SPE MP 2025-2026

PROGRAMME DE COLLE 10 : Cours et exercices

COURS : RÉDUCTION (DÉBUT)

Sous-espaces stables par un endomorphisme

f induit sur un SEV F stable un endomorphisme de F noté \widehat{f} .

Polynôme d'endomorphismes et de matrices - $\ker P(f)$ et imP(f) sont stable par f-polynôme annulateur - structure d'idéal de l'ensemble des polynômes annulateurs d'un endomorphisme.

Polynôme minimal (noté Π_f) : existence en dimension finie.

- Structure de $\mathbb{K}[f]$ et sa dimension égale au degré de Π_f .
- Théorème de décomposition des Noyaux (TDN).

Valeurs propres - Spectre - Vecteurs propres - Sous-Espaces propres d'endomorphismes.

Stabilité : Si $f \circ g = g \circ f$ alors pour toute valeur propre λ de $f : E_{\lambda}(f)$ est stable par g.

Théorème fondamental : Les sous-espaces propres sont en somme directe.

Polynôme d'endomorphisme et éléments propres- valeurs propres possible d'un endomorphisme.

Spectre d'une homothétie, d'un projecteur, d'une symétrie.

Valeurs propres - Spectre - Vecteurs propres des matrices - Immersion $\mathbb{R}\subset\mathbb{C}$.

Matrices semblables et éléments propres.

- Polynôme caractéristique : $\chi_f(x) = x^n tr(f)x^{n-1} + \dots + (-1)^n \det f$. Les étudiants doivent connaître et démontrer les 3 coefficients "connus".
- Le polynôme caractéristique de \widehat{f} induit par f sur un SEV F stable divise le polynôme caractéristique de $f:\chi_{\widehat{f}}(x)|\chi_f(x)$.
- Ordre de multiplicité m_{λ} d'une valeur propre; $1 \leq \dim E_{\lambda} \leq m_{\lambda}$.

Théorème de Cayley-Hamilton (démonstration non exigible (exigible pour les meilleurs))

lacktriangle Le polynôme caractéristique et le polynôme minimal de f ont les mêmes racines.

EXERCICES: TOUT SUR L'ALGÈBRE LINÉAIRE DU PROGRAMME 9

SANS DIAGONALISATION NI TRIGONALISATION

Prévisions: Réductions des endomorphismes et des matrices.