité de π de 7 :

$$(f * g)(nm) = \sum_{d \in \mathcal{D}_{mn}} f(d)g\left(\frac{nm}{d}\right) = \sum_{(d_1, d_2) \in \mathcal{D}_n \times \mathcal{D}_m} f(d_1d_2)g\left(\frac{nm}{d_1d_2}\right)$$

En regardant les facteurs premiers on voit que pour $(d_1, d_2) \in \mathcal{D}_n \times \mathcal{D}_m$, on a $d_1 \wedge d_2 = 1 = \frac{n}{d_1} \wedge \frac{m}{d_2}$ donc

$$(f*g)(nm) = \sum_{(d_1,d_2) \in \mathcal{D}_n \times \mathcal{D}_m} f(d_1)f(d_2)g\left(\frac{n}{d_1}\right)g\left(\frac{m}{d_2}\right) = \sum_{d_1 \in \mathcal{D}_n} f(d_1)g\left(\frac{n}{d_1}\right) \sum_{d_2 \in \mathcal{D}_m} f(d_2)g\left(\frac{m}{d_2}\right)$$

donc (f * g)(nm) = (f * g)(n)(f * g)(m) et ainsi f * g est encore multiplicative

9. On veut juste l'existence de g mais pour rechercher g, On traite cela par analyse synthèse.

Analyse: Soit $g \in \mathbb{M}$ convenant.

Ainsi selon 6, on a g(1) = 1.

Puis pour $p \in \mathcal{P}$ par récurrence sur $k \in \mathbb{N}^*$, les $g(p^k)$ sont définis par

$$g(p^0) = 1$$
 et la relation $\forall k \in \mathbb{N}^*, \ g(p^k) = -\sum_{i=1}^k f(p^i)g(p^{k-i})$

Ainsi g est définie sur $P_P = \{ p^k \mid k \in \mathbb{N} \text{ et } p \in \mathcal{P} \}$

Enfin pour $n \in \mathbb{N}^* \setminus P_P$, on écrit sa décomposition en facteurs premiers $n = \prod_{i=1}^r p_i^{\alpha_i}$ et nécessairement

$$g(n) = \prod_{i=1}^{r} g(p_i^{\alpha_i}) \quad (*)$$

car les $p_i^{\alpha_i}$ sont premiers entre eux deux à deux.

Synthèse: Soit g défini par g(1) = 1 puis sur P_P par les relations de récurrence (pour chaque $p \in \mathcal{P}$) et enfin par la relation (*).

Par unicité de la décomposition en facteurs premiers, l'application g est ainsi bien définie et la formule (*) est valable pour $n \in P_P$. (Pour n = 1, on a r = 0 et pour $n \in P_P \setminus \{1\}$, on a r = 1).

Soit alors $n, m \in \mathbb{N}^*$ tels que $n \wedge m = 1$.

On écrit les décompositions en facteurs premiers de $n=\prod_{i=1}^r p_i^{\alpha_i}$ et $m=\prod_{i=1}^s q_i^{\beta_i}$. Comme $n\wedge m=1$, la

décomposition (à l'ordre près) de nm en produit de facteurs premiers est $nm = \left(\prod_{i=1}^r p_i^{\alpha_i}\right) \left(\prod_{i=1}^s q_i^{\beta_i}\right)$.

On a alors:

$$g(nm) = g\left[\left(\prod_{i=1}^r p_i^{\alpha_i}\right) \left(\prod_{i=1}^s q_i^{\beta_i}\right)\right] = \prod_{i=1}^r g\left(p_i^{\alpha_i}\right) \cdot \prod_{i=1}^s g\left(q_i^{\beta_i}\right) = g(n)g(m)$$

Conclusion: On a bien une fonction g multiplicative vérifiant $\forall k \in \mathbb{N}^*, \forall p \in \mathcal{P}, g(p^k) = -\sum_{i=1}^k f(p^i)g(p^{k-i})$

On remarque que l'unicité a été établie.

D'après l'énoncé et 8, les fonctions δ et f * g sont multiplicatives.

Soit $p \in \mathcal{P}$ et $k \in \mathbb{N}^*$. Pour montrer que $\delta = f * g$, il suffit d'établir que $\delta\left(p^k\right) = (f * g)\left(p^k\right)$, en utilisant 6. Comme on a $\mathcal{D}_{p^k} = \left\{p^i \mid i \in \llbracket 0, k \rrbracket\right\}$, on a

$$(f * g) \left(p^{k}\right) = \sum_{i=0}^{k} f\left(p^{i}\right) g\left(p^{k-i}\right) = f(1)g\left(p^{k}\right) + \sum_{i=1}^{k} f\left(p^{i}\right) g\left(p^{k-i}\right)$$

Par définition (*) de g et comme $k \in \mathbb{N}^*$, on a

$$(f*g)\left(p^{k}\right)=g\left(p^{k}\right)-g\left(p^{k}\right)=0=\delta\left(p^{k}\right)$$

Ce qui permet de conclure que : $f * g = \delta$

On remarque pour la suite qu'une fonction de \mathbb{M} est caractérisée par les valeurs prises sur $\{p^k \mid p \in \mathcal{P}, k \in \mathbb{N}^*\}$.

10. D'après 8, * induit une loi de composition interne sur M.

Avec 3, 4, 1, on voit que * est commutative, associative et admet pour neutre $\delta \in \mathbb{M}$.

De plus, on vient de voir que $\forall f \in \mathbb{M}, \ \exists g \in \mathbb{M}, \ f * g = \delta = g * f$ ce qui prouve tout élément de \mathbb{M} admet un symétrique pour * dans \mathbb{M} .

On peut conclure que $\boxed{(\mathbb{M},*)}$ est un groupe abélien

I.C. La fonction de Möbius

11. On a $\mu(1) = 1 \neq 0$.

Soit $n, m \in \mathbb{N}^*$ tels que $n \wedge m = 1$. Montrons $\mu(nm) = \mu(n)\mu(m)$.

Si n=1, alors on a bien $\mu(nm)=\mu(m)=\mu(n)\mu(m)$. Si m=1, c'est analogue.

Si n ou m n'est pas produit de nombres premiers distincts, alors il en est de même pour nm et on a $\mu(nm) = \mu(n)\mu(m)$.

Si n et m sont produits respectivement de r et s nombres premiers distincts.

Alors comme $n \wedge m = 1$ alors nm est le produit de r + s nombres premiers distincts

et on a $\mu(nm) = (-1)^{r+x} = (-1)^r(-1)^s = \mu(n)\mu(m)$

On a bien montré que μ est multiplicative

12. Pour établir que $\mu * \mathbf{1} = \delta$ il suffit d'établir que μ est le symétrique de $\mathbf{1}$ dans le groupe $(\mathbb{M}, *)$.

La relation établi en 9 détermine $g \in \mathbb{M}$ comme étant le symétrique de f.

Soit
$$p \in \mathcal{P}$$
 et $k \in \mathbb{N}^*$. Il suffit alors d'établir que $\mathbf{1}(p^k) = -\sum_{i=1}^k \mu(p^i)\mathbf{1}(p^{k-i})$ c'est à dire $1 + \sum_{i=1}^k \mu(p^i) = 0$

Comme $\mu(p) = -1$ et $\forall j \ge 2$, $\mu(j) = 0$, l'égalité est établie.

On a montré que $\mu * \mathbf{1} = \delta$

13. On a $\forall n \in \mathbb{N}^*$, $F(n) = \sum_{d|n} f(d) \mathbf{1}\left(\frac{n}{d}\right) = (f * \mathbf{1})(n)$.

Ainsi $F = f * \mathbf{1}$.

Comme * est commutative et que μ et 1 sont symétriques dans le groupe (M, *) d'après 12. On a

$$\mu * F = \mu * \mathbf{1} * f = \delta * f = f$$

donc pour tout $n \in \mathbb{N}^*$, $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$

14. On sait d'après le cours que $\varphi \in \mathbb{M}$ (admis aujourd'hui).

Soit $p \in \mathcal{P}$ et $k \in \mathbb{N}^*$. Il suffit de montrer que $\varphi(p^k) = \mu * I(p^k)$.

Soit $k \in \mathbb{N}^*$, comme p est premier, on a $\mathbb{N} \wedge p^k = 1$ si et seulement si $\mathbb{N} \wedge p = 1$, on compte alors les multiples de p entre 1 et p^k , d'où :

$$\varphi(p^k) = p^k - p^{k-1}$$

et

$$(\mu * \mathbf{I}) (p^k) = \sum_{i=0}^k \mu(p^i) \mathbf{I} \left(p^{k-i} \right) = \mu(1) \mathbf{I} \left(p^k \right) + \mu(p) \mathbf{I} \left(p^{k-1} \right) + 0 = p^k - p^{k-1}$$

ainsi on a bien $\varphi(p^k) = \mu * \mathbf{I}(p^k)$ ce qui permet de conclure que $\varphi = \mu * \mathbf{I}$

I.D. Déterminant de Smith

15. On note d'_{ij} respectivement n'_{ij} le terme général de $\mathbf{D}^{\!\top}$ respectivement $\mathbf{M}'\mathbf{D}^{\!\top}.$ On a

$$n'_{ij} = \sum_{k=1}^{n} m'_{ik} d'_{kj} = \sum_{k=1}^{n} m'_{ik} d_{jk} = \sum_{k|j,k|i} g(k) = \sum_{k|(i \wedge j)} g(k) = (g * \mathbf{1}) (i \wedge j)$$

or $g * \mathbf{1} = f * \mu * \mathbf{1} = f$ d'après 12 donc $n'_{ij} = f(i \wedge j) = m_{ij}$

d'où
$$M = M'D^{\top}$$

16. Pour $i, j \in [1, n]$, si $j \mid i$ alors $j \leq i$ donc si j > i, on a $d_{ij} = m'_{ij} = 0$. Ainsi les matrices D et M' sont triangulaires inférieures donc avec 15,

$$\det(\mathbf{M}) = \det\left(\mathbf{D}^{\top}\right) \det\left(\mathbf{M}'\right) = \left(\prod_{i=1}^{n} d_{ii}\right) \left(\prod_{i=1}^{n} m'_{ii}\right) = \left(\prod_{i=1}^{n} 1\right) \left(\prod_{i=1}^{n} g(i)\right)$$

Ainsi le déterminant de M vaut bien $det(M) = \prod_{k=1}^{n} g(k)$

I.E. Séries de Dirichlet

17. On suppose que $s > A_c(f) = \inf\{u \in \mathbb{R}, \text{ la série } \sum \frac{f(k)}{k^u} \text{ converge absolument}\}.$

La caractérisation de la borne inférieure, nous fournit t < s et $t \in \{u \in \mathbb{R}, \text{ la série } \sum \frac{f(k)}{k^u} \text{ converge absolument}\}$

Ainsi
$$\frac{f(k)}{k^s} \underset{k \to +\infty}{=} o\left(\frac{f(k)}{k^t}\right)$$
.

Par comparaison de séries à termes positifs, la série $\sum_{k>1} \frac{f(k)}{k^s}$ converge absolument.

Ainsi si $s > A_c(f)$, alors la série $\sum \frac{f(k)}{k^s}$ converge absolument

18. On suppose que pour tout $s > \max(A_c(f), A_c(g)), L_f(s) = L_g(s)$. On va procéder en plusieurs étapes.

étape 1 : On se ramène à la nullité d'une fonction arithmétique bornée.

On pose d = f - g et $R = 1 + \max(A_c(f), A_c(g))$

de sorte que R > $\max(A_c(f), A_c(g))$ et pour tout $s \ge R$, la série $\sum \frac{d(s)}{k^s}$ converge de somme nulle.

On remarque que $\forall t \geqslant 0$, $\sum_{k=1}^{+\infty} \frac{d(k)/k^{R}}{k^{t}} = 0$.

Onpose $h: k \longmapsto \frac{d(k)}{k^{\mathrm{R}}} = \frac{f(k) - g(k)}{k^{\mathrm{R}}}$ et il suffit d'établir que

$$\forall k \in \mathbb{N}^*, \ h(k) = 0$$

On va le faire par récurrence dans l'étape 3.

On remarque que la série $\sum h(k)$ converge absolument donc h tend vers 0 en $+\infty$ d'où h est bornée.

Ceci nous fournit M > 0 tel que $\forall k \in \mathbb{N}, |h(k)| \leq M$ et on rappelle que $\forall s \geq 0, L_h(s) = \sum_{k=1}^{+\infty} \frac{h(k)}{k^s} = 0.$

étape 2 : Un résultat asymptotique.

Pour $p \ge 1$, on pose $R_p : s \mapsto \sum_{k=p}^{+\infty} \frac{h(k)}{k^s}$

Pour s > 1 et $p \ge 2$, à l'aide d'une comparaison série/intégrale, on a existences des membres et l'inégalité :

$$|\mathbf{R}_p(s)| \leqslant \sum_{k=p}^{+\infty} \frac{\mathbf{M}}{k^s} \leqslant \int_{p-1}^{+\infty} \frac{\mathbf{M}}{t^s} dt$$

car $t \mapsto \frac{M}{t^s}$ est continue, positive, décroissante et intégrable sur $[1, +\infty[$

donc
$$|R_p(s)| \le \frac{M(p-1)^{1-s}}{s-1}$$
 et ainsi $R_p(s) = 0$ o $((p-1)^{-s})$.

On conclut que pour tout $p \in \mathbb{N}^*$, on a $R_{p+1}(s) = o\left(\frac{1}{p^s}\right)$ et donc

$$p^s \mathbf{R}_{p+1}(s) \xrightarrow[s \to +\infty]{} 0$$

étape 3 : On va procéder par récurrence forte.

Initialisation: On a $\forall s > 1$, $0 = L_h(s) = \frac{h(1)}{1^s} + R_2(s) = h(1) + 1^s R_2(s)$

À l'aide de la relation asymptotique, on a

$$0 = \mathcal{L}_h(s) \xrightarrow[s \to +\infty]{} h(1)$$

d'où h(1) = 0.

 $\underline{\text{H\'er\'edit\'e}:} \text{ Soit } p \in \mathbb{N}^* \text{ tel que } \forall k \in [\![1,p]\!], \ h(k) = 0. \text{ Montrons } h(p+1) = 0.$

On a
$$\forall s > 1$$
, $0 = L_h(s) = \frac{h(p+1)}{(p+1)^s} + R_{p+2}(s)$

À l'aide de la relation asymptotique, on trouve

$$0 = (p+1)^{s} L_{h}(s) = h(p+1) + R_{p+2}(s) \xrightarrow[s \to +\infty]{} h(p+1)$$

d'où h(p+1) = 0.

<u>Conclusion</u>: On a bien établi par récurrence que $\forall k \in \mathbb{N}^*, \ \frac{f(k) - g(k)}{k^{\mathbf{R}}} = 0.$

On peut alors conclure que f = g

19. Soit $s > \max(A_c(f), A_c(g))$.

Les séries $\sum_{p\geqslant 1} \frac{f(p)}{p^s}$ et $\sum_{k\geqslant 1} \frac{g(k)}{k^s}$ convergent absolument.

Soit $p \ge 1$. La série $\sum_{k\ge 1} \frac{|f(p)g(k)|}{k^s p^s}$ converge par linéarité, de somme : $\left(\sum_{k=1}^{+\infty} \frac{|g(k)|}{k^s}\right) \frac{|f(p)|}{p^s}$ (i)

Par linéarité la série $\sum_{p\geqslant 1}\left(\sum_{k=1}^{+\infty}\frac{|g(k)|}{k^s}\right)\frac{|f(p)|}{p^s}$ converge (ii)

Avec (i) et (ii), la famille $\left(\frac{f(p)g(k)}{(pk)^s}\right)_{(p,k)\in(\mathbb{N}^*)^2}$ est sommable

en menant un calcul analogue avec la famille sommable on trouve : $\sum_{(p,k)\in(\mathbb{N}^*)^2}\frac{f(p)g(k)}{(pk)^s}=\mathrm{L}_f(s)\mathrm{L}_g(s)$

De plus, avec les C_n introduits avant $2,(\mathbb{N}^*)^2 = \bigcup_{n=1}^{+\infty} C_n$ (union disjointe dénombrable)

Ainsi en effectuant une sommation par paquets on a (avec convergence absolue)

$$L_f(s)L_g(s) = \sum_{n=1}^{+\infty} \left(\sum_{(p,k)\in\mathcal{C}_n^2} \frac{f(p)g(k)}{(pk)^s} \right)$$

Soit $n \in \mathbb{N}$. On a :

$$\sum_{(p,k)\in\mathcal{C}_n^2}\frac{f(p)g(k)}{(pk)^s}=\sum_{d|n}\frac{f(d)g\left(n/d\right)}{n^s}=\frac{(f\ast g)(n)}{n^s}$$

donc $L_f(s)L_g(s) = \sum_{n=1}^{+\infty} \frac{(f*g)(n)}{n^s}$ avec convergence absolue

ainsi pour tout $s > \max(A_c(f), A_c(g))$, on a $L_f(s)L_g(s) = L_{f*g}(s)$ et aussi $s > A_c(f*g)$. On ne s'est pas servi du fait que f ou g étaient multiplicatives.

II. Matrices et endomorphismes de permutation

II.A. Similitude de deux matrices de permutation

20. On note $P_{\rho}P_{\rho'}=(q_{ij})$, $P_{\rho}=(p_{ij})$ et $P_{\rho'}=\left(p'_{ij}\right)$ Comme $p'_{kj}=0 \Leftrightarrow k\neq \sigma'(j)$, alors on a

$$q_{ij} = \sum_{k=1}^{n} p_{ik} p'_{kj} = p_{i\sigma'(j)} p'_{\sigma'(j)j} = p_{i\sigma'(j)}$$

donc

$$q_{ij} = 0 \Leftrightarrow i \neq \sigma\left(\sigma'(j)\right) \Leftrightarrow i \neq \sigma\sigma'(j) \text{ et } q_{(\sigma\sigma'(j))j} = 1$$

Ainsi $P_{\rho\rho'} = P_{\rho}P_{\rho'}$

En remarquant que $P_{\mathrm{Id}_n}=I_n$, on a donc $P_{\rho}P_{\rho^{-1}}=P_{\mathrm{Id}_n}=I_n$. Ainsi $P_{\rho}\in\mathrm{GL}_n(\mathbb{K})$ et $(P_{\rho})^{-1}=P_{\rho^{-1}}$.

On remarque que $\rho \in \mathfrak{S}_n \longmapsto \mathcal{P}_{\rho} \in \mathrm{GL}n(\mathbb{C})$ est un morphisme de groupes.

On suppose que σ et τ sont des permutations conjuguées dans \mathfrak{S}_n . Ceci nous fournit $\rho \in \mathfrak{S}_n$ tel que $\tau = \rho \sigma \rho^{-1}$. Ainsi $P_{\tau} = P_{\rho} P_{\sigma} P_{\rho^{-1}} = P_{\rho} P_{\sigma} P_{\rho}^{-1}$ et P_{σ} et P_{τ} sont semblables

21. Soit $k \in [1, 7]$. On va établir que $\rho \gamma_1(k) = \gamma_2 \rho(k)$.

Premier cas : on a $k \notin \{1, 3, 7\}$. Alors $\rho \gamma_1(k) = \rho(k)$

Comme $\rho(k) \notin \{2, 6, 4\}$ car ρ est injective, on a $\gamma_2 \rho(k) = \rho(k)$

Deuxième cas : on a k = 1. Alors $\rho \gamma_1(k) = \rho(3) = 6$

et
$$\gamma_2 \rho(1) = \gamma_2(2) = 6$$
.

Troisième cas : on a $k \in \{3,7\}$. Alors de manière analogue au cas précédent $\rho \gamma_1(k) = \gamma_2 \rho(k)$.

Ainsi on a montré $\rho \gamma_1 = \gamma_2 \rho$ et ainsi $\rho \gamma_1 \rho^{-1} = \gamma_2$

22. On considère $\gamma = \begin{pmatrix} a_1 & a_2 & \cdots & a_\ell \end{pmatrix}$ et $\gamma' = \begin{pmatrix} b_1 & b_2 & \cdots & b_\ell \end{pmatrix}$ deux cycles de \mathfrak{S}_n de même longueur $\ell \geqslant 2$. Il existe une bijection $\psi : \llbracket 1, n \rrbracket \setminus \{a_1, \dots, a_\ell\} \longrightarrow \llbracket 1, n \rrbracket \setminus \{b_1, \dots, b_\ell\}$ car ces ensembles ont pour même cardinal $n - \ell$. On définit alors ρ sur $\llbracket 1, n \rrbracket$ par

$$\forall x \in [1, n] \setminus \{a_1, \dots, a_\ell\}, \ \rho(x) = x \text{ et } \forall i \in [1, \ell], \ \rho(a_i) = b_i$$

On montre facilement que $\rho \in \mathfrak{S}_n$. Et de façon analogue à 21, on montre $\rho \gamma_1 \rho^{-1} = \gamma_2$

Ainsi dans \mathfrak{S}_n , deux cycles de même longueur sont conjugués

23. On peut remarquer deux cycles à supports disjoints commutent. Ainsi dans la décomposition d'une permutation en produit de cycle à supports disjoints, on peut regrouper les cycles par cycles de même longueurs. Soit $\sigma \in \mathfrak{S}_n$ et $\tau \in \mathfrak{S}_n$. On peux alors écrire (en gardant la notation multiplicative):

$$\sigma = \prod_{\ell=2}^{n} \left(\prod_{i=1}^{c_{\ell}(\sigma)} \gamma_i^{(\ell)} \right) \quad \text{et} \quad \tau = \prod_{\ell=2}^{n} \left(\prod_{i=1}^{c_{\ell}(\tau)} \beta_i^{(\ell)} \right)$$

où $\gamma_i^{(\ell)}$ et $\beta_i^{(\ell)}$ sont des cycles de longueur ℓ et avec la convention qu'un produit vide est Id_n .

 \Rightarrow : On suppose que σ et τ sont conjugués dans \mathfrak{S}_n . Ceci nous fournit $\rho \in \mathfrak{S}_n$ tel que $\rho \sigma \rho^{-1} = \tau$. Pour un cycle $\gamma = \begin{pmatrix} a_1 & a_2 & \cdots & a_\ell \end{pmatrix}$, on a $\rho \gamma \rho^{-1} = \begin{pmatrix} \rho(a_1) & \rho(a_2) & \cdots & \rho(a_\ell) \end{pmatrix}$. Par ailleurs, l'application $\theta \longmapsto \rho \theta \rho^{-1}$ est un automorphisme du groupe (\mathfrak{S}, \circ) . donc

$$\tau = \prod_{\ell=2}^{n} \left(\prod_{i=1}^{c_{\ell}(\sigma)} \rho \gamma_i^{(\ell)} \rho^{-1} \right)$$

où les $\rho \gamma_i^{(\ell)} \rho^{-1}$ sont des cycles de longueurs ℓ à supports disjoints car ρ est bijective. Ainsi

$$\forall \ell \in [2, n], \ c_{\ell}(\tau) = c_{\ell}(\sigma)$$

et

$$c_1(\sigma) = n - \sum_{\ell=2}^{n} c_{\ell}(\sigma) = n - \sum_{\ell=2}^{n} c_{\ell}(\tau) = c_1(\tau)$$

 \Leftarrow : On suppose que $\forall \ell \in [1, n], c_{\ell}(\sigma) = c_{\ell}(\tau)$.

On construit l'application $\rho: [\![1,n]\!] \longrightarrow [\![1,n]\!]$ qui envoie bijectivement le support de $\gamma_i^{(\ell)}$ sur le support de $\beta_i^{(\ell)}$ (pour $\ell \in [\![2,n]\!]$ et $i \in [\![1,c_\ell(\sigma)]\!]$) et $\{i \in [\![1,n]\!] \mid \sigma(i)=i\}$ sur $\{i \in [\![1,n]\!] \mid \tau(i)=i\}$.

Ceci est possible car on a deux recouvrements disjoints de $[\![1,n]\!]$ et chaque ensemble mis en correspondance sont équipotents (de même cardinal).

Ainsi construit, on a $\rho \in \mathfrak{S}_n$ et l'application $\theta \longmapsto \rho \theta \rho^{-1}$ est encore un automorphisme. De sorte que

$$\rho \gamma \rho^{-1} = \prod_{\ell=2}^{n} \left(\prod_{i=1}^{c_{\ell}(\sigma)} (\rho \gamma_i^{(\ell)} \rho^{-1}) \right) = \prod_{\ell=2}^{n} \left(\prod_{i=1}^{c_{\ell}(\tau)} \beta_i^{(\ell)} \right) = \tau$$

ainsi $\sigma \in \mathfrak{S}_n$ et $\tau \in \mathfrak{S}_n$ sont conjugués si et seulement si pour tout $\ell \in [1, n]$, $c_{\ell}(\sigma) = c_{\ell}(\tau)$

24. D'après la question 22, les cycles γ et $c = \begin{pmatrix} 1 & 2 & \cdots & \ell \end{pmatrix}$ sont conjugués car de même longueur. D'après la question 20, les matrices P_{γ} et $P_{c} = \Gamma_{\ell}$ sont semblables.

Ainsi le polynôme caractéristique étant un invariant de similitude, on a $\chi_{\gamma} = \chi_{\Gamma_{\ell}} = \det(XI_n - \Gamma_{\ell})$.

D'où en effectuant $L_1 \longleftarrow L_1 + X^{i-1}L_i$ pour i allant de 2 à ℓ :

$$\chi_{\gamma} = \begin{vmatrix} X & 0 & \dots & \dots & 0 & -1 \\ -1 & X & 0 & \dots & 0 & 0 \\ 0 & -1 & \ddots & & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 & \vdots \\ \vdots & & \ddots & -1 & X & 0 \\ 0 & \dots & \dots & 0 & -1 & X \end{vmatrix} = \begin{vmatrix} 0 & 0 & \dots & \dots & 0 & X^{\ell} - 1 \\ -1 & X & 0 & \dots & 0 & 0 \\ 0 & -1 & \ddots & & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 & \vdots \\ \vdots & & \ddots & -1 & X & 0 \\ 0 & \dots & \dots & 0 & -1 & X \end{vmatrix}$$

puis en développant par rapport la première ligne

$$\chi_{\gamma} = (-1)^{\ell-1} (\mathbf{X}^{\ell} - 1) \begin{vmatrix} -1 & \mathbf{X} & 0 & \dots & 0 \\ 0 & -1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & -1 & \mathbf{X} \\ 0 & \dots & \dots & 0 & -1 \end{vmatrix}_{[\ell-1]}$$

et en reconnaissant une matrice triangulaire $\chi_{\gamma}(X) = X^{\ell} - 1$

25. Soit $\sigma \in \mathfrak{S}_n$. On peut le décomposer en support de cycles à support disjoint $\sigma = \gamma_1 \cdots \gamma_p$ On note l_i la longueur de γ_i .

On définit pour i allant à 1 à p, le cycle de longueur $l_i: \gamma_i' = ((p_i+1) \quad (p_i+2) \quad \cdots \quad (p_i+l_i))$ où $p_i = \sum_{j=1}^{i-1} l_j$

puis le produit de cycles à supports disjoints $\tau = \gamma'_1 \cdots \gamma'_p \in \mathfrak{S}_n$.

Par construction, on a $\forall \ell \in [1, p], c_{\ell}(\tau) = c_{\ell}(\sigma)$.

D'après 23 et 20, P_{τ} et P_{σ} sont semblables donc ont même polynôme caractéristique.

Or par construction $P_{\tau} = \text{diag}\left(\Gamma_{l_1}, \dots, \Gamma_{l_p}, I_{c_1(\tau)}\right)$ (matrice diagonale par blocs) et donc

$$\chi_{\sigma} = \chi_{\tau} = \left(\prod_{i=1}^{p} \left(X^{l_i} - 1\right)\right) (X - 1)^{c_1(\tau)} = \prod_{\ell=1}^{n} (X^{\ell} - 1)^{c_{\ell}(\tau)}$$

On a bien montré que $\chi_{\sigma}(\mathbf{X}) = \prod_{\ell=1}^{n} (\mathbf{X}^{\ell} - 1)^{c_{\ell}(\sigma)}$

26. On suppose que P_{σ} et P_{τ} sont semblables ainsi $\prod_{\ell=1}^{n} (X^{\ell} - 1)^{c_{\ell}(\sigma)} = \chi_{\sigma}(X) = \chi_{\tau}(X) = \prod_{\ell=1}^{n} (X^{\ell} - 1)^{c_{\ell}(\tau)}$

Soit $q \in [1, n]$. Soit $\omega = \exp\left(\frac{2\pi \mathrm{i}}{q}\right) \in \mathbb{U}_q$.

Soit $\ell \in [1, n]$.

Le théorème de la division euclidienne nous fournit $(b,r) \in \mathbb{N}$ tels que $\ell = bq + r$ et $0 \leqslant r \leqslant q - 1$.

On a ainsi
$$\omega^{\ell} = \omega^{r} = \exp\left(\frac{r2\pi i}{q}\right) \operatorname{donc} \omega^{\ell} - 1 = 0 \Longleftrightarrow r = 0 \Longleftrightarrow q \mid \ell$$

De plus les racines de $X^{\ell} - 1$ sont au nombres de ℓ (les éléments de \mathbb{U}_{ℓ}), elles sont donc toutes simples. donc ω est racine de $X^{\ell} - 1$ si et seulement si $q \mid \ell$ et dans ce cas la multiplicité est 1

Ainsi la multiplicité de ω dans $\prod\limits_{\ell=1}^n (\mathbf{X}^\ell-1)^{c_\ell(\sigma)}$ est $\sum\limits_{\ell=1}^n c_\ell(\sigma)$

et il en est de même pour τ d'où $\sum_{\substack{\ell=1\\q|\ell}}^n c_\ell(\sigma) = \sum_{\substack{\ell=1\\q|\ell}}^n c_\ell(\tau)$

27. Pour établir la propriété (S), on traite la réciproque de la question 20.

On suppose que P_{σ} et P_{τ} sont semblables. Ainsi selon la question précédente, on a

$$\forall q \in [1, n], \ \sum_{\substack{\ell=1\\q|\ell}}^{n} c_{\ell}(\sigma) = \sum_{\substack{\ell=1\\q|\ell}}^{n} c_{\ell}(\tau)$$

On note $T_{\sigma}D = (x_1 \ x_2 \ \cdots \ x_n)$. Pour $q \in [1, n]$, on a

$$x_q = \sum_{j=1}^n c_j(\sigma) d_{jq} = \sum_{\substack{\ell=1\\q|\ell}}^n c_\ell(\sigma)$$

Par conséquent $T_{\sigma}D = T_{\tau}D$

Or la matrice D est inversible car det(D) = 1 selon 16.

donc $T_{\sigma} = T_{\tau}$ et ainsi σ et τ sont conjugués d'après la remarque qui suit 22.

On a bien établi la propriété (S)

II.B. Endomorphismes de permutation

28. Soit $u \in \mathcal{L}(E)$. On remarque que pour une base $\mathcal{B} = (e_1, \dots, e_n)$ de E et une permutation $\sigma \in \mathfrak{S}_n$, on a

$$\mathcal{M}_{\mathcal{B}}(u) = P_{\sigma} \Longleftrightarrow \forall j \in [1, n], \ u(e_j) = e_{\sigma(j)}$$

ainsi un endomorphisme est de permutation si et seulement il est représenté par une matrice de permutation

29. Il existe une base dans laquelle u est représentée par P_{σ} avec $\sigma \in \mathfrak{S}_n$. D'après 25, P_{σ} est semblable à une matrice diagonale par blocs dont les blocs sont des matrices de la forme Γ_{ℓ} ($\ell \geqslant 1$), où Γ_{ℓ} est définie ci-dessus si $\ell \geqslant 2$ et où $\Gamma_{\ell} = (1)$ si $\ell = 1$.

Ceci nous fournit une base \mathcal{B} , tel que $\mathcal{M}_{\mathcal{B}}(u) = \operatorname{diag}(\Gamma_{\ell_1}, \dots, \Gamma_{\ell_p})$ avec $\ell_1, \dots, \ell_p \in \mathbb{N}^*$.

De plus on a vu en II que pour tout $\ell \in \mathbb{N}^*$, la matrice Γ_{ℓ} a pour polynôme caractéristique $X^{\ell} - 1$ qui est scindé à racines simples dans $\mathbb{C}[X]$.

Ceci nous fournit $Q_1, \dots Q_p$ matrices inversibles tel que pour $i \in [1, p]$, $Q_i^{-1}\Gamma_{\ell_i}Q_i$ est diagonale.

En posant $Q = \operatorname{diag}(Q_1, \dots, Q_p) \in \mathcal{M}_n(\mathbb{C})$ et $Q' = \operatorname{diag}(Q_1^{-1}, \dots, Q_p^{-1})$,

par calculs par blocs, on a : QQ' = I_n et Q' $\mathcal{M}_{\mathcal{B}}(u)$ Q diagonale.

Donc $\mathcal{M}_{\mathcal{B}}(u)$ est diagonalisable et il en est de même pour u.

Pour $i\in [\![1,p]\!]$, on a Tr $(\Gamma_{\ell_i})=0$ si $\ell_i\geqslant 2$ et Tr $(\Gamma_{\ell_i})=1$ si $\ell_i=1$

Comme $\operatorname{Tr}(u) = \operatorname{Tr}\left(\operatorname{diag}(\Gamma_{\ell_1}, \dots, \Gamma_{\ell_p})\right) = \sum_{i=1}^p \operatorname{Tr}\left(\Gamma_{\ell_i}\right) \in \llbracket 0, n \rrbracket$

On conclut que u est diagonalisable et que sa $Tr(u) = c_1(\sigma) \in [0, n]$

30. Si A et B sont semblables alors, elles ont le même polynôme caractéristique, d'après le cours.

Réciproquement on suppose que les matrices A et B diagonalisables ont même polynôme caractéristique.

A (respectivement B) est semblable à une matrice diagonale $D = diag(\lambda_1, \ldots, \lambda_n)$ (respectivement

 $D' = diag(\mu_1, \dots, mu_n)$) avec $\lambda_1, \dots, \lambda_n, \mu_1, \dots, mu_n \in \mathbb{C}$. Ainsi

$$\prod_{i=1}^{n} (X - \lambda_i) = \chi_{D} = \chi_{A} = \chi_{B} = \chi_{D'} = \prod_{i=1}^{n} (X - \mu_i)$$

Par unicité des racines et de leurs multiplicités dans un polynôme, il existe $\sigma \in \mathfrak{S}_n$ tel que $\forall i \in [1, n], \lambda_{\sigma(i)} = \mu_i$ On considère d, l'endomorphisme canoniquement associé à D et $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{C}^n de sorte que $\mathcal{M}_{\mathcal{B}}(d) = D$. On note $\mathcal{B}' = (e_{\sigma(1)}, \dots, e_{\sigma(n)})$ qui est une nouvelle base de \mathcal{B} .

On a $\mathcal{M}_{\mathcal{B}'}(d) = \operatorname{diag}\left(\lambda_{\sigma(1)}, \dots, \lambda_{\sigma(n)}\right) = D'$

donc D est semblable à D'

comme la similitude est une relation d'équivalence A est semblable à B

On a montré que A et B sont semblables si et seulement si elles ont même polynôme caractéristique

31. On a vu en 29 qu'un endomorphisme de permutation avait sa trace dans $[0, n] \subset \mathbb{N}$.

Réciproquement, on suppose que $Tr(u) \in \mathbb{N}$.

 $\overline{\text{Comme } u^2 = \text{Id}_{\text{E}}}$, u est une symétrie et alors $\text{E} = \text{E}_1(u) \bigoplus \text{E}_{-1}(u)$.

On note $n_1 = \dim(E_1(u))$ et $n_2 = \dim(E_{-1}(u))$.

En écrivant la matrice de u dans une base adaptée à $E_1(u) \bigoplus E_{-1}(u)$,

on voit que $Tr(u) = n_1 - n_2$ ainsi $n_1 \geqslant n_2$.

En réorganisant les vecteurs de cette base, on peut construire une nouvelle base $\mathcal B$ telle que

 $\mathcal{M}_{\mathcal{B}}(u) = \operatorname{diag}(A, \dots, A, I_{n_1 - n_2})$ matrice diagonale par blocs dans laquelle il y a n_1 occurrences de la matrice diagonale $A = \operatorname{diag}(1, -1)$.

Or la matrice A est semblable $R = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (matrice de réflexion)

Ceci nous fournit une nouvelle base \mathcal{B}' telle que $\mathcal{M}_{\mathcal{B}'}(u) = \operatorname{diag}(R, \dots, R, I_{n_1 - n_2})$

donc $\mathcal{M}_{\mathcal{B}'}(u) = P_{\sigma}$ où $\sigma = \gamma_1 \dots \gamma_{n_1}$ où $\gamma_i = ((2j-1) (2j)).$

d'où u est un endomorphisme de permutation.

On a montré que u est un endomorphisme de permutation si et seulement si $\mathrm{Tr}(u)$ est un entier naturel

 $32. \Rightarrow$: Le sens direct de la question précédente persiste selon la question 29.

 \Leftarrow et k=3: On suppose que $Tr(u) \in \mathbb{N}$ et $u^3 = Id_E$.

On traite ce cas de façon analogue au cas k=2.

Le polynôme \mathbf{X}^3-1 est annulateur de u donc u est diagonalisable et $\mathrm{Sp}(u)\subset\{1,\mathbf{j},\bar{\mathbf{j}}\}.$

On note $n_1 = \dim (\mathcal{E}_1(u))$ et $n_2 = \dim (\mathcal{E}_{\bar{\mathbf{j}}}(u))$ et $n_3 = \dim (\mathcal{E}_{\bar{\mathbf{j}}}(u))$.

On a alors $n_1 + n_2 \mathbf{j} + n_3 \overline{\mathbf{j}} \in \mathbb{N}$.

En regardant la partie imaginaire puis la partie réelle, on a $n_2 = n_3$ puis $n_1 \ge n_2$.

Ainsi la matrice de u dans une certaine base est diagonale par blocs avec des blocs de la forme diag $(1, j, \bar{j})$ ou $I_{n_1-n_2}$

Pour conclure comme ci-dessus, il suffit de montrer que diag $(1,j,\bar{j})$ est semblable à une matrice de permutation.

On considère $\sigma = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in \mathfrak{S}_3$ cycle de longueur 3.

On a $\chi_{\sigma} = X^3 - 1$ scindé à racines simples : 1, j, \bar{j}

donc \mathbf{P}_{σ} est diagonalisable donc semblable à diag $\left(1,\mathbf{j},\bar{\mathbf{j}}\right)$

ce qui permet de conclure comme ci-dessus que u est une matrice de permutation.

 \Leftarrow et k = 4: On suppose que $Tr(u) \in \mathbb{N}$ et $u^4 = Id_E$.

Si n=1, alors la matrice d'une homothétie de rapport $\lambda \in \mathbb{N}$ tel que $\lambda^4=1$ donc en $\lambda=1$ et toute matrice de u est (1) matrice de $\mathrm{Id}_{\{1\}} \in \mathfrak{S}_1$.

On se place dans le cas où $n \ge 2$.

On considère u dont la matrice dans une base de E est la matrice diagonale diag(i, -i, 1, ..., 1).

On a $u^4 = \mathrm{Id}_{\mathrm{E}}$ et $\mathrm{Tr}(u) = n - 2 \in \mathbb{N}$

Par l'absurde si u était un endomorphisme de permutation notée σ .

Alors avec 25, on a

$$(X - i)(X + i)(X - 1)^{n-2} = \chi_u(X) = \chi_\sigma(X) = \prod_{\ell=1}^n (X^{\ell} - 1)^{c_{\ell}(\sigma)}$$

Si $c_{\ell}(\sigma) \neq 0$, alors comme -1 n'est pas de $X^{\ell} - 1$, d ℓ est impair et donc i n'est pas racine de $X^{\ell} - 1$.

Il y a là une contradiction. Ainsi u n'est pas un endomorphisme de permutation.

Conclusions:

Si $u^3 = \text{Id}_E$ alors, u est un endomorphisme de permutation si et seulement si Tr(u) est un entier naturel

Si n = 1 et $u^4 = \text{Id}_E$ alors u est un endomorphisme de permutation si et seulement si Tr(u) est un entier naturel

mais si $n \ge 2$ il existe un endomorphisme u qui n'est pas de permutation tel que $u^4 = \mathrm{Id}_{\mathrm{E}}$ et $\mathrm{Tr}(u) \in \mathbb{N}$

Remarque : en temps limité, pour le cas k = 4, On se serait contenté du contre-exemple avec n = 2 ce qui est largement suffisant.

33. On suppose que u est un endomorphisme de permutation.

Alors u est représenté dans une certaines base par la matrice \mathcal{P}_{σ} avec $\sigma \in \mathfrak{S}_n$ et donc

$$\chi_u = \chi_\sigma = \prod_{\ell=1}^n \left(X^\ell - 1 \right)^{c_\ell(\sigma)}$$

Ainsi u vérifie la condition (a)

La groupe (\mathfrak{S}_n, \circ) est fini d'ordre n! donc σ est d'ordre fini N (on sait que N | n!)

donc
$$(P_{\sigma})^{N} = P_{\sigma^{N}} = I_{n}$$
 puis $u^{N} = d_{E}$

d'où u vérifie la condition (b)

Réciproquement on suppose que u vérifie les conditions (a) et (b)

Comme $X^N - 1$ est scindé à racines simples, u est diagonalisable.

On écrit
$$\chi_u = \prod_{\ell=1}^n (X^{\ell} - 1)^{c_{\ell}}$$
 avec $c_1, \dots, c_n \in \mathbb{N}$.

On peut alors trouver une base de vecteurs propres de u dans laquelle les matrice est diagonale par blocs de matrices diagonales tailles ℓ ($1 \le \ell \le n$) dont le polynôme caractéristique est $X^{\ell} - 1$.

Pour conclure , il suffit de montrer que pour $\ell \in \mathbb{N}^*$, la matrice diag $\left((\omega)_{\omega \in \mathbb{U}_{\ell}}\right)$ est semblable à une matrice de permutation (comme dans les questions précédentes)

On peut remarquer comme précédemment que tout cycle γ de longueur ℓ de \mathfrak{S}_{ℓ} convient.

En effet
$$P_{\gamma} \in \mathcal{M}_{\ell}(\mathbb{C})$$
 et $\chi_{\gamma}(X) = X^{\ell} - 1$.

ainsi u est un endomorphisme de permutation si et seulement s'il vérifie (a) et (b)

où (a) et (b) sont les deux conditions suivantes :

(a) il existe des entiers naturels c_1, \ldots, c_n tels que $\chi_u = \prod_{\ell=1}^n (X^{\ell} - 1)^{c_{\ell}}$.

- (b) il existe N tel que $u^{N} = Id_{E}$.
- 34. Comme χ_u et χ_v sont dans $\mathbb{C}[X]$, ces polynômes sont scindés d'après d'Alembert-Gauss.

Ainsi u et v sont trigonalisables.

On note $\operatorname{Sp}(u) \cup \operatorname{Sp}(v) = \{\lambda_1, \lambda_2, \dots, \lambda_p\}$

On note m_1, \ldots, m_p les multiplicités associées dans χ_u respectivement à $\lambda_1, \ldots, \lambda_p$.

On remarque que
$$\sum_{i=1}^{p} m_i = n$$
 et $\chi_u(X) = \prod_{i=1}^{p} (X - \lambda_i)^{m_i}$ et les $m_i \in \mathbb{N}$.

Alors u est représentable par une matrice triangulaire dans une base \mathcal{B} avec m_i occurrences de λ_i pour $i \in [1, p]$. Ainsi pour $k \in \mathbb{N}$, u^k est représentable par une matrice triangulaire dans une base \mathcal{B} avec m_i occurrences de

$$\lambda_i^k \text{ pour } i \in [1, p] \text{ donc } \forall k \in \mathbb{N}, \text{ Tr } (u^k) = \sum_{i=1}^p m_i \lambda_i^k.$$

Soit
$$j \in [1, p]$$
. On note $L_j = \prod_{\substack{i=1\\i\neq j}}^p \frac{X - \lambda_j}{\lambda_i - \lambda_j} = \sum_{k=0}^{p-1} a_k X^k$ où les $a_k \in \mathbb{C}$.

On a $\forall i \in [1, p]$, $L_i(\lambda_i) = \delta_{i,j}$ (symbole de Kronecker). Ainsi

$$\sum_{k=0}^{p-1} a_k \operatorname{Tr} \left(u^k \right) = \sum_{k=0}^{p-1} \left(\sum_{i=1}^p m_i \lambda_i^k \right) = \sum_{i=1}^p m_i \sum_{k=0}^{p-1} a_k \lambda_i^k = \sum_{i=1}^p m_i L_j(\lambda_i) = m_j$$

En notant pour $i \in [1, p]$, n_i la multiplicité de λ_i dans χ_v , on a de manière analogue

$$n_j = \sum_{k=0}^{p-1} a_k \operatorname{Tr}\left(v^k\right) = \sum_{k=0}^{p-1} a_k \operatorname{Tr}\left(u^k\right) = m_j$$

donc
$$\chi_u(X) = \prod_{i=1}^p (X - \lambda_i)^{m_i} = \prod_{i=1}^p (X - \lambda_i)^{n_i} = \chi_v(X)$$

d'où u et v ont même polynôme caractéristique

<u>Autre méthode</u>: On peut aussi le faire avec la matrice de Vandermonde de $\lambda_1, \ldots, \lambda_p$ et remarquer que $(m_1 - n_1, \ldots, m_p - n_p)$ est dans le noyau d'icelle.

C'est sans doute plus court.

35. \Rightarrow On suppose que u est un endomorphisme de permutation.

Alors u peut être représenter par une matrice diagonale par blocs dont les blocs diagonaux sont de la forme Γ_{ℓ} avec $\ell \in [1, n]$ selon 28 et 25.

Pour $\ell \in [1, n]$, On note c_{ℓ} le nombre d'occurrences du bloc $\Gamma_{\ell} = P_{\gamma}$ où $\gamma_{\ell} \in \mathfrak{S}_{\ell}$ est un cycle de longueur ℓ

Ainsi
$$\operatorname{Tr}(u^k) = \sum_{\ell=1}^n c_\ell \operatorname{Tr}\left(\Gamma_\ell^k\right)$$

Si $\ell \mid k$, alors comme $\Gamma_{\ell}^{k} = I_{\ell}$ et dans ce cas $\operatorname{Tr}\left(\Gamma_{\ell}^{k}\right) = \ell$.

Si $\ell \not| k$, alors Γ_{ℓ} a pour polynôme caractéristique $X^{\ell} - 1$ ainsi Γ_{ℓ} est semblable à diag $(1, \omega, \dots, \omega^{\ell-1})$ où

$$\omega = \exp\left(\frac{2\pi i}{\ell}\right)$$
. Comme $\omega^k \neq 1$, on a $\operatorname{Tr}\left(\Gamma_\ell^k\right) = \frac{1 - \left(\omega^k\right)^\ell}{1 - \omega^k} = 0$

donc
$$\operatorname{Tr}(u^k) = \sum_{\substack{\ell=1\\\ell \mid k}}^n \ell c_\ell$$
 où les $c_\ell \in \mathbb{N}$.

 \Leftarrow On suppose l'existence des entiers naturels c_1, \ldots, c_n tels que, pour tout $k \in \mathbb{N}$, $\operatorname{Tr}(u^k) = \sum_{\substack{\ell=1 \\ \ell \mid k}}^n \ell c_\ell$.

Pour
$$k = 0$$
, on trouve $n = \text{Tr}(\text{Id}_{\text{E}}) = \sum_{\substack{\ell=1 \ \ell \mid 0}}^{n} \ell c_{\ell} = \sum_{\ell=1}^{n} \ell c_{\ell}$

On peut alors considérer alors la matrice de permutation $A \in \mathcal{M}_n(\mathbb{C})$ diagonale par blocs dont les blocs diagonaux sont les Γ_ℓ (avec $\ell \in [1, n]$) avec une occurrence de c_ℓ .

On note B la matrice représentant u dans une base militaire.

Avec le travail fait dans le sens direct, on a

$$\forall k \in \mathbb{N}, \ \operatorname{Tr}(\mathbf{A}^k) = \sum_{\substack{\ell=1 \ \ell \mid k}}^n \ell c_\ell = \operatorname{Tr}\left(u^k\right) = \operatorname{Tr}\left(\mathbf{B}^k\right)$$

En utilisant 34 avec les endomorphismes canoniquement associés, A et B ont même polynôme caractéristique.

or A est diagonalisable car A est une matrice de permutation et B l'est car u l'est.

donc selon 30, A et B sont semblables

donc A représente u dans une nouvelle base.

ainsi u est une matrice de permutation.

En conclusion:

u est un endomorphisme de permutation si et seulement si $\exists c_1, \ldots, c_n \in \mathbb{N}, \forall k \in \mathbb{N}, \operatorname{Tr}(u^k) = \sum_{\substack{\ell=1 \ \ell \mid k}}^n \ell c_\ell$

III. Valeurs propres de la matrice de Redheffer

36. On note $C_n = (c_{ij})_{1 \leq i,j \leq n}$

Si
$$i = j = 1$$
: alors $c_{1,1} = \sum_{k=1}^{n} a_{1k} h_{k1} = \sum_{k=1}^{n} \mu(k) = M(n)$

Si
$$i > 1$$
 et $j = 1$: alors $c_{i,1} = \sum_{k=1}^{n} a_{ik} h_{k1} = 1 h_{i1} + 0 = 1$

Si
$$i > 1$$
 et $j > 1$: alors $c_{i,j} = \sum_{k=1}^{n} a_{ik} h_{kj} = 1 h_{ij} + 0 = h_{ij}$

donc $c_{i,j} = 1$ si et seulement si i|j et sinon $c_{i,j} = 0$

On remarque dans ce cas si i > j, $c_{i,j} = 0$ et que si i = j, alors $c_{i,j} = 1$.

Si i = 1 et j > 1: alors en utilisant la partie I et en particulier la question 12:

$$c_{1,j} = \sum_{k=1}^{n} a_{1k} h_{kj} = \sum_{k=1}^{n} \mu(k) h_{kj} = \sum_{k|j} \mu(k) \mathbf{1}(j/k) = \delta(j) = 0$$

La première ligne de la matrice C_n est $(M(n) \ 0 \ \cdots \ 0)$.

En développant le déterminant la matrice H_n selon cette ligne, on a det $(H_n) = M(n) \det(T)$ où $T = (c_{ij})_{2 \le i,j \le n} \in \mathcal{M}_{n-1}(\mathbb{C})$

À l'aide des calculs des coefficients de C_n , la matrice T est triangulaire supérieure avec 1 comme seuls coefficients diagonaux

ainsi
$$\det H_n = M(n)$$

37. On note
$$B_n(\lambda)(\lambda I_n - H_n) = (r_{ij})_{1 \leqslant i,j \leqslant n}$$
 de sorte que : $r_{i,j} = \sum_{k=1}^n b_{ik} (\delta_{k,j}\lambda - h_{kj}) = \lambda b_{ij} - \sum_{k=1}^n b_{ik} h_{kj}$.

Si
$$i = j = 1$$
: alors $r_{1,1} = \lambda b_{1,1} - \sum_{k=1}^{n} b_{1k} h_{k1} = \lambda \mathbf{b}(1) - \sum_{k=1}^{n} \mathbf{b}(k) h_{k1} = \lambda - \sum_{k=1}^{n} \mathbf{b}(k)$

Si
$$i > 1$$
 et $j = 1$: alors $r_{i,1} = \lambda b_{i1} - \sum_{k=1}^{n} b_{ik} h_{k1} = 0 - h_{i1} - 0 = -1$

Si
$$i > 1$$
 et $j > 1$ et $i \neq j$: alors $r_{i,j} = \lambda b_{ij} - \sum_{k=1}^{n} b_{ik} h_{kj} = \lambda \delta_{ij} - h_{ij} - 0 = \lambda \delta_{ij} - h_{ij} = -h_{ij}$

donc $r_{i,j} = -1$ si et seulement si i|j et sinon $r_{i,j} = 0$

On remarque dans ce cas si i > j, $r_{i,j} = 0$.

Si
$$i = j > 1$$
: $r_{i,i} = \lambda - h_{ii} = \lambda - 1$

Si
$$i = 1$$
 et $j > 1$: $r_{1,j} = \lambda \mathbf{b}(j) - \sum_{k=1}^{n} \mathbf{b}(k) h_{kj} = \frac{\lambda}{\lambda - 1} \sum_{d|j, d \neq j} \mathbf{b}(d) - \sum_{k|j, k \neq j} \mathbf{b}(k) - \mathbf{b}(j) = 0$

Ainsi en calculant le déterminant de la matrice $B_n(\lambda)(\lambda I_n - H_n)$, on a un calcul analogue à la question précédente, les coefficients diagonaux de la matrice triangulaire de taille n-1 devenant $\lambda-1$. Ainsi

$$\det (\mathbf{B}_n(\lambda)(\lambda \mathbf{I}_n - \mathbf{H}_n)) = \left(\lambda - \sum_{k=1}^n \mathbf{b}(k)\right) (\lambda - 1)^{n-1}$$

La matrice $B_n(\lambda)$ étant triangulaire, on a det $(B_n(\lambda)) = \mathbf{b}(1) \times 1^{n-1} = 1$ car $\mathbf{b}(1) = 1$

Ainsi :
$$\chi_n(\lambda) = 1 \det (\lambda I_n - H_n) = (\lambda - 1)^n - (\lambda - 1)^{n-1} \sum_{j=2}^n \mathbf{b}(j)$$

38. Soit $n \in \mathbb{N}^*$. On a :

$$(\mathbf{f} * \mathbf{b})(n) = \sum_{d|n} \mathbf{f}(d)\mathbf{b}(n/d) = (1+w)\sum_{d|n} \delta(d)\mathbf{b}(n/d) - w\sum_{d|n} \mathbf{1}(d)\mathbf{b}(n/d) = (1+w)\mathbf{b}(n) - w\sum_{d|n} \mathbf{b}(n/d)$$

Comme $d \in \mathcal{D}_n \mapsto \frac{n}{d} \in \mathcal{D}_n$ est une bijection de bijection réciproque elle même, on

$$(\mathbf{f} * \mathbf{b})(n) = (1+w)\mathbf{b}(n) - w\sum_{d|n} \mathbf{b}(d) = \mathbf{b}(n) - w\sum_{d|n, d \neq n} \mathbf{b}(d)$$

Si n = 1, alors on a $(\mathbf{f} * \mathbf{b})(1) = \mathbf{b}(1) - 0 = 1 = \delta(1)$.

Si
$$n \neq 1$$
, alors $n \geq 2$ et on a $(\mathbf{f} * \mathbf{b})(n) = \left(\frac{1}{\lambda - 1} - w\right) \sum_{d \mid n, d \neq n} \mathbf{b}(d) = 0$

On a bien établi que $\mathbf{f} * \mathbf{b} = \delta$

39. On a $\mathbf{f}(1) = (1+w)\delta(1) - w\mathbf{1}(1) = 1 = 1 + w - w$ et pour $n \ge 2$, on a $\mathbf{f}(n) = (1+w)\delta(n) - w\mathbf{1}(n) = -w$. Soit $s \in \mathbb{R}$. Comme \mathbf{f} est stationnaire de limite non nulle, on a

$$\sum_k \frac{\mathbf{f}(k)}{k^s}$$
 converge absolument si et seulement si $\sum_k \frac{1}{k^s}$ converge c'est à dire $s>1$

On trouve alors $\forall s > 1$, $L_{\mathbf{f}}(s) = 1 + w - wL_{\mathbf{1}}(s)$

40. Soit s > 1. On a $L_{\mathbf{f}}(s) = 1 - \sum_{k=2}^{+\infty} \frac{w}{k^s} = 1 - A(s)$ en ayant noté $A = L_{w(1-\delta)}$.

En reprenant le résultat asymptotique de Q18 (étape 2), on a $\lim_{s \to +\infty} A(s) = 0$.

Ce qui nous fournit R > 0 tel que $\forall s \ge$ R, $|\mathbf{A}(s)| < 1$.

Soit $s \geqslant R$. On a alors

$$\frac{1}{L_{\mathbf{f}}(s)} = \frac{1}{1 - A(s)} = \sum_{m=0}^{+\infty} A(s)^m \quad (**)$$

On suppose dans un premier temps que $\lambda > 1$ et donc que w > 0.

Montrons par récurrence sur $m \in \mathbb{N}^*$ que $\sum_{k \ge 2} w^m D_m(k) k^{-s}$ converge et que $A(s)^m = \sum_{k=2}^{+\infty} w^m D_m(k) k^{-s}$.

Initialisation : On remarque que $\forall k \geq 2$, $D_1(k) = 1$ et que

$$A(s)^1 = \sum_{k=2}^{+\infty} \frac{w}{k^s} = \sum_{k=2}^{+\infty} w^1 D_1(k) k^{-s}$$

et on a bien la convergence de $\sum_{k>2} w^1 D_1(k) k^{-s}$.

Hérédité : Soit $m \in \mathbb{N}^*$ tel que la propriété soit vraie.

Alors les séries $\sum_{p\geqslant 2} w^1 D_1(p) p^{-s}$ et $\sum_{q\geqslant 2} w^m D_m(q) q^{-s}$ convergent de sommes respectives A(s) et $A(s)^m$.

Pour $p \ge 2$, la série $\sum_{q \ge 2} w^{m+1} \mathrm{D}_1(p) \mathrm{D}_m(q) (pq)^{-s}$ converge de somme $\mathrm{A}(s)^m w^1 \mathrm{D}_1(p) p^{-s}$ par linéarité

Et par linéarité, la série $\sum_{p\geqslant 2} \mathbf{A}(s)^m w^1 \mathbf{D}_1(p) p^{-s}$ converge de somme $\mathbf{A}(s)^{m+1}$.

Comme la famille $(w^{m+1}D_1(p)D_m(q)(pq)^{-s})_{p,q\geq 2}$ est à terme positifs, cette famille est sommable de somme

$$\sum_{\substack{p \ge 2 \\ q \ge 2}} w^{m+1} D_1(p) D_m(q) (pq)^{-s} = A(s)^{m+1}$$

Pour $k \geqslant 2$, On note $I_k = \{(p,q) \in \mathbb{N}^2 \mid p,q \geqslant 2 \text{ et } pq = k \}$

de sorte que $\{(p,q) \in \mathbb{N}^2 \mid p,q \geqslant 2\} = \bigcup_{k=2}^{+\infty} I_k$ (union disjointe dénombrable)

Ainsi par théorème de sommation par paquets : on a

$$A(s)^{m+1} = \sum_{k=2}^{+\infty} \sum_{(p,q)\in I_k} w^{m+1} D_1(p) D_m(q) (pq)^{-s} = \sum_{k=2}^{+\infty} \sum_{(p,q)\in I_k} w^{m+1} D_1(p) D_m(q) k^{-s}$$

Pour décomposer un entier $k \ge 2$ en m+1 facteurs ≥ 2 , on commence par choisir un diviseur $p \ge 2$ et tel que $k/p \ge 2$. Puis on décompose k/p en m facteurs ≥ 2 . On obtient alors

$$D_{m+1}(k) = \sum_{\substack{p|k\\2 \le p \le k/2}} D_m(k/p) = \sum_{\substack{p|k\\2 \le p \le k/2}} D_1(p)D_m(k/p) = \sum_{(p,q) \in I_k} D_1(p)D_m(q)$$

donc $A(s)^{m+1} = \sum_{k=2}^{+\infty} w^{m+1} D_{m+1}(k) k^{-s}$ et on a bien la convergence de $\sum_{k \ge 2} w^{m+1} D_{m+1}(k) k^{-s}$

Conclusion: On a bien $\forall m \in \mathbb{N}^*$, $A(s)^m = \sum_{k=2}^{+\infty} w^m D_m(k) k^{-s}$

Ainsi selon (**), pour tout $s \ge R$, on a

$$\frac{1}{L_{\mathbf{f}}(s)} = 1 + \sum_{m=1}^{+\infty} \sum_{k=2}^{+\infty} k^{-s} w^m D_m(k) = 1 + \sum_{k=1}^{+\infty} \sum_{m=2}^{+\infty} m^{-s} w^k D_k(m) < +\infty$$

Comme $\forall k \geq 1, \forall m \geq 2, m^{-s}w^kD_k(m) \geq 0$, la famille est sommable et on peut donc appliquer Fubini :

$$\frac{1}{L_{\mathbf{f}}(s)} = 1 + \sum_{m=2}^{+\infty} \sum_{k=1}^{+\infty} m^{-s} w^k D_k(m) = 1 + \sum_{m=2}^{+\infty} m^{-s} \sum_{k=1}^{+\infty} w^k D_k(m)$$

Pour $m \ge 2$ et $k \in \mathbb{N}^*$, On remarque que si $m < 2^k$ alors $D_k(m) = 0$ or

$$2^k \leqslant m \iff k \leqslant \frac{\ln(m)}{\ln(2)} \iff k \leqslant \lfloor \log_2 m \rfloor$$

donc
$$\frac{1}{\mathbf{L_f}(s)} = 1 + \sum_{m=2}^{+\infty} m^{-s} \sum_{k=1}^{\lfloor \log_2 m \rfloor} w^k \mathbf{D}_k(m)$$

Dans le cas où $\lambda < 1$ et w < 0, on travaille avec $\lambda' = 2 - \lambda$ et $w' = \frac{1}{\lambda' - 1} = |w|$ pour établir les sommabilité des différentes familles doubles. Ensuite la sommabilité étant acquise, les calculs (sommation par paquets et Fubini) restent valables et on a bien, dans tous les cas :

pour s réel suffisamment grand,
$$\frac{1}{L_{\mathbf{f}}(s)} = 1 + \sum_{m=2}^{+\infty} m^{-s} \sum_{k=1}^{\lfloor \log_2 m \rfloor} w^k D_k(m)$$

(en fait le cas $\lambda > 1$ suffisait pour les questions suivantes).

41. On définit $\mathbf{c} \in \mathbb{A}$ par $\mathbf{c}(1) = 1$ et pour $m \ge 2$, $\mathbf{c}(m) = \sum_{k=1}^{\lfloor \log_2 m \rfloor} w^k D_k(m)$

De sorte que d'après la question précédente, pour s réel suffisamment grand, on a $\frac{1}{L_{\mathbf{f}}(s)} = L_{\mathbf{c}}(s)$.

En reprenant les notations du I.E et à l'aide de 19 (valable pour toute fonction <u>arithmétique</u>), on a $A_c(L_c) < +\infty$ et pour s assez grand

$$L_{\delta}(s) = 1 = L_{\mathbf{f}}(s)L_{\mathbf{c}}(s) = L_{\mathbf{f}*\mathbf{c}}(s)$$

Dans la question 18, on remarque que l'égalité ci-dessus pour s assez grand, suffit à obtenir l'égalité : $\delta = \mathbf{f} * \mathbf{c}$ donc comme l'anneau $(\mathbb{A}, +, *)$ est commutatif, \mathbf{f} est inversible d'inverse \mathbf{c} .

Or d'après 38, **f** est inversible d'inverse **b**.

Par unicité de l'inverse, on a donc

$$\forall m \geqslant 2, \ \mathbf{b}(m) = \sum_{k=1}^{\lfloor \log_2 m \rfloor} w^k D_k(m)$$

D'après 37, on a alors

$$\chi_n(\lambda) = (\lambda - 1)^n - (\lambda - 1)^{n-1} \sum_{m=2}^n \sum_{k=1}^{\lfloor \log_2 m \rfloor} w^k D_k(m) = (\lambda - 1)^n - (\lambda - 1)^{n-1} \sum_{m=2}^n \sum_{k=1}^{\lfloor \log_2 n \rfloor} w^k D_k(m)$$

dans le troisième membre, on a rajouté des 0. Or

$$\sum_{m=2}^{n} \sum_{k=1}^{\lfloor \log_2 n \rfloor} w^k D_k(m) = \sum_{k=1}^{\lfloor \log_2 n \rfloor} w^k \sum_{m=2}^{n} D_k(m) = \sum_{k=1}^{\lfloor \log_2 n \rfloor} (\lambda - 1)^{-k} \sum_{m=2}^{n} D_k(m)$$

donc
$$\chi_n(\lambda) = (\lambda - 1)^n - \sum_{k=1}^{\lfloor \log_2 n \rfloor} (\lambda - 1)^{n-k-1} S_k(n)$$

42. Comme deux polynômes qui coïncident sur une infinités de valeurs sont égaux, on a alors

$$\chi_n = (\mathbf{X} - 1)^n - \sum_{k=1}^{\lfloor \log_2 n \rfloor} (\mathbf{X} - 1)^{n-k-1} \mathbf{S}_k(n) = (\mathbf{X} - 1)^{n - \lfloor \log_2 n \rfloor - 1} \left[(\mathbf{X} - 1)^{\lfloor \log_2 n \rfloor + 1} - \sum_{k=1}^{\lfloor \log_2 n \rfloor} (\mathbf{X} - 1)^{\lfloor \log_2 n \rfloor - k} \mathbf{S}_k(n) \right]$$

On note Q(X) =
$$(X-1)^{\lfloor \log_2 n \rfloor + 1} - \sum_{k=1}^{\lfloor \log_2 n \rfloor} (X-1)^{\lfloor \log_2 n \rfloor - k} S_k(n)$$

De sorte que $\chi_n(X) = (X - 1)^{n - \lfloor \log_2 n \rfloor - 1} Q(X)$

et on a Q(1) = 0 -
$$\sum_{k=1}^{\lfloor \log_2 n \rfloor - 1} 0 - S_{\lfloor \log_2 n \rfloor}(n) = -S_{\lfloor \log_2 n \rfloor}(n)$$

Enfin
$$S_{\lfloor \log_2 n \rfloor}(n) = \sum_{m=2}^n D_{\lfloor \log_2 n \rfloor}(m)$$
 or $n \geqslant 2$ donc $2 \leqslant 2^{\lfloor \log_2 n \rfloor} \leqslant n$. Ainsi

$$S_{\lfloor \log_2 n \rfloor}(n) \geqslant 0 + D_{\lfloor \log_2 n \rfloor} \left(2^{\lfloor \log_2 n \rfloor} \right) = 1$$

donc $Q(1) \neq 0$ car $Q(1) \leqslant -1$

ainsi H_n possède 1 comme valeur propre de multiplicité est exactement $n - \lfloor \log_2 n \rfloor - 1$