SPE MP \cdots 2025-2026

PROGRAMME DE COLLE 9

Exercices: PROBAS - PROBAS - PROBAS!!!!

Cours (les 4 piliers de la réduction) :

ESPACES VECTORIELS - MATRICES - DÉTERMINANTS - (POLYNÔMES : fait en début d'année)

Espaces vectoriels

EV - SEV - K-algèbre. Notion de combinaisons linéaires d'une famille finie

Application linéaire - $\mathcal{L}(E, E')$ est un K-ev avec + et · et $\mathcal{L}(E)$ est une K-algèbre avec + et o et ·

Application bi-linéaire

Groupe linéaire : f est bijective SSI f est inversible dans l'anneau $\mathcal{L}(E)$

SEV - SEV engendré - Somme de 2 SEV - Somme directe - supplémentaire

Noyau Image structure (Sous-espace affine) de l'ensemble des x tels que f(x) = b.

Projecteurs - symétrie Caractérisation \bullet : Si $f \in \mathcal{L}(E)$ alors f est un projecteur $\underline{\mathbf{SSI}}\ f \circ f = f$.

Famille de projecteurs associée à une décomposition $E = \bigoplus_{i=1}^{p} E_i$

Familles libres/génératrices/bases.

Cas des familles libres de fonctions (exemple : $(f_a)_{a \in \mathbb{R}}$ est libre avec $f_a(x) = |x - a|$)

Famille et application linéaire : critère d'isomorphisme

Théorème fondamental : Définition d'une application linéaire à partir d'une base

Espace de dimensionfinie, de dimensioninfinie.

Théorème de la base incomplète- dimension - caractérisation des bases.

Théorème (démonstration non faite) : Toutes les bases ont même cardinal.

Tout sur le calcul du rang d'une famille de vecteurs : pivot de Gauss.

Dimensions des SEV - Dimension de $F \oplus G$ Dimensions (et base adaptée) des Sommes directes de p SEV

Théorème des 4 dimensions : dim $(F+G) = \dim F + \dim G - \dim F \cap G$.

Dimension (et base) d'un produits finis de K-ev de dimensionfinie.

Théorème fondamental : Si $\mathcal{B} = (e_1, ..., e_n)$ est un base de E et si

 $(v_1,...,v_n) \in (E')^n$ alors il existe une unique application linéaire f tel que pour tout i $f(e_i) = v_i$.

Théorème du rang. Conséquences

MATRICES

Matrice d'une application linéaire - d'un endomorphisme

Formules de changement de base : X = PX', $A = PDP^{-1}$ et $A = QDP^{-1}$

Matrice inversible. Les étudiants doivent savoir calculer l'inverse d'une matrice par la méthode du pivot.

Matrices équivalentes et leurs caractérisation avec la matrice J_r . Matrices semblables

• Trace d'une matrice, d'un endomorphisme Trace d'un projecteur : rg(p)

Opérations élémentaires (sur les lignes et les colonnes)

GROUPE SYMÉTRIQUE ET DÉTERMINANTS

Définition du groupe symétrique,

Théorème de décomposition en produit de cycles, de transposition.

Signature et groupe alterné.

Définition de forme n-linéaire alternée.

Théorème fondamental de structure des forme n-linéaire alternée en dimension n.

Définition du déterminant d'un famille de vecteurs dans une base, du déterminant d'une matrice et du déterminant d'un endomorphisme.

- Formule de changement de base.
- Théorème fondamental de la liberté.

Propriétés telle que det $f \circ g = \det f \det g...$

Calcul pratique fondé sur la méthode du pivot de Gauss (on fait apparaître des 0 et du développement selon une ligne ou une colonne).

Applications:

 \bullet Formules de Cramer pour un système de n équations à n inconnues.

Mineur - cofacteur - comatrice - formule fondamentale :

 \bullet $A \cdot \text{com}(A)^T = \text{com}(A)^T \cdot A = (\det A)I_n$ - expression de l'inverse d'une matrice

• Déterminants de Van der Monde (résultats et démonstration à connaitre)

Équation cartésiennes de sous-espace affine.

Caractérisation du rang avec les matrices extraites carrées (démo non faite).

Matrices par blocs - Déterminants par blocs.

matrice de transvections par bloc (multiplication à gauche ou à droite par une matrice transvections par bloc de la forme :

 $\begin{pmatrix} I_p & 0 \\ T & I_q \end{pmatrix}$ ou $\begin{pmatrix} I_p & T \\ 0 & I_q \end{pmatrix}$) pour faire apparaître des blocs de 0.

Prévisions : Réductions des endomorphismes et des matrices.