```
CCP NP 2019 : problème
Qg Soit (A,B) & MM/R) tol qu'il exist PEGL, IR)
      et A=P139
* Comme Tr(MN) = Tr(NM) gon touts matris M, N,
Tr(A)=Tr(PBP1)=Tr(91PB)=Tr(B)
* Comme ry MP = ry PO = ry M si PEGL, (R),
         ng A = ny B
 * Let A = det P x det B x 1 = det B
   A-nI, = PBp'-npp'= P(B-nI)P'
        dune Y_A(n) = \det(A - nI_n) = \det(B - nI_n) = \chi_A(n)
     d'Aer Bent m trace, rg, det et prhy. con
```

Qg $T_{1}(A) = T_{1}(B) = 5$ det A = det B = 4 $det A = n \le 5 = 3 \quad (an det A \neq 0 : A invenible de n \le A = 3)$ $X_{1}(n) = X_{2}(n) = (\alpha - 1)(n - 2)^{2}$

On a $din E_1(A) = din E_1(B) = 1$. détantion) (2)dimE(A) et hin E(B) $+ AX = 2X \Leftrightarrow \begin{cases} n+y+z=2x <=>\\ 2y = 2y \end{cases}$ n-y-t=0 DOTE $E_2(A)$ of a plan P/n-y-2=0: $cim E_2(A)=2$ Dorc = (A) of la doite D= vect ((3))" In E (B) = 1 (Remanque: on pouvoit existi montan sur /3/A-2I3)=1)
12(B-2I3)=2 cgs A est lingerationsh mai) par B, Si A et B était semblables, comme A=PDP' evec D= (020), par konstivité, B et D dennit demblables et donc 13 shrit dingunationshi; absurde d'; A et 13 non semblably

A étant diagraphingh, $T_A(n) = (n-1)(h-2)$ et si $T_A(n) = T_A(n)$, along, par la 3²n correctérisation, D, somit diagraphingh; assurd

Quo on a $u(e_1) = e_2 + 2e_3$ $u(e_2) = e_1 + e_3$ $u(e_3) = e_1$ $|u(e_3) - e_1|$ $|u(e_3) - e_1|$ $|u(e_1)| = e_2 + e_3$ $|u(e_1)| = e_1 + 2e_3$ $|u(e_3)| = e_1 + 2e_3$ $|u(e_3)| = e_2$ En édragent la "nôlos" de en, en, ez. e' = e, e' = e, et e' = e, b'=/e',e';) st donc une fare de E et M, (4)= (1 0 1) = B si en note Pla matria de passage de bàb', en a " A=PBP-1 dy, Ach B sont semblables $70(n) = -\frac{|-n|}{|-n|} = +n\frac{|-n|}{|-n|} + \frac{|-n|}{|-n|} dev^{t} = -\frac{|-n|}{|-n|} dev^{t} = -\frac{$ c95 7/4 (n) = Xg (n) = n-Bn-1

Etvoion le ragine réelle de fini= n²-3n-1,

 $\delta'(\eta) = 3n^2 - 3 = 3(n-1)(n+1)$ d'où a $\tau_{n} \neq V$.

n	-07	-1		1	+ 00	
81	1	- 0	_	0 +		
1	-00	1	8	-3	7+	00

Par le théprime de la bijection (appliqué 3 fois),

f possede 3 radinos 2 à 2 distinctes: 2, p, r.

on a dédit que A et B sont disponalisable par le

conollaire le la 2ⁱⁿ connetérisation et que A et B

sont pemblables à D = (o p q), por trasitivité,

on co-dut: d'2; A et B sont temblables

Qn Comme rgu = ngA = 1, par le thiorime du ng dinknu=n-1. Soit (e_1, \dots, e_{n-1}) une base de kenu et avec TGI, $e_1 \in E$ til que $b' = (e_1, \dots, e_{n-1}, e_n)$ soit une base de E.

d'A est semblable à U Que $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0$ Comme monto, v2+(0) done on +0 et U s'annuh on le polynôme $Q = X^2 - a_n X = X(X - a_n)$; scinci à radine simple, par la 3 in canactérisation: l'u diagonalisable Q13 Chadres vie matria A= (ab) & M2 (a). A ne sera pos diagonalisable si 7, m et de la forme (n-d), 2EC. Par exemple d=0, comme en veit une motia non néelle, Prince a=i, comme $\chi_A(n)=n^2-(a+d)n+ad-b^2=n$, to prind d=-i prin $1-b^2=0$ soit $b=\pm 1$. $A = \begin{pmatrix} i & 1 \\ 1 - i \end{pmatrix}$, $A_{A}(n) = n$, d'où si $A \in \{a,b\}$

diagonalisable, il extituit P ty A = P(00)P' = (0); absord

do A= (i 1) convient

P15 Soit u connigrement associétée A, on a donc) u(e,) = he, | u(e,) = he, + ae, on a déduit que $n(e_2) = \lambda e_1 + b = e_1$ (a + v) $\left(u\left(\frac{a}{b}e_{1}\right) = \lambda \frac{a}{b}e_{1}$ Poson b'=(\frac{a}{b}e_1,e_2), b' base de R2 et $\pi_{b'}(w) = (\frac{\lambda}{\sigma}) = 3$ d'A et B sont semblably PG B=PAP => PB=AP=> RB+iSB=AR+iAS/ donc Milie [1, n] [RG+;5B] = [AR+iAS]; et Game (RB, SB, AR, AS) = $m(R)^{4}$, $|[RB]|_{ij} = (AR)_{ij}$ $|[SB]|_{ij} = [AS]_{ij}$ d' RB=AR et SB=AS . 917 Notons 4 cette forction, FRER (ov C):

Pln = [TR offing + 25 offing) = & n + p aver (d, p) & R intig, de n.

Comme (1) = det(R+is) = detP + 0, 4 of de nacines

polynime out. It o'a done give nb fini de nacines

c95: In ER let û inc infinité) \ 4/n/=det/17+n5)+0 8 d'; ∃n∈RIR+nS invenible PiB Avec ce n et Pib et en posont Q=R+n5, ona: QB = (R+nS)B = RB+nSB = AR+xAS = AQwomme Q inventile, B=Q'AQ et QEGL(R) de A et & semblables 2mm m, (R) Programmentian, on voit $A \in \mathcal{M}_g(C)$, comme; $\mathcal{N}_A(n) = n^3 + n = n(n-i)(n+i)$, por le consollain de l'n 2th correctémisation, A semblable, do $\mathcal{M}_g(C)$, $\tilde{a} D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \end{pmatrix}$. Comme 73/n) = | n 0 0 | = n (n2+1) (devt 1 n col) 3 nt donc semblable avssi a Det par kasitivité, A et B semblables don m3(C), on conduit ever la Q19: do A et B semblables de M3 (R) Q20 Soit (A,B) & M2 (R)2 \ X, In = X3 In et TA(n) = T3 (n) $\gamma_A(n) = (n-\alpha)(n-\beta)$ avec $\alpha \neq \beta$, α et β exceptemp complexy, alvo A diagonalisable semblable à D=(dp). Done les 2 matrices ayant en tel polynome connetentij-e sont done semblables às $m_2(c)$ et done dans $m_2(R)$.

Notoni que dans ce cas, $\pi_{X}(n) = \pi_{S}(n) = \chi_{A}(n)$. $\frac{2^{n} \operatorname{CM}}{A} = (n-d)^{2} = n^{2} - 2dn + d^{2} \text{ aver } d \in \mathbb{R} \left(-2d \in \mathbb{R}\right)$ Par Cyly-Hamilton, Taln/1(n-d) done 2 cos: n-dov(n-d)2. 1 5005-Co); Si TA MI= N-d, alon A= B= & I2; A et & sembly $2^{\frac{m}{6nJ-co}}$: $si_{A}(n)=(n-c)^{\frac{m}{2}}$, A non digraphingle, distinction $E_{d}=1$. $si_{A}=\operatorname{Vect}(\vec{u})$ et $b'=(\vec{u})_{A}(\vec{v})$ bese de \mathbb{R}^{k} . (T.S.I.) $A = P(x a) P^{-1}$ et $a \neq 0$ et B=Q[db]q' et b +0, or wroth ever Q15. do 1 = x3 et T = T3 => A et 3 semblables Par Analyse: Les 2 montrices ne drivert par être digonn -Wash sinon elles snaient semblables à la ma makice historale. Essayons avec les plus nimples des polynômes conacteritiques et minimaly:

Si on prind $\alpha = \beta = 0$, along $Y(b,c,d,e) \in \mathbb{R}^4$; $M = \begin{bmatrix} 00 & 00 \\ 00 & 00 \end{bmatrix}$ vérifie $\chi_{n}(n) = n^{4}$ et $\chi_{n}(n) = 00$ (95 posin) $A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ on right = 1 et right = 2, som ever Py, 3 re pervert être semblables

.

I. Matrices compagnons et endomorphismes cycliques

I.A.

$$\mathbf{Q}_1. \text{ On a } \chi_{\mathrm{M}} = \det(\mathrm{XI}_n - \mathrm{M}) = \det\left((\mathrm{XI}_n - \mathrm{M})^\top\right) = \det(\mathrm{XI}_n - \mathrm{M}^\top) = \chi_{\mathrm{M}^\top} \text{ donc}$$

$$\forall \lambda \in \mathbb{K}, \ \lambda \in \mathrm{sp}(\mathrm{M}) \Leftrightarrow \chi_{\mathrm{M}}(\lambda) = 0 \Leftrightarrow \chi_{\mathrm{M}^\top}(\lambda) = 0 \Leftrightarrow \lambda \in \mathrm{sp}\left(\mathrm{M}^\top\right)$$

Ainsi $\operatorname{sp}(M) = \operatorname{sp}(M^{\mathsf{T}})$ et donc M et M^{T} ont même spectre

 \mathbf{Q}_2 . \Leftarrow : On suppose que M est diagonalisable, ce qui nous fournit $P \in \mathrm{GL}_n(\mathbb{K})$ et $D \in \mathcal{M}_n(\mathbb{K})$ diagonale telles que $M = PDP^{-1}$

 $\mathrm{donc}\ \boldsymbol{M}^{\!\top} = \left(\boldsymbol{P}^{-1}\right)^{\!\top} \boldsymbol{D}^{\!\top} \boldsymbol{P}^{\!\top} = \left(\boldsymbol{P}^{\!\top}\right)^{-1} \boldsymbol{D} \boldsymbol{P}^{\!\top}$

d'où M^{T} est diagonalisable

 \Rightarrow : On suppose que M^{T} est diagonalisable.

Pour montrer que M est diagonalisable, on utilise l'implication précédente en remarquant que $M = (M^T)^T$. On a bien montré que M^{T} est diagonalisable si et seulement si M est diagonalisable

I.B. Matrices compagnons

 \mathbf{Q}_3 . On montre que $\chi_{\mathbf{C}_{\mathbf{Q}}} = \mathbf{Q}$ par récurrence sur $\deg(\mathbf{Q}) = n \geqslant 2$

Initialisation: On suppose que deg(Q) = 2 ainsi $Q = X^2 + a_1X + a_0$ et $C_Q = \begin{pmatrix} 0 & -a_0 \\ 1 & -a_1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$

On a $\chi_{C_Q} = X^2 - tr(C_Q)X + det(C_Q) = X^2 + a_1X + a_0$ ce qui prouve l'initialisation

Hérédité : Soit l'entier $n \ge 2$. On suppose la propriété vraie pour tout polynôme unitaire de degré n.

On considère $Q(X) = X^{n+1} + a_n X^n + \cdots + a_0$ où les $a_i \in \mathbb{K}$. On a en développant par rapport à la première

$$\chi_{\mathrm{CQ}} = \begin{vmatrix} X & \dots & \dots & 0 & a_0 \\ -1 & X & \dots & \dots & 0 & a_1 \\ 0 & -1 & \ddots & \vdots & a_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & -1 & X & a_{n-1} \\ 0 & \dots & \dots & 0 & -1 & X + a_n \end{vmatrix}_{[n+1]} = X \begin{vmatrix} X & \dots & \dots & 0 & a_1 \\ -1 & \ddots & \dots & \vdots & a_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ & \ddots & \ddots & \ddots & \vdots & \vdots \\ & \ddots & -1 & X & a_{n-1} \\ \dots & \dots & 0 & -1 & X + a_n \end{vmatrix}_{[n]} + (-1)^{n+2}a_0 \begin{vmatrix} -1 & X & \dots & \dots & 0 \\ 0 & -1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \dots & \vdots \\ 0 & \dots & \dots & 0 & -1 \end{vmatrix}_{[n]}$$

on note $R = X^n + a_n X^{-1} + \dots + a_1$ et on a $\chi_{C_Q} = X \chi_{C_R} + a_0 (-1)^{2n+2}$

Par hypothèse de récurrence, on a $\chi_{\rm C_R}={\rm R}$ donc $\chi_{\rm C_Q}={\rm XR}+a_0={\rm Q}$

Conclusion : On a montré par récurrence que la propriété était vraie pour tout polynôme unitaire de degré $\geqslant 2$

$$\mathbf{Q}_{4}. \text{ On a } (\mathbf{C}_{\mathbf{Q}})^{\top} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & & 0 & 1 \\ -a_{0} & -a_{1} & \dots & & -a_{n-1} \end{pmatrix}.$$

On a $\chi_{C_{\mathcal{O}}^{\top}} = \chi_{C_{\mathcal{O}}} = Q$ ainsi $Q(\lambda) =$

Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}),$$

$$(\mathbf{C}_{\mathbf{Q}})^{\mathsf{T}}\mathbf{X} = \lambda\mathbf{X} \Longleftrightarrow \begin{cases} x_{2} &= \lambda x_{1} \\ x_{3} &= \lambda x_{2} \\ \vdots \\ x_{n} &= \lambda x_{n-1} \\ -a_{0}x_{1} &- \dots -a_{n-1}x_{n} = \lambda x_{n} \end{cases} \Longleftrightarrow \begin{cases} x_{2} = \lambda x_{1} \\ x_{3} = \lambda^{2}x_{1} \\ \vdots \\ x_{n} = \lambda^{n-1}x_{1} \\ (-a_{0} - a_{1}\lambda - \dots -a_{n-1}\lambda^{n-1})x_{1} = \lambda^{n}x_{1} \end{cases}$$

$$\text{Ainsi } (\mathbf{C}_{\mathbf{Q}})^{\mathsf{T}}\mathbf{X} = \lambda\mathbf{X} \Longleftrightarrow \begin{cases} \forall i \in [2, n], \ x_{i} = \lambda^{i-1}x_{1} \\ \mathbf{Q}(\lambda)x_{1} = 0 \end{cases}$$

Notez bien que le "ainsi" concerne toute l'équivalence!

Comme
$$\lambda$$
 est racine de Q, alors
$$\dim \left(\mathbf{E}_{\lambda} \left(\mathbf{C}_{\mathbf{Q}}^{\top} \right) \right) = 1, \ \mathbf{E}_{\lambda} \left(\mathbf{C}_{\mathbf{Q}}^{\top} \right) = \operatorname{vect}(\mathbf{X}_{\lambda}) \text{ où } \mathbf{X}_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix}$$

I.C. Endomorphismes cycliques

 $\mathbf{Q}_5. \Rightarrow :$ On suppose que f est cyclique.

Ceci nous fournit $x_0 \in E$ tel que $\mathcal{B} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E.

Il existe alors
$$(\lambda_0, \lambda_1, \dots, \lambda_{n-1}) \in \mathbb{K}^n$$
 tel que $f^n(x_0) = \sum_{i=0}^{n-1} \lambda_i f^i(x_0)$.

On pose alors $Q = X^n + \sum_{i=0}^{n-1} (-\lambda_i) X^i$, de sorte que Q est unitaire de degré n et $\mathcal{M}_{\mathcal{B}}(f) = C_Q$.

 \Leftarrow : On suppose qu'il existe une base $\mathcal{B} = (e_0, e_1, \dots e_{n-1})$ de E dans laquelle la matrice de f est de la forme C_Q , où Q est un polynôme unitaire de degré n

Ainsi
$$\forall i \in [0, n-2], \ f(e_i) = e_{i+1}$$

donc $(e_0, f(e_0), f^2(e_0), \dots, f^{n-1}(e_0))$ est une base de E et donc f est cyclique

f est cyclique si et seulement s'il existe une base $\mathcal B$ de E dans laquelle la matrice de f est de la forme C_Q où Q est un polynôme unitaire de degré n

 \mathbf{Q}_{6} . \Leftarrow : On suppose que χ_{f} est scindé sur \mathbb{K} et a toutes ses racines simples.

Ainsi
$$|\operatorname{sp}(f)| = \operatorname{deg}(\chi_f) = \dim \mathcal{E}$$

donc f est diagonalisable d'après le cours

 \Rightarrow : On suppose que f est diagonalisable. Comme f est cyclique, ceci nous fournit \mathcal{B} une base de E et $Q \in \mathbb{K}[X]$ unitaire de degré n tel que $\mathcal{M}_{\mathcal{B}}(f) = C_Q$ d'après Q_5 .

Ainsi
$$C_Q$$
 est diagonalisable et il en est de même pour C_Q^{\top} d'après \mathbf{Q}_2 .
Ainsi $\mathbb{K}^n = \bigoplus_{\lambda \in \operatorname{sp}(f)} E_{\lambda} \left(C_Q^{\top} \right)$ d'où $n = \sum_{\lambda \in \operatorname{sp}\left(C_Q^{\top} \right)} \dim \left(E_{\lambda} \left(C_Q^{\top} \right) \right)$

or on a $\forall \lambda \in \operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)$, dim $\left(\mathbf{E}_{\lambda}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)\right) = 1$ d'après \mathbf{Q}_{4} donc $\left|\operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)\right| = n$ or d'après $\mathbf{Q}_{1} : \operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right) = \operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}\right) = \operatorname{sp}\left(f\right)$ donc f admet n valeurs propres distinctes dans \mathbb{K} donc χ_{f} est scindé sur \mathbb{K} et a toutes ses racines simples

Ainsi f est diagonalisable si et seulement si χ_f est scindé sur \mathbb{K} et a toutes ses racines simples

 \mathbf{Q}_7 . On suppose que f est cyclique.

Soit
$$(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$$
 tel que $\sum_{i=0}^n \lambda_i f^i = 0_{\mathcal{L}(\mathbf{E})}$. Montrons $\forall i \in [0, n-1], \ \lambda_i = 0$

Comme f est cyclique, ceci nous fournit $x \in E$ tel que $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ soit une base de E

donc
$$\sum_{i=0}^{n} \lambda_i f^i(x) = 0_{\mathcal{L}(\mathbf{E})}(x) = 0_{\mathbf{E}}$$

ainsi $\forall i \in [0, n-1], \ \lambda_i = 0 \text{ car } \mathcal{B} \text{ est libre}$

Alors
$$(\mathrm{Id}, f, f^2, \dots, f^{n-1})$$
 est libre dans $\mathcal{L}(\mathrm{E})$

On note d le degré de π_f . D'après le cours on a $d = \dim (\mathbb{K}[f])$.

Or $(\mathrm{Id}, f, f^2, \dots, f^{n-1})$ est libre dans $\mathbb{K}[f]$ donc $d \ge n$

de plus d'après Cayley-Hamilton, on a χ_f est annulateur de f

d'où $\pi_f \mid \chi_f$ or ce sont des polynômes non nuls ainsi on a $d = \deg(\pi_f) \leqslant \deg(\chi_f) = n$

ainsi n=d d'où le polynôme minimal de f est de degré n

On ne se sert pas de cette question pour montrer le théorème de Cayley-Hamilton dans le paragraphe I.D qui suit.

I.D. Application à une démonstration du théorème de Cayley-Hamilton

 $\mathbf{Q}_8. \text{ On note } \mathbf{N}_x = \Big\{ m \in \mathbb{N}^* \ \Big| \ \big(f^i(x) \big)_{0 \leqslant i \leqslant m-1} \ \text{libre} \, \Big\}.$

On sait que $1 \in \mathcal{N}_x$ car $x \neq 0_{\mathcal{E}}$ et que $\forall m \geqslant n, \ m \not\in \mathcal{N}_x$ car dim $\mathcal{E} = n$

Ainsi \mathcal{N}_x est une partie de \mathbb{N}^* non vide majorée par n-1

donc \mathcal{N}_x admet un plus grand élément $p \in \mathbb{N}^*$.

Ainsi la famille $(f^i(x))_{0 \leqslant i \leqslant p-1}$ est libre et la famille $(f^i(x))_{0 \leqslant i \leqslant p}$ est liée

On a bien l'existence de
$$p \in \mathbb{N}^*$$
 et de $(\alpha_0, \alpha_1, \dots, \alpha_{p-1}) \in \mathbb{K}^p$ tels que la famille $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est libre et $\alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{p-1} f^{p-1}(x) + f^p(x) = 0$

- Q₉. On a $f(\text{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))) = \text{Vect}(f(x), f^{2}(x), f^{3}(x), \dots, f^{p}(x))$ car f linéaire or $f^{p}(x) = -\alpha_{0}x \alpha_{1}f(x) + \dots \alpha_{p-1}f^{p-1}(x) \in \text{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))$ d'où $f(\text{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))) \subset \text{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))$.

 Ainsi $\boxed{\text{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x)) \text{ est stable par } f}$
- Q₁₀. On note alors \tilde{f} l'endomorphisme induit par f sur $\operatorname{Vect}(x, f(x), f^2(x), \dots, f^{p-1}(x))$. D'après ce qui précède $\mathcal{B} = (x, f(x), f^2(x), \dots, f^{p-1}(x))$ est une base de $\operatorname{Vect}(x, f(x), f^2(x), \dots, f^{p-1}(x))$. On remarque que $\mathcal{M}_{\mathcal{B}}(\tilde{f}) = \operatorname{C}_{\mathbf{Q}}$ en notant $\mathbf{Q} = \alpha_0 + \alpha_1 \mathbf{X} + \dots + \alpha_{p-1} \mathbf{X}^{p-1} + \mathbf{X}^p$, d'où $\chi_{\tilde{f}} = \mathbf{Q}$ or $\chi_{\tilde{f}}|\chi_f$ car \tilde{f} induit par f. On a montré que $X^p + \alpha_{p-1}X^{p-1} + \dots + \alpha_0$ divise le polynôme χ_f

Q₁₁. En reprenant les notations précédentes, on a Q(f)(x) = 0 et il existe $P \in K[X]$ tel que $PQ = \chi_f$. Ainsi $\chi_f(f) = P(f) \circ Q(f)$ donc $\chi(f)(x) = P(f)[Q(f)(x)] = P(f)(0) = 0$ car P(f) linéaire. On a ainsi montré que : $\forall x \in E, \ \chi(f)(x) = 0$. or $\chi(f) \in \mathcal{L}(E)$ donc $\chi(f)(0) = 0$ d'où $\chi(f)(0) = 0$

II. Etude des endomorphismes cycliques

II.A. Endomorphismes cycliques nilpotents

 $\mathbf{Q}_{12}. \Rightarrow$: On suppose f cyclique alors $\deg(\pi_f)=n$ d'après \mathbf{Q}_7 De plus d'après le cours, $\chi_f=\mathbf{X}^n$ car f nilpotente or $\pi_f|\chi_f$ selon Cayley-Hamilton et π_f est unitaire par définition donc $\pi_f=\mathbf{X}^n$ ainsi $f^n=0$ et $\forall i\in \llbracket 0,n-1 \rrbracket, \, f^i\neq 0$ d'où r=n

 \Leftarrow : On suppose que r = n donc $f^n = 0$ et $f^{n-1} \neq 0$ Ceci nous fournit $x \in E$ tel que $f^{n-1}(x) \neq 0$

Soit $\lambda_0, \dots, \lambda_{n-1} \in \mathbb{K}$ tels que $\sum_{i=0}^{n-1} \lambda_i f^i(x) = 0$.

On montre que $\forall i \in [0, n-1], \ \lambda_i = 0$

On suppose, par l'absurde, que la propriété est fausse on note alors j le minimum de $\{i \in [0, n-1] \mid \lambda_i \neq 0\}$

Ainsi $0 = f^{n-1-j} \left(\sum_{i=0}^{n-1} \lambda_i f^i(x) \right) = f^{n-1-j} \left(\sum_{i=j}^{n-1} \lambda_i f^i(x) \right) = \lambda_j f^{n-1}(x) + \sum_{i=j}^{n-1} \lambda_i f^{n-1+i-j}(x)$

Or $\forall i \geqslant p$, $f^i(x) = 0$ donc $\lambda_j f^{n-1}(x) = 0$ et $\lambda_j \neq 0$

d'où $f^{n-1}(x) = 0$ ce qui est absurde

Ainsi $(x, f(x), \dots, f^{n-1}(x))$ est une famille libre composée de n vecteurs de E et dim E = n donc $(x, f(x), \dots, f^{n-1}(x))$ est une base de E

donc f est cyclique.

On a montré que f est cyclique si et seulement si r = n

On remarque que la matrice compagnon associée est unique car les coefficients de cette matrices sont donnés par ceux du polynôme caractéristique.

On sait que si f est cyclique et nilpotente, alors $\chi_f = \mathbf{X}^n$

ainsi la matrice compagnon de f dans ce cas est $\begin{pmatrix} 0 & \dots & \dots & 0 & 0 \\ 1 & 0 & \dots & \dots & 0 & 0 \\ 0 & 1 & \ddots & & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & 0 \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$

II.B.

 \mathbf{Q}_{13} . Pour $k \in [1, p]$, $(f - \lambda_k \mathrm{Id}_{\mathrm{E}})^{m_k}$ et f commutent car $\mathbb{C}[f]$ est une algèbre commutative

donc
$$F_k = \text{Ker}((f - \lambda_k \text{Id}_E)^{m_k})$$
 est stable par f

On a $\chi_f(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ et les polynômes $(X - \lambda_k)^{m_k}$ sont deux à deux premiers entre eux

Alors selon le lemme de décomposition des noyaux, on a

$$\operatorname{Ker}(\chi(f)) = \operatorname{Ker}((f - \lambda_1 \operatorname{Id}_{\mathbf{E}})^{m_1}) \oplus \cdots \oplus \operatorname{Ker}((f - \lambda_p \operatorname{Id}_{\mathbf{E}})^{m_p}) = \operatorname{F}_1 \oplus \cdots \oplus \operatorname{F}_p$$

de plus selon Cayley-Hamilton, $\chi_f(f)=0$ et donc Ker $(\chi(f))=\mathbf{E}$

d'où
$$E = F_1 \oplus \cdots \oplus F_p$$

 \mathbf{Q}_{14} . Soit $x \in \mathbf{F}_k$. On a $(f - \lambda_k \mathrm{Id})^{m_k}(x) = 0$

Pour tout $y \in F_k$, on a $(f - \lambda_k Id)(y) = \varphi_k(y) \in F_k$

ainsi pour tout $p \in \mathbb{N}$, $(f - \lambda_k \operatorname{Id})^p(x) = \varphi_k^p(x)$ par récurrence immédiate sur p

donc $\varphi_k^{m_k}(x) = 0$, comme c'est vrai pour tout $x \in F_k$, on conclut que φ_k est un endomorphisme nilpotent de F_k

 \mathbf{Q}_{15} . D'après le cours, l'indice de nilpotence de φ_k , endomorphisme de \mathbf{F}_k est majoré par dim \mathbf{F}_k ainsi $\nu_k \leqslant \dim(\mathbf{F}_k)$

$$\mathbf{Q}_{16}$$
. on note $\mathbf{P} = \prod_{i=1}^{p} (\mathbf{X} - \lambda_i)^{\nu_i}$. Soit $k \in [1, p]$. Soit $x \in \mathbf{F}_k$.

On a P(f) =
$$\left[\prod_{\substack{i=1\\i\neq k}}^p (X - \lambda_i)^{\nu_i}(f) \right] \circ (f - \lambda_k \operatorname{Id})^{\nu_k}$$

donc
$$P(f)(x) = \left[\prod_{\substack{i=1\\i\neq k}}^p (X - \lambda_i)^{\nu_i}(f)\right] \left(\varphi_k^{\nu_k}(x)\right) = \left[\prod_{\substack{i=1\\i\neq k}}^p (X - \lambda_i)^{\nu_i}(f)\right] (0) = 0$$

donc P(f) coïncide avec l'endomorphisme nul sur chaque F_k et $E = F_1 \oplus \cdots \oplus F_p$ d'après \mathbf{Q}_{13} donc P(f) = 0. On note d le degré de P comme P est unitaire alors $(\mathrm{Id}, f, f^2, \ldots, f^d)$ est liée

donc $d \ge n$ car $(\mathrm{Id}, f, f^2, \dots, f^{n-1})$ est libre

or
$$d = \sum_{i=0}^{p} \nu_i$$
 d'où $n \leqslant \sum_{i=0}^{p} \nu_i$

On remarque à l'aide de la question 14 que $\nu_k \leqslant m_k$ pour tout $k \in [\![1,p]\!]$

donc
$$n \leqslant \sum_{k=0}^{p} \nu_k \leqslant \sum_{i=0}^{p} m_k = n$$

ainsi les inégalités sont des égalités et pour tout $k \in [1, p]$, on a $\nu_k = m_k$

 $\mathbf{Q}_{17}. \text{ Comme } \mathbf{E} = \mathbf{F}_1 \oplus \cdots \oplus \mathbf{F}_p \text{ d'après } \mathbf{Q}_{13} \text{ et } \forall k \in [\![1,p]\!], \, \nu_k \leqslant \dim \mathbf{F}_k \text{ d'après } \mathbf{Q}_{15}$

on a donc avec la question précédente $n = \sum_{k=1}^p \nu_k \leqslant \sum_{k=1}^p \dim(\mathbf{F}_k) = n$

Comme à la question précédente, on obtient : $\forall k \in [1, p], \nu_k = m_k = \dim(\mathbf{F}_k)$

 φ_k est un endomorphisme nilpotent de F_k d'indice $\nu_k = m_k = \dim(F_k)$ donc selon 12, φ_k est nilpotent et cyclique.

ceci nous fournit une base \mathcal{B}_k de \mathcal{F}_k tel que $\mathcal{M}_{\mathcal{B}_k}(\varphi_k) = \begin{pmatrix} 0 & 0 & \dots & \dots & 0 \\ 1 & 0 & \ddots & & \vdots \\ 0 & 1 & 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{m_k}(\mathbb{C})$

En notant f_k l'endomorphisme induit par f sur F_k ,

on a alors
$$\mathcal{M}_{\mathcal{B}_k}(f_k) = \begin{pmatrix} \lambda_k & 0 & \dots & \dots & 0 \\ 1 & \lambda_k & \ddots & & \vdots \\ 0 & 1 & \lambda_k & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \lambda_k & 0 \\ 0 & \dots & \dots & 0 & 1 & \lambda_k \end{pmatrix} \in \mathcal{M}_{m_k}(\mathbb{C})$$

En concaténant les bases \mathcal{B}_k pour k allant de 1 à p

On obtient une base \mathcal{B} adaptée à la décomposition en somme directe $E = F_1 \oplus \cdots \oplus F_p$

ainsi $\mathcal{B} = (u_1, \dots, u_n)$ est une base de E dans laquelle f a une matrice diagonale par blocs de formes voulues

Remarque : pour la suite on peut démontrer que pour une telle base on a nécessairement :

$$\forall k \in [1, p], (f - \lambda_k \operatorname{Id})^{m_k} (u_{m_1 + \dots + m_{k-1} + 1}) = 0 \text{ puis}$$

$$\forall k \in [1, p], \ \forall i \in [1, m_k], \ u_{m_1 + \dots + m_{k-1} + i} \in \mathcal{F}_k$$

On peut aussi supposer que l'on travaille avec la base choisie.

Q₁₈. Pour $k \in [1, p]$, on a $u_{m_1 + \dots + m_{k-1} + 1} \in F_k$

ainsi $\forall i \in \mathbb{N}, \ f^i(u_{m_1+\cdots+m_{k-1}+1}) \in \mathcal{F}_k \ \text{car} \ \mathcal{F}_k \ \text{stable par} \ f$

puis pour tout $P \in \mathbb{C}[X]$, on a $P(f)(u_{m_1+\cdots+m_{k-1}+1}) \in F_k$ car F_k est stable par combinaison linéaire.

Et ainsi $P(f)(x_0) = \sum_{k=1}^{p} P(f)(u_{m_1+\cdots+m_{k-1}+1})$ est la décomposition de $P(f)(x_0)$ sur $F_1 \oplus \cdots \oplus F_p$

Soit $Q \in \mathbb{C}[X]$. On a donc $Q(f)(x_0) = 0 \iff \forall k \in [1, p], \ Q(f)(e_k) = 0$

on note $e_k = u_{m_1 + \dots + m_{k-1} + 1}$ et on a $\mathcal{B}_k = (e_k, \varphi_k(e_k), \dots, \varphi_k^{m_k - 1}(e_k))$ est une base de F_k

On a vu que la matrice de φ_k dans cette base est $\mathcal{C}_{\mathcal{X}^{m_k}}$

donc $\pi_{\varphi_k} = X^{m_k}$ car φ_k est cyclique et nilpotent et $\dim(F_k) = m_k$ selon 12

$$\forall k \in [1, p], (f - \lambda_k \operatorname{Id})^{m_k} (u_{m_1 + \dots + m_{k-1} + 1}) = 0 \text{ puis}$$

$$\forall k \in [\![1,p]\!], \ \forall i \in [\![1,m_k]\!], \ u_{m_1+\cdots+m_{k-1}+i} \in \mathcal{F}_k$$

Par ailleurs on montre facilement que

$$\forall P \in \mathbb{C}[X], P(\varphi_k) = 0 \iff P(\varphi_k)(e_k) = 0$$

car $P(\varphi_k)$ commute avec tout φ_k^i et que $(\varphi_k^i(e_k))_{0 \le i < m_k}$ est une base de F_k .

Par ailleurs on a $Q(\varphi_k) = 0 \iff X^{m_k}|Q$ (nilpotent et cyclique)

donc
$$Q(f)(e_k) = 0 \iff Q(\varphi_k + \lambda_k \operatorname{Id}_{F_k})(e_k) = 0 \iff X^{m_k}|Q(X + \lambda_k)$$

ainsi
$$Q(f)(e_k) = 0 \iff (X - \lambda_k)^{m_k} |Q(X)|$$

donc comme les $(X - \lambda_k)^{m_k}$ sont deux à deux premiers entre eux,

on a finalement
$$Q(f)(x_0) = 0 \iff \prod_{k=1}^p (X - \lambda_k)^{m_k} Q$$

$$\mathbf{Q}_{19}. \text{ Soit } (\lambda_i)_{0 \leqslant i \leqslant n-1} \in \mathbb{K}^n \text{ tel que } \sum_{i=0}^{n-1} \lambda_i f^i(x_0) = 0 \text{ on note } \mathbf{Q} = \sum_{i=0}^{n-1} \lambda_i \mathbf{X}^i \text{ de sorte que } \mathbf{Q}(f)(x_0) = 0$$

ainsi
$$\prod_{k=1}^p (\mathbf{X} - \lambda_k)^{m_k} | \mathbf{Q}$$
 d'après la question précédente or $\deg(\mathbf{Q}) \leqslant n - 1 < n = \deg\left(\prod_{k=1}^p (\mathbf{X} - \lambda_k)^{m_k}\right)$

donc Q est le polynôme nul et ainsi $\forall i \in [\![0,n-1]\!], \ \lambda_i = 0$

donc $(f^i(x_0))_{0 \le i \le n-1}$ est une famille libre de n vecteurs de E et $n = \dim E$

d'où $(f^i(x_0))_{0 \le i \le n-1}$ est une base de E ce qui justifie que f est cyclique

III. Endomorphismes commutants, décomposition de Frobenius

 \mathbf{Q}_{20} . L'application $g \longmapsto f \circ g - g \circ f$ est un endomorphisme de $\mathcal{L}(\mathbf{E})$ dont le noyau est $\mathbf{C}(f)$ Ainsi $\mathbf{C}(f)$ est un sous-espace vectoriel de $\mathcal{L}(\mathbf{E})$

De plus, soit g et $h \in \mathcal{C}(f)$. On a $(g \circ h) \circ f = g \circ f \circ h = f \circ (g \circ h)$

ainsi C(f) est stable par \circ et il est clair que $Id \in C(f)$

Ainsi C(f) est une sous-algèbre de $\mathcal{L}(E)$

III.A. Commutant d'un endomorphisme cyclique

 \mathbf{Q}_{21} . On a $g(x_0) \in \mathbf{E}$ et $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de \mathbf{E} .

d'où l'existence de
$$\lambda_0, \lambda_1, \dots, \lambda_{n-1}$$
 de $\mathbb K$ tels que $g(x_0) = \sum_{k=0}^{n-1} \lambda_k f^k(x_0)$

 \mathbf{Q}_{22} . Il suffit d'établir que les applications linéaires g et $\sum_{k=0}^{n-1} \lambda_k f^k$ coïncident sur la base $(x_0, f(x_0), \dots, f^{n-1}(x_0))$.

On montre par récurrence immédiate que $\forall i \in \mathbb{N}, g \in C(f^i)$

Soit $i \in [\![0,n-1]\!]$. En utilisant 21 et le fait que l'algèbre $\mathbb{K}[f]$ est commutative

$$g(f^{i}(x_{0})) = f^{i}(g(x_{0})) = f^{i}\left(\sum_{k=0}^{n-1} \lambda_{k} f^{k}(x_{0})\right) = \sum_{k=0}^{n-1} \lambda_{k} f^{k}(f^{i}(x_{0}))$$

donc
$$g = \sum_{k=0}^{n-1} \lambda_k f^k$$
 et $g \in \mathbb{K}[f]$

 \mathbf{Q}_{23} . On vient d'établir le sens direct (avec un polynôme de degré $\leqslant n-1$)

La réciproque vient du fait que $\mathbb{K}[f]$ est une algèbre commutative et que $\mathbb{K}_{n-1}[X] \subset \mathbb{K}[X]$ et $f \in \mathbb{K}[f]$. On conclut que

 $g\in \mathcal{C}(f)$ si et seulement s'il existe un polynôme $\mathcal{R}\in \mathbb{K}_{n-1}[\mathcal{X}]$ tel que $g=\mathcal{R}(f)$

III.B. Décomposition de Frobenius

 \mathbf{Q}_{24} . On suppose que $\mathbf{G} = \mathbf{F}_1 \cup \cdots \cup \mathbf{F}_r$ est un sous espace de \mathbf{E} .

Par l'absurde, on suppose qu'aucun des sous-espaces F_i ne contient tous les autres.

Ainsi $r \geqslant 2$ et $G \neq \{0\}$.

Quitte à réduire le nombre, on peut supposer qu'aucun F_i n'est inclus dans la réunion des autres. Cela nous fournit $x_1 \in F_1$ qui n'est dans aucun des F_i pour $i \ge 2$.

Sinon, $F_1 \neq G$ et on peut aussi trouver $y \in G \setminus F_1$.

Pour tout scalaire λ , on a $y + \lambda x_1 \notin F_1$ (car sinon $y \in F_1$) et ainsi $y + \lambda x_1 \in F_2 \cup \cdots \cup F_r$.

La droite affine $y + \mathbb{K}x_1$ est donc incluse dans $F_2 \cup \cdots \cup F_r$ et contient une infinité d'éléments

car \mathbb{K} est infini et $t \in \mathbb{K} \mapsto y + tx_1$ est injective car $x_1 \neq 0$

Ceci nous fournit $j \in [2, r]$ et $\lambda \neq \lambda'$ dans \mathbb{K} tel que $y + \lambda x_1 \in F_j$ et $y + \lambda' x_1 \in F_j$

donc $x_1 \in F_i$ (par combinaison linéaire) ce qui est absurde

Ainsi l'un des sous-espaces F_i contient tous les autres

 \mathbf{Q}_{25} . Soit $x \in \mathbf{E}$ On considère l'application $\varphi_x : \mathbf{P} \in \mathbb{K}[\mathbf{X}] \longmapsto \mathbf{P}(f)(x) \in \mathbf{E}$.

Comme $I_x = \{P \in \mathbb{K}[X]/P(f)(x) = 0\}$ est le noyau de l'application linéaire φ_x ,

 I_x un sous groupe de ($\mathbb{K}[X], +$)

Pour $P \in I_x$ et $Q \in \mathbb{K}[X]$, on a $QP \in I_x$

 $\operatorname{car}\left(\operatorname{QP}\right)(f)(x) = \left(\operatorname{Q}(f) \circ \operatorname{P}(f)\right)(x) = \operatorname{Q}(f)\left(\operatorname{P}(f)(x)\right) = 0 \operatorname{car}\operatorname{Q}(f) \in \mathcal{L}(\operatorname{E})$

d'où I_x est un idéal de $\mathbb{K}[X]$ comme $\pi_f \in I_x$, cet idéal est non réduit à $\{0\}$

ce qui nous fournit $\pi_{f,x} \in \mathbb{K}[X]$ unitaire (donc non nul) tel que $I_x = (\pi_{f,x}) = \{\pi_{f,x}P \mid P \in \mathbb{K}[X]\}$

On remarque que : $\forall x \in \mathcal{E}, \ \pi_{f,x} | \pi_f$

Si on écrit $\pi_f = \prod_{k=1}^{N} P_i^{\alpha_i}$ décomposition en facteurs irréductibles, où $N \in \mathbb{N}^*$, les P_i sont irréductibles unitaires et distincts deux à deux et enfin les $\alpha_i \in \mathbb{N}^*$.

Alors le nombre de diviseurs unitaires de π_f est <u>fini</u> et vaut $\prod_{k=1}^{N} (\alpha_i + 1)$.

Ainsi l'ensemble $\{\pi_{f,x} \mid x \in E\}$ est fini de cardinal noté r où $r \in [1, \prod_{k=1}^{N} (\alpha_i + 1)]$

On peut donc choisir $u_1, \dots u_r \in \mathcal{E}$, tel que $\{\pi_{f,x} \mid x \in \mathcal{E}\} = \{\pi_{f,u_i} \mid i \in [1,r]\}$

Ainsi $E = \bigcup_{i=1}^{r} \ker(\pi_{f,u_i}(f)) \operatorname{car} \forall x \in E, \ x \in \ker(\pi_{f,x}(f))$

La question 24 nous fournit $i_0 \in [\![1,r]\!]$ tel que $\ker(\pi_{f,u_{i_0}}(f)) = \mathbf{E}$

On note $x_1 = u_{i_0}$ et on a $\ker(\pi_{f,x_1}(f)) = \mathbf{E}$

On remarque que $\pi_{f,x_1}(f) = 0_{\mathcal{L}(\mathbf{E})}$ donc $\pi_f|\pi_{f,x_1}$

or $\pi_{f,x_1}|\pi_f$ et ce sont des polynômes unitaires

donc $\pi_{f,x_1}=\pi_f$ Finalement

$$\forall P \in \mathbb{K}[X], \ P(f)(x_1) = 0 \Longleftrightarrow \pi_f | P$$

en faisant comme en 19, on montre que $(x_1, f(x_1), \dots, f^{d-1}(x_1))$ est libre

$$\mathbf{Q}_{26}$$
. En faisant comme en 9, on montre que $\boxed{\mathbf{E}_1 \text{ est stable par } f}$

De plus, on a $E_1 = \{P(f)(x_1)/P \in \mathbb{K}_{d-1}[X]\} \subset \{P(f)(x_1)/P \in \mathbb{K}[X]\}$

Soit $P \in \mathbb{K}[X]$. Comme $\pi_f \neq 0$,

le théorème de la division euclidienne nous fournit Q et $R \in K[X]$ tels que $\begin{cases} P = Q\pi_f + R \\ \deg(R) < d = \deg(\pi_f) \end{cases}$

On a alors $P(f)(x_1) = [Q(f) \circ \pi_f(f)](x_1) + R(f)(x_1) = R(f)(x_1) \in \{T(f)(x_1) / T \in \mathbb{K}_{d-1}[X]\}$

On conclut que $E_1 = \{P(f)(x_1)/P \in \mathbb{K}[X]\}$

 \mathbf{Q}_{27} . D'après ce qui précède $\mathcal{B} = (e_1, e_2, \dots, e_d)$ est une base de \mathbf{E}_1 .

De plus on a $\mathcal{M}_{\mathcal{B}}(\psi_1) = \mathcal{C}_{\pi_f}$ matrice compagnon du π_f polynôme unitaire de degré $d = \dim(\mathcal{E}_1)$ alors d'après \mathbf{Q}_5 , $\boxed{\psi_1 \text{ est cyclique}}$

 \mathbf{Q}_{28} . Pour $i \in \mathbb{N}$, on note $\mathbf{F}_i = \mathrm{Ker}\left(\Phi \circ f^i\right)$ ainsi $\mathbf{F} = \bigcap_{i \in \mathbb{N}} \mathbf{F}_i$ est bien un sous-espace de \mathbf{E}

De plus, on a pour $i \ge 1$, $f(F_i) \subset F_{i-1}$ donc

$$f(\mathbf{F}) \subset f\left(\bigcap_{i \in \mathbb{N}^*} \mathbf{F}_i\right) \subset \bigcap_{i \in \mathbb{N}^*} f\left(\mathbf{F}_i\right) \subset \bigcap_{i \in \mathbb{N}^*} \mathbf{F}_{i-1} = \mathbf{F}$$

d'où $\boxed{\mathbf{F} \text{ est stable par } f}$

Soit $u \in E_1 \cap F$.

Comme $u \in E_1$, cela nous fournit $\lambda_1, \dots, \lambda_d \in \mathbb{K}$ tels que $u = \sum_{k=1}^d \lambda_k e_k$

or $\Phi(x) = \lambda_d$ et $\Phi(f^0(x)) = 0$ car $u \in F$, donc $\lambda_d = 0$ d'où $u = \sum_{k=1}^{d-1} \lambda_k e_k$

puis
$$f(u) = \sum_{k=1}^{d-1} \lambda_k e_{k+1}$$
 et donc $\lambda_{d-1} = 0$ et $f(u) = \sum_{k=1}^{d-2} \lambda_k e_{k+1}$

En réitérant le procédé, on trouve $\lambda_{d-2} = \ldots = \lambda_1 = 0$

donc u = 0

L'autre inclusion étant évidente, on a $E_1 \cap F = \{0\}$ d'où E_1 et F sont en somme directe

 \mathbf{Q}_{29} . on note Ψ_1 l'application linéaire induite par Ψ entre \mathbf{E}_1 et \mathbb{K}^d .

Soit $x \in \text{Ker}(\Psi_1)$.

On a
$$x \in E_1$$
 et $\Phi(x) = \Phi(f(x)) = \dots = \Phi(f^{d-1}(x)) = 0$.

En faisant comme à la question précédente, on obtient $\boldsymbol{x}=0$

L'autre inclusion étant évidente, on a $Ker(\Psi_1) = \{0\}$

Ainsi Ψ_1 est une application linéaire injective entre E_1 et \mathbb{K}^d or $\dim(E_1) = d = \dim(\mathbb{K}^d)$

En utilisant le théorème du rang, on obtient que Ψ_1 est surjective puis bijective

Ainsi Ψ induit un isomorphisme entre \mathbf{E}_1 et \mathbb{K}^d

 \mathbf{Q}_{30} . De la question précédente, on montre que Ψ est surjective de \mathbf{E} vers \mathbb{K}^d et que $\ker(\Psi) \cap \mathbf{E}_1 = \{0\}$.

Ainsi $\dim(E_1) = d = \operatorname{rg}(\Psi)$ et $\dim(E) = \dim(\ker(\Psi)) + \operatorname{rg}(\Psi) = \dim(\ker(\Psi)) + \dim(E_1)$

donc $E = E_1 \oplus Ker(\Psi)$

On a Ker $\Psi = \bigcap_{i=0}^{a-1} F_i$ (les F_i sont introduits en 28) on a donc $F \subset \text{Ker } \Psi$

Soit $x \in \text{Ker}(\Psi)$. Montrons que $x \in F$

Soit $i \in \mathbb{N}$. Il suffit d'établir que $\Phi(f^i(x)) = 0$

Le théorème de la division euclidienne nous fournit Q et $R \in K[X]$ tel que deg(R) < d et $X^i = Q\pi_f + R$.

On peut écrire $R = \sum_{k=0}^{d-1} a_k X^k$. On a comme en 26 et car Φ est linéaire

$$\Phi(f^{i}(x)) = \Phi(0) + \Phi(R(f)(x)) = 0 + \sum_{k=0}^{d-1} a_{k} \Phi(f^{k}(x)) = 0$$

ainsi F
 $\supset \operatorname{Ker} \Psi$ d'où F = $\operatorname{Ker} \Psi$

on conclut que $E = E_1 \oplus F$

Q₃₁. **Préambule :** Avant de commencer la construction par récurrence, on remarque que dans ce qui précède le polynôme minimal de f est celui de ψ_1 et donc que $\forall x \in F, \pi_{\psi_1}(f)(x) = 0$

Initialisation : On prend E_1 , F et ψ_1 comme ci dessus.

On a E_1 stable par F et ψ_1 cyclique.

On pose $P_1 = \pi_f = \pi_{\psi_1}$, $G_1 = F$ de sorte que $E_1 \oplus G_1 = E$

On a $\forall x \in G_1, P_1(f)(x) = 0$

Hérédité: Soit $k \in \mathbb{N}^*$.

On suppose avoir l'existence de k sous-espaces vectoriels de E, notés E_1, \ldots, E_k et G_k tous stables par f, tels que

- E = E₁ $\oplus \cdots \oplus$ E_k \oplus G_k;
- pour tout $1 \le i \le k$, l'endomorphisme ψ_k induit par f sur le sous-espace vectoriel \mathbf{E}_i est cyclique;
- si on note P_i le polynôme minimal de ψ_i , alors P_{i+1} divise P_i pour tout entier i tel que $1 \le i \le k-1$
- $-\forall x \in G_k, P_k(f)(x) = 0$

Si dim $G_k = 0$, on s'arrête et on pose r = k

Sinon, on applique 24 à 30 à l'endomorphisme induit par f sur \mathbf{G}_k

On obtient alors E_{k+1} , G_{k+1} sous espaces stables par f et le polynôme P_{k+1} tels que

- $E = E_1 \oplus \cdots \oplus E_{k+1} \oplus G_{k+1};$
- l'endomorphisme ψ_{k+1} induit par f sur le sous-espace vectoriel \mathbf{E}_{k+1} est cyclique ;
- si on note P_{k+1} le polynôme minimal de ψ_{k+1} , alors P_{k+1} divise P_k
- $-- \forall x \in G_{k+1}, \ P_{k+1}(f)(x) = 0$

On a ainsi la construction voulue au rang k.

Conclusion: Cette construction algorithmique s'arrête car à chaque étape $\dim(\mathbf{E}_k) \leq 1$ et donc $r \leq \dim(\mathbf{E})$. car $(\dim \mathbf{G}_k)_k$ est une suite à valeurs dans $\mathbb N$ strictement décroissante.

On obtient ainsi le résultat voulu.

On en déduit qu'il existe r sous-espaces vectoriels de E, notés E_1, \ldots, E_r , tous stables par f, tels que :

- $-- E = E_1 \oplus \cdots \oplus E_r;$
- pour tout $1 \leq i \leq r$, l'endomorphisme ψ_i induit par f sur le sous-espace vectoriel \mathbf{E}_i est cyclique;
- si on note P_i le polynôme minimal de ψ_i , alors P_{i+1} divise P_i pour tout entier i tel que $1 \le i \le r-1$.

III.C. Commutant d'un endomorphisme quelconque

 \mathbf{Q}_{32} . On reprends les notations de la questions précédente pour la décomposition de Frobenius de f. on note Λ l'application telle que pour $(g_1, \ldots, g_r) \in \mathcal{L}(\mathbf{E}_1) \times \cdots \times \mathcal{L}(\mathbf{E}_r)$, on a $\Lambda(g_1, \ldots, g_r)$ défini sur \mathbf{E} par $\Lambda(g_1, \ldots, g_r)$ defini sur $\Lambda(g_1, \ldots, g_r)$ defini su

$$\Lambda(g_1, \dots, g_r)(x) = g_1(x_1) + \dots + g_r(x_r) \text{ où } x = \sum_{k=1}^r x_k \text{ et les } x_k \in \mathcal{E}_k$$

Ainsi définie, Λ est linéaire de $\mathcal{L}(E_1) \times \cdots \times \mathcal{L}(E_r)$ à valeurs dans $\mathcal{L}(E)$

De plus on montre facilement que Λ est injective et que Λ $(C(\psi_1) \times \cdots \times C(\psi_r)) \subset C(f)$

Ainsi dim $(C(f)) \ge \dim (C(\psi_1) \times \cdots \times C(\psi_r)) = \dim (C(\psi_1)) + \cdots + \dim (C(\psi_r))$

or pour $i \in [1, r]$, en notant $n_i = \dim \mathcal{E}_i$ on a $\mathcal{C}(\psi_i) = \operatorname{Vect}(\psi_i^0, \psi_i^1, \dots, \psi_i^{n_i-1})$ d'après \mathbf{Q}_{23} du III.A

Comme ψ_i est cyclique alors $(\psi_i^0, \psi_i^1, \dots, \psi_i^{n_i-1})$ est libre d'après \mathbf{Q}_7

donc dim $(C(\psi_i)) = n_i = \dim(E_i)$ d'où

$$\dim (C(\psi_1)) + \cdots + \dim (C(\psi_r)) = \dim (E_1) + \cdots + \dim (E_r) = \dim (E_1 \oplus \cdots \oplus E_r) = \dim (E) = n$$

Ainsi la dimension de C(f) est supérieure ou égale à n

Q₃₃. On note $d = \deg(\pi_f)$. D'après le cours, on a dim $(\mathbb{K}[f]) = d$ or $\mathbb{K}[f] = \mathbb{C}(f)$ et dim $\mathbb{C}(f) \ge n$ donc $d \ge n$.

Or on a $\pi_f|\chi_f$ comme conséquence de Cayley-Hamilton ainsi $d\leqslant n$

donc d = n

Or en reprenant les notations précédentes, on a $\dim(E_1) = d = n$

Donc $E_1 = E$ et $\psi_1 = f$ or ψ_1 est cyclique

ainsi f est cyclique

IV. Endomorphismes orthocycliques

IV.A. Isométries vectorielles orthocycliques

 \mathbf{Q}_{34} . Pour $\theta \in \mathbb{R}$, la matrice $R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ est semblable à la matrice $R(-\theta)$ (géométriquement en échangeant les deux vecteurs de la base orthonormée ce qui change l'orientation du plan).

Si $\theta \equiv 0$ [2 π], alors $R(\theta) = I_2$.

Si $\theta \equiv \pi$ [2 π], alors R(θ) = -I₂.

Si $\theta \not\equiv 0$ [π], alors il existe $\theta' \in]0, \pi[$ tel que $R(\theta')$ soit semblable à $R(\theta')$.

D'après le cours sur la réduction des automorphismes orthogonaux, il existe une base orthonormale \mathcal{B} , p,q et $r \in \mathbb{N}$ et $\theta_1, \ldots, \theta_r \in]0, \pi[$ tels que la matrice de f dans \mathcal{B} soit diagonale par blocs de la forme : diag $(I_p, -I_q, R(\theta_1), \ldots, R(\theta_r))$.

On remarque que $p+q+2r=n=\dim(\mathbf{E})$

et
$$\chi_{R(\theta)} = X^2 - tr(R(\theta)) + det(R(\theta)) = X^2 - 2\cos(\theta) + 1 = (X - e^{i\theta})(X - e^{-i\theta})$$

on a ainsi
$$\chi_f = \chi_{\mathrm{I}_p} \times \chi_{(-\mathrm{I}_q)} \times \chi_{\mathrm{R}(\theta_1)} \times \cdots \times \chi_{\mathrm{R}(\theta_r)} = (\mathrm{X} - 1)^p (\mathrm{X} + 1)^q \prod_{i=1}^r \left(\mathrm{X} - \mathrm{e}^{\mathrm{i}\theta_i} \right) \left(\mathrm{X} - \mathrm{e}^{-\mathrm{i}\theta_i} \right)$$

Quitte à réordonner les vecteurs de la base, on peut supposer que $0 < \theta_1 \leqslant \theta_2 \leqslant \cdots \leqslant \theta_r < \pi$

ainsi p est la multiplicité de 1, q est la multiplicité de -1 dans χ_f et les $\theta_1, \ldots, \theta_r$ sont donnés dans l'ordre par les racines non réelles de χ_f

Ainsi comme $\chi_f = \chi_{f'}$, on pourra trouver \mathcal{B}' base orthonormée telle que $\mathcal{M}_{\mathcal{B}'}(f')$ ait la même forme diagonale par blocs.

ainsi il existe des bases orthonormales \mathcal{B} et \mathcal{B}' de E telles que $\mathcal{M}_{\mathcal{B}}(f) = \mathcal{M}_{\mathcal{B}'}(f')$

 \mathbf{Q}_{35} . \Longrightarrow : On suppose que f est orthocyclique.

Ceci nous fournit $Q = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \in \mathbb{R}[X]$ et \mathcal{B} une base orthonormée de E tels que

$$\mathcal{MB}(f) = C_{Q} = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_{0} \\ 1 & 0 & \dots & \dots & 0 & -a_{1} \\ 0 & 1 & \ddots & \vdots & -a_{2} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & -a_{n-2} \\ 0 & \dots & \dots & 0 & 1 & -a_{n-1} \end{pmatrix} = (C_{1}|\dots|C_{n})$$

où C_1, \ldots, C_n désigne les colonnes de la matrice.

Comme $f \in O(E)$, \mathcal{B} est orthonormée, alors $\mathcal{M}_{\mathcal{B}}(f) \in O(n)$

d'où (C_1,\ldots,C_n) est une base orthonormée de \mathbb{R}^n muni du produit scalaire usuel noté $\langle\cdot,\cdot\rangle$

donc pour $1 \le i \le n-1$, on a $C_i \perp C_n$ et donc $0 = \langle C_i, C_n \rangle = -a_i$ et $1 = \langle C_n, C_n \rangle = a_0^2$

ainsi
$$a_0 \in \{-1, 1\}$$
 et $\mathcal{M}_{\mathcal{B}}(f) = \mathbf{C}_{\mathbf{Q}} = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & 0 & \dots & \dots & 0 & 0 \\ 0 & 1 & \ddots & & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & 0 \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix}$

Ainsi d'après \mathbf{Q}_3 , on a $\chi_f \in \{\mathbf{X}^n-1,\mathbf{X}^n+1\}$

 \iff : On suppose que $\chi_f = \mathbf{X}^n - 1$ ou $\chi_f = \mathbf{X}^n + 1$.

 $\underline{\text{Premier cas}: \chi_f = \mathbf{X}^n - 1 \text{ et } n \text{ pair}} \text{ On a donc } \chi_f = \prod_{z \in \mathbb{U}_n} (\mathbf{X} - z) \text{ scind\'e à racines simples dans } \mathbb{C}[\mathbf{X}].$

on pose $m \in \mathbb{N}^*$ tel que 2m = n et $\theta_k = \frac{2k\pi}{n}$ pour $k \in \mathbb{Z}$.

On a donc
$$\chi_f = \prod_{k=-m+1}^m \left(X - e^{2ik\pi/n} \right) = (X-1)(X+1) \prod_{k=1}^{m-1} \left(X^2 - \cos\left(\frac{2k\pi}{n}\right) X + 1 \right)$$

D'après la question précédente, on peut trouver une base orthonormée : $\mathcal{B} = (e_0, e_1, e'_1, \dots e_{m-1}, e'_{m-1}, e_m)$ telle que $\mathcal{M}_{\mathcal{B}}(f) = \text{diag}(1, \mathbb{R}(\theta_1), \dots, \mathbb{R}(\theta_{m-1}), -1)$.

Dans la question 34, la base aurait été $(e_0, e_m, e_1, e'_1, \dots e_{m-1}, e'_{m-1})$

on note $\mathcal{P}_0 = \mathcal{E}_1(f) = \operatorname{Vect}(e_0)$; $\mathcal{P}_m = \mathcal{E}_{-1}(f) = \operatorname{Vect}(e_m)$ et $\mathcal{P}_k = \operatorname{Vect}(e_k, e_k')$.

Ces sous espaces sont tous stables par f et $\mathbf{E} = \bigoplus_{0 \le k \le m}^{\perp} \mathcal{P}_k \quad (\star)$

Ainsi pour $u_j \in \mathcal{P}_j$ et $u_\ell \in \mathcal{P}_\ell$, on a $(u_j|f^i(u_\ell)) = 0$ où $j \neq \ell$ dans [0, m] et $i \in \mathbb{N}$ Soit $k \in [1, m-1]$.

f induit sur le plan \mathcal{P}_k orienté par sa base orthonormée $\mathcal{B}_k = (e_k, e'_k)$ une rotation d'angle θ_k .

Ainsi pour $j \in \mathbb{N}$, f^j induit sur \mathcal{P}_k orienté par \mathcal{B}_k , une rotation d'angle $j\theta_k$.

donc $(f^j(e_k)|e_k) = \cos(j\theta_k) = \cos(j\theta_{-k})$ car e_k est un vecteur unitaire du plan et cos est paire

Pour k = 0, on a $(f^{j}(e_0)|e_0) = (1^{j}e_0|e_0) = ||e_0||^2 = 1 = \cos(j\theta_0)$

Pour k = m, on a $(f^{j}(e_{m})|e_{m}) = ((-1)^{j}e_{m}|e_{m}) = (-1)^{j}||e_{m}||^{2} = \cos(j\pi) = \cos(j\theta_{m})$

Ainsi $\forall k \in [0, m], (f^j(e_k)|e_k) = \cos(j\theta_k) \quad (\star\star)$

on pose
$$x_0 = \frac{1}{\sqrt{n}} \left(e_0 + e_m + \sqrt{2} \sum_{k=1}^{m-1} e_k \right)$$
 de sorte que $||x_0|| = \sqrt{\frac{1^2 + \sum_{k=1}^{m-1} \sqrt{2}^2 + (-1)^2}{n}} = 1$.

Comme $f \in O(E)$, on a $\forall j \in \mathbb{N}, ||f^j(x_0)|| = 1$

Soit $j \in [1, n-1]$. D'après (\star) et $(\star\star)$, on a :

$$(x_0|f^j(x_0)) = \frac{1}{n} \left(\left(e_0 \mid f^j(e_0) \right) + \left(e_m \mid f^j(e_m) \right) + \sum_{k=1}^{m-1} 2 \left(e_k \mid f^j(e_k) \right) \right) = \frac{1}{n} \sum_{k=-m+1}^m \cos\left(j\theta_k\right)$$

Or
$$\sum_{k=-m+1}^{m} \cos(j\theta_k) = \sum_{k=-m+1}^{m} \operatorname{Re}\left(\exp\left(\frac{jki2\pi}{n}\right)\right) = \operatorname{Re}\left(\sum_{k=0}^{n-1} \left(e^{ji2\pi/n}\right)^k\right)$$

Comme $0 < 1 \le j \le n - 1 < n$, alors $e^{ji2\pi/n} \ne 1$ et on reconnaît une somme géométrique.

D'où :
$$\sum_{k=0}^{n-1} \left(e^{ji2\pi/n} \right)^k = \frac{1 - \left(e^{ji2\pi/n} \right)^n}{1 - e^{ji2\pi/n}} = 0$$

ainsi $(x_0|f^j(x_0)) = 0$

Pour $0 \le j < \ell \le n-1$, on a alors $1 \le \ell - j \le n-1$

et donc comme $f \in O(E)$, on a $(f^{j}(x_{0})|f^{\ell}(x_{0})) = (x_{0}|f^{\ell-j}(x_{0})) = 0$

ainsi $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base orthonormée de E ce qui permet de conclure.

Deuxième cas : $\chi_f = \mathbf{X}^n - 1$ et n impair

 $\overline{\text{Alors les calculs sont analogues au cas précédent ce qui change est que } -1$ n'est pas valeur propre de f

mais on a encore
$$\operatorname{Re}\left(\sum_{z\in\mathbb{U}_n}z^j\right)=0$$
 pour tout $j\in[1,n-1]$

Troisième cas : $\chi_f = \mathbf{X}^n + 1$: On remarque que $\forall z \in \mathbb{C}, z^n + 1 = 0 \iff (z^n - 1 \neq 0 \text{ et } z^{2n} - 1 = 0)$

Ainsi pour
$$k \in [1, n-1]$$
, on a $\sum_{\substack{z \in \mathbb{C} \\ z^n+1=0}} z^k = \sum_{z \in \mathbb{U}_{2n}} z^k - \sum_{z \in \mathbb{U}_n} z^k = 0 - 0 = 0$

Ce qui permet de conclure de manière analogue aux cas précédents.

On en déduit que : f est orthocyclique si et seulement si $\chi_f = X^n - 1$ ou $\chi_f = X^n + 1$

IV.B. Endomorphismes nilpotents orthocycliques

 \mathbf{Q}_{36} . Comme f est nilpotent, le cours nous fournit une base $\mathcal{B}_s = (e_1^s, \dots, e_n^s)$ telle que $\mathcal{M}_{\mathcal{B}_s}(f)$ soit triangulaire supérieure.

On applique le procédé de Gram-Schmidt à \mathcal{B}_s pour obtenir une base orthonormale $\mathcal{B}_o = (\epsilon_1, \epsilon_2, \dots, \epsilon_n)$ et en notant la matrice de passage P de \mathcal{B}_s à \mathcal{B}_o est triangulaire supérieure ainsi que P^{-1} .

Comme le sous-espace des matrices triangulaires supérieures est stable par produit;

alors la matrice $\mathcal{M}_{\mathcal{B}_o}(f) = P^{-1}\mathcal{M}_{\mathcal{B}_s}(f)P$ est triangulaire supérieure.

Alors en notant $\mathcal{B}_i = (\epsilon_n, \dots, \epsilon_2, \epsilon_1)$, on a \mathcal{B}_i base orthonormale de E et $\mathcal{M}_{\mathcal{B}_i}(f)$ triangulaire inférieure ainsi il existe une base orthonormale de E dans laquelle la matrice de f est triangulaire inférieure

 \mathbf{Q}_{37} . \longleftarrow : On suppose que f est de rang n-1 et que $\forall x,y \in (\ker f)^{\perp}, \ (f(x)|f(y))=(x|y).$

La question précédente nous fournit une base orthonormée $\mathcal{B}=(e_1,\ldots,e_n)$ tel que $A=\mathcal{M}_{\mathcal{B}}(f)$ soit triangulaire inférieure.

on note $A = (C_1 | \dots | C_n)$ en colonnes.

Comme f est nilpotente, alors $\chi_f = \mathbf{X}^n$ d'après le cours

donc la matrice est triangulaire strictement inférieure (diagonale nulle)

ainsi $e_n \in \text{Ker } f \setminus \{0\}$ et comme dim (Ker f) = n - rg(f) = 1,

on a Ker $f = \text{Vect}(e_n)$ et Ker $(f)^{\perp} = \{e_n\}^{\perp} = \text{Vect}(e_1, \dots, e_{n-1})$ car \mathcal{B} est orthonormée

Ainsi pour tout $i, j \in [1, n-1]$, par calcul dans une base orthonormée on a :

 $\langle C_i, C_j \rangle = (f(e_i)|f(e_j)) = (e_i|e_j) = \delta_{i,j}$ (symbole de Kronecker)

donc si $1 \le i < j \le n-1$, on a $\langle C_i, C_j \rangle = 0$ et $\langle C_i, C_i \rangle = \langle C_j, C_j \rangle = 1$

On a donc
$$C_n = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$
 et $C_{n-1} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ a_{n-1} \end{pmatrix}$ avec $a_{n-1} \in \{-1, 1\}$ car $a_{n-1}^2 = \langle C_{n-1}, C_{n-1} \rangle = 1$

On a donc $C_n = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ a_{n-1} \end{pmatrix}$ et $C_{n-1} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ a_{n-1} \end{pmatrix}$ avec $a_{n-1} \in \{-1,1\}$ car $a_{n-1}^2 = \langle C_{n-1}, C_{n-1} \rangle = 1$ On trouve ensuite $C_{n-2} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_{n-2} \\ 0 \end{pmatrix}$ avec $a_{n-1} \in \{-1,1\}$ car $\langle C_{n-2}, C_{n-1} \rangle = 0$ et $\langle C_{n-2}, C_{n-2} \rangle = 1$ En procédant de même, on obtient $A = \begin{pmatrix} 0 & \dots & \dots & 0 & 0 \\ a_1 & 0 & \dots & \dots & 0 & 0 \\ 0 & a_2 & \ddots & \vdots & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & a_{n-2} & 0 & 0 \\ 0 & \dots & \dots & 0 & a_{n-1} & 0 \end{pmatrix}$ où les $a_i \in \{-1,1\}$

La base $\mathcal{B}' = (e_1, a_1 e_2, a_1 a_2 e_3, \dots, \prod_{i=0}^{n-2} a_i e_{n-1}, \prod_{i=0}^{n-1} a_i e_n)$ est orthonormée et $\mathcal{M}_{\mathcal{B}'}(f) = C_{X^n}$.

Ainsi f est orthocyclique.

 \implies : On suppose que f est orthocyclique.

Comme f est cyclique et nilpotent , on a $\pi_f = \chi_f = \mathbf{X}^n$ d'après \mathbf{Q}_{12}

Commune f est orthocyclique,

cela nous fournit une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$ telle que $\mathcal{M}_{\mathcal{B}}(f) = C_Q$.

Comme $X^n = \chi_f = \chi_{C_Q} = Q$, on a $\mathcal{M}_{\mathcal{B}}(f) = C_{X^n}$.

donc $\operatorname{rg}(f) = \operatorname{rg}(C_{X^n}) = n - 1$, $\operatorname{Vect}(e_n) = \operatorname{Ker} f$ et $\operatorname{Vect}(e_1, \dots, e_{n-1}) = (\operatorname{Ker} f)^{\perp}$

et on vérifie facilement que $\forall x, y \in (\ker f)^{\perp}$, (f(x)|f(y)) = (x|y) par calcul dans la base orthonormée \mathcal{B}