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DM 5
Électromagnétisme

Exercice 1 : Potentiel de Yukawa
On considère une distribution (D) de charges à symétrie sphérique autour d’un point O origine d’un repère
d’espace (Oxyz). En un point M tel que −−→

OM = ru⃗r, le potentiel électrostatique est donné par :

V (M) = V (r) = q

4πε0r
exp

(
−r

a

)
avec q et a des constantes.

Q.1 Donner les unités respectives de q et a.

Q.2 Étudier les symétries du champ électrostatique E⃗(M) et déterminer son expression en tout point de
l’espace différent de O.

Q.3 Donner des équivalents au champ E⃗ lorsque r ≪ a et r ≫ a.

Q.4 Calculer Q(r), charge électrique intérieure à une sphère de rayon r et de centre O. Calculer les limites
de Q(r) lorsque r ≪ a et r ≫ a. Que peut-on en déduire quant à la distribution de charge ?

Au vu des résultats précédents, on peut considérer qu’il existe une répartition de charge volumique de densité
ρ(r) à symétrie sphérique répartie dans l’espace (appelée charge diffuse) et une charge ponctuelle placée en
O.

Q.5 En considérant une petite coquille sphérique située entre les deux sphères de rayons r et r + dr avec
dr ≪ r, dont le volume est donné par dτ = 4πr2dr, déterminer la charge volumique ρ(r) à la distance
r.

Q.6 Quelle est la charge totale diffuse de la distribution (D) ? Pouvait-on le prévoir sans calcul ?

Exercice 2 : Espace entre deux plans
Le but de cet exercice est de comparer le champ électrostatique E⃗ et le champ magnétostatique B⃗ produits
respectivement par une distribution de charge ρ(M) et par une distribution de courant j⃗(M). Les deux
distributions sont uniformes et confinées à l’espace illimité dans les directions u⃗x et u⃗y et compris entre les
plans z = −a/2 et z = a/2. Dans cet espace, ρ = cste > 0 et j⃗ = ju⃗x avec j = cste > 0.

Q.1 On considère chacun des champs en un point M(x, y, z) quelconque (extérieur ou intérieur à la distri-
bution). À l’aide de considérations de symétries et d’invariances, établir la nature de la dépendance
et la direction de chaque champ par rapport aux coordonnées de M .

Q.2 En utilisant les symétries des champs électrostatique et magnétostatique, que dire de ces champs
dans le plan z = 0.

Q.3 En utilisant la propriété précédente, achever le calcul de ces champs dans la région z > 0 en appliquant
le théorème de Gauss à une surface bien choisie ou le théorème d’Ampère à un contour bien choisi.
On distinguera les expressions relatives à un point extérieur ou intérieur à la distribution.

Q.4 Reprendre le calcul pour z < 0 et décrire l’effet sur chacun des champs de la symétrie par rapport au
plan z = 0.

Q.5 Représenter graphiquement les variations des composantes non nulles de ces champs.
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On considère la limite des deux problèmes précédents lorsque a tend vers 0 d’une part, ρ et j vers l’infini
d’autre part de sorte que les quantités σ = aρ et js = aj restent finies.

Q.6 Décrire le modèle correspondant en précisant la signification de σ et j⃗s. Dans la région z > 0, donner
les expressions de chacun des champs en fonction exclusivement de σ ou de js ainsi que des vecteurs
unitaires.

Q.7 Montrer que la distribution de courant peut être considérée comme une distribution de charge en
mouvement de translation à la vitesse v⃗, on exprimera alors j⃗s en fonction de σ et v⃗.

Q.8 Quelle relation faisant intervenir la vitesse v⃗ ci-dessus lie les champs magnétique et électrique ?

Q.9 Montrer que ce modèle surfacique fait apparaître des discontinuités des champs électrostatique et
magnétostatique dont on donnera les expressions.

Exercice 3 : Mesure du champ magnétique terrestre
Données : rayon terrestre RT = 6400 km ; µ0 = 4π10−7 H · m−1.

On admet que le champ magnétique terrestre B⃗ est assimilable au champ magnétique créé par un dipôle
magnétique situé au centre C de la Terre, de moment magnétique m⃗T = −mT e⃗z avec (mT > 0).

Un point M de l’espace est repéré par ses coordonnées sphériques (r, θ, φ) par rapport à l’axe géomagnétique
(Cz). Le champ B⃗ en M s’écrit dans ce même système de coordonnées :

B⃗ = Bre⃗r + Bθe⃗θ + Bφe⃗φ

avec Br = −µ0mT

4π

2 cos θ

r3 ; Bθ = −µ0mT

4π

sin θ

r3 ; Bφ = 0.
On se propose de déterminer, en un point M de coordonnées (RT , θ0, φ) situé à la surface de la terre et
à la colatitude θ0, l’intensité de la composante horizontale Bh = |Bθ| du champ magnétique terrestre en
mesurant les petites oscillations dans un plan horizontal d’une boussole. Celle-ci est un petit solide qui peut
tourner sans frottement autour de son axe vertical ∆. Elle est assimilable à un dipôle magnétique de moment
magnétique m⃗b et de moment d’inertie J par rapport à son axe de rotation. On note α l’angle entre B⃗h et
m⃗b :
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Q.1 Quelle est la position d’équilibre stable de la boussole dans le champ magnétique terrestre ? Justifier
la réponse.

Q.2 Établir l’équation différentielle du mouvement de l’aiguille soumise au champ magnétique terrestre.

Q.3 En déduire la période T0 des petites oscillations de cette aiguille en fonction de Bh, de J et de la
norme mb du moment magnétique de la boussole.

Les valeurs de mb et J n’étant pas connues, on utilise le champ magnétique B⃗e d’intensité Be < Bh créé par
une bobine parcourue par un courant électrique pour s’en affranchir. On place d’abord la bobine de sorte
que B⃗e et la composante horizontale du champ terrestre soient parallèles et de même sens et on mesure
la période T1 des petites oscillations de l’aiguille aimantée. On change ensuite le sens du courant dans la
bobine et on mesure la nouvelle valeur T2 de la période des petites oscillations.

Q.4 En déduire Bh en fonction de l’intensité Be du champ magnétique créé par la bobine et du rapport
T1/T2 des deux périodes.

Q.5 Application numérique : en un point M situé à une colatitude θ0 = 50◦, on a mesuré Be = 6,0 µT et
T1/T2 = 0,78. Calculer Bh.

Q.6 En déduire le moment magnétique terrestre mT . Dans quel intervalle varie l’intensité du champ
magnétique terrestre ∥B⃗∥ lorsque θ varie entre le pôle Nord magnétique et le pôle Sud magnétique ?

Exercice 4 : Monopôle magnétique (Bonus)
S’il existe des charges électriques, il n’a jamais été découvert de charge (ou monopôle) magnétique, et
cette non-existence est incorporée dans les propriétés fondamentales des champs. Cependant, il existe des
situations physiques qui sont analogues à un problème d’électromagnétisme avec un monopole magnétique ;
il est donc intéressant d’étudier l’implication de l’existence de ces monopoles.
On se place dans l’espace à trois dimensions en utilisant les coordonnées sphériques (r, θ, φ). On suppose
qu’une charge magnétique qm placée au centre du repère O crée en un point M le champ :

B⃗mono(M) = µ0qm

4πr2 u⃗r

On notera Sr la sphère de rayon r de centre O.

Q.1 Représenter graphiquement ce champ de vecteurs. Quelle est la propriété fondamentale d’un champ
magnétique mise en défaut ici (on justifiera par le calcul d’une quantité intégrale) ?

Q.2 Supposons qu’il existe une fonction A⃗(M) telle que l’équation B⃗mono(M) = −→rotA⃗(M) soit vérifiée
en tout point de l’espace. Montrer que cela n’est pas compatible avec l’existence d’un monopôle
magnétique.

On définit les deux expressions suivantes :

A⃗N = µ0
4π

qm
1 − cos θ

r sin θ
u⃗φ et A⃗S = − µ0

4π
qm

1 + cos θ

r sin θ
u⃗φ

Q.3 Montrer que les champs de vecteurs A⃗N et A⃗S vérifient tous les deux l’équation de la Q.2 et déteminer
l’ensemble des points de Sr pour lesquels ces fonctions sont définies.

Q.4 Montrer que le flux du champ magnétique B⃗mono à travers Sr peut s’écrire comme une intégrale le
long de l’équateur faisant intervenir A⃗N et A⃗S .

Q.5 Vérifier que la description avec deux champs de vecteurs A⃗N et A⃗S est cohérente avec la question
Q.1.
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Formulaire

• Pour tout champ de vecteurs a⃗, div(−→rot⃗a) = 0.
• Théorème de Stokes–Ampère : pour un contour fermé γ et une surface Sγ s’appuyant sur ce contour,

on admet que pour un champ de vecteur a⃗ :
�

Sγ

−→rot(⃗a) · dS⃗ =
�

γ
a⃗ · dℓ⃗

• Expression du rotationnel d’un champ de vecteur a⃗ en coordonnées sphériques :

−→rot(⃗a) =



1
r sin θ

∂ (sin θaφ)
∂θ

− 1
r sin θ

∂aθ

∂φ
1

r sin θ

∂ar

∂φ
− 1

r

∂ (raφ)
∂r

1
r

∂ (raθ)
∂r

− 1
r

∂ar

∂θ


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