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MP CENTRALE PSI 2017 : corrigé 25-26

1.1.1) ∀λ ∈ IR, (U + λV )2 = U2 + 2λUV + λ2V 2 > 0 possède un moment d’ordre 2 (car 0 6 |UV | 6 U2 + V 2).

On en déduit par linéarité et positivité de l’espérance que :

P (λ) = E(U2) + 2λE(UV ) + λ2E(V 2) > 0 est un polynôme positif pour tout λ ∈ IR.

Comme V n’est pas presque surement nulle, E(V 2) 6= 0 et donc P est un polynôme du second degré positif sur IR.

Son discriminant est donc négatif, ce qui donne : 4E(UV )2 − 4E(U2)E(V 2) 6 0 d’où on conclut :

conclusion: E(U2)E(V 2)− E(UV )2 > 0

L’égalité équivaut à la nullité du discriminant du polynôme P donc si et seulement s’il existe un λ ∈ IR tel que

P (λ) = E(U + λV )2) = 0 : soit (U + λV )2 presque surement nulle et donc U + λV presque surement nulle.

conclusion:

E(U2)E(V 2)− E(UV )2 = 0 si et seulement si ∃λ ∈ IR tel que U + λV presque surement nulle.

1.1.2) a) Si X est bornée , eτ |X| l’est aussi et donc admet une espérance finie d’où :

conclusion: ∀τ > 0, X vérifie (Cτ )

1.1.2) b) D’après la formule de transfert, etX admet une espérance finie si et seulement si la série
(∑

etkP (X = k)
)

est absolument convergente.

Comme etkP (X = k) = etkp(1−p)k−1 =
p

1− p
(et(1−p))k, la série géométrique

(∑
etkP (X = k)

)
est convergente

si et seulement si |et(1− p)| < 1 soit t < ln(
1

1− p
) = − ln(1− p).

Dans ces cas,
+∞∑
k=1

etkP (X = k) =

+∞∑
k=1

p

1− p
(et(1− p))k =

p

1− p
et(1− p)

1− et(1− p)
.

conclusion: E(etX) < +∞ si et seulement si t < − ln(1− p) et dans ce cas E(etX) =
pet

1− et(1− p)
1.1.2) c) On fait comme au b) :

etkP (X = k) = etke−λ
λk

k!
= e−λ

(etλ)k

k!
est le terme d’une série exponentielle convergente d’où :

conclusion: E(etX) < +∞ pour tout t ∈ IR et l’on a E(etX) = e−λee
tλ

1.1.3) a)

∀t ∈ [a, b], ∀ω ∈ Ω : a 6 t 6 b donc aX(ω) 6 tX(ω) 6 bX(ω) ou bX(ω) 6 tX(ω) 6 aX(ω), donc par croissance de

l’exponentielle , on a : eaX(ω) 6 etX(ω) 6 ebX(ω) ou ebX(ω) 6 etX(ω) 6 eaX(ω).

On en déduit que etX(ω) 6 max(eaX(ω), ebX(ω)) 6 eaX(ω) + ebX(ω).

En conséquence, on a 0 6 etX 6 eaX + ebX et l’on conclut avec la propriété (P) :

conclusion: ∀t ∈ [a, b] , E(etX) < +∞

L’ensemble {t ∈ IR tel que E(etX) < +∞} est convexe et donc c’est un intervalle.

1.1.3) b) ∀y ∈ IR : θk,t,a,b(y) existe (dénominateur strictement positif) et l’on a :

θk,t,a,b(y) =
ykety

eay(1 + e(b−a)y)
=

yke(t−a)y

1 + e(b−a)y
. Comme t − a > 0 et b − a > 0, on en déduit que lim

y→−∞
θk,t,a,b(y) =

0

1 + 0
= 0 par théorèmes généraux et croissances comparées.

On fait de même en +∞, en mettant en facteur au dénominateur eby d’où : lim
y→+∞

θk,t,a,b(y) = 0.

On en déduit l’existence d’un réel A > 0 tel que

∀y > A, |θk,t,a,b(y)| 6 1 et ∀y < −A, |θk,t,a,b(y)| 6 1.

Sur le segment [−A,A], la fonction θk,t,a,b est continue (par théorèmes généraux) et donc par le théorème des

bornes atteintes, il existe M > 0 tel que ∀y ∈ [−A,A] , |θk,t,a,b(y)| 6M .

En conséquence ∀y ∈ IR , |θk,t,a,b(y)| 6 max(M, 1) et l’on peut conclure :

1

|X|< Y et Y admet une espérence fini => X aussi



conclusion: θk,t,a,b est bornée sur IR et lim
y→±∞

θk,t,a,b(y) = 0

1.1.3) c) Avec les notations de la question ci-dessus, notons M0 = max(M, 1).

On a donc 0 6 |Xk|etX 6M0(eaX + ebX).

On conclut encore une fois avec la propriété (P) :

conclusion: ∀t ∈]a, b[ , E(|Xk|etX) < +∞

1.1.3) d) ∀t ∈ [c, d], on a : 0 6 |yk|ety 6 |yk|(ecy + edy), donc :

∀t ∈ [c, d], ∀y ∈ IR, |θk,t,a,b(y)| 6 |y
k|(ecy + edy)

(eay + eby)
= |θk,c,a,b(y)|+ |θk,d,a,b(y)|.

Comme les deux fonctions θk,c,a,b et θk,d,a,b sont bornées sur IR (car a < c < b et a < d < b), on conclut :

conclusion: Il existe Mk,a,b,c,d ∈ IR+ tel que ∀t ∈ [c, d], ∀y ∈ IR, |θk,t,a,b(y)| 6Mk,a,b,c,d

1.1.4) a) On a montrer au 1.1.3) a) que I = {t ∈ IR tel que E(etX) < +∞} est un intervalle , de plus comme X

vérifie Cr, ∀t ∈ [−τ, τ ] : 0 6 etX 6 e|t|·|X| 6 eτ |X| et avec (P), t ∈ I

conclusion: I = {t ∈ IR tel que E(etX) < +∞} est un intervalle et contient [−τ, τ ]

1.1.4) b) Si l’on pose X(Ω) = {x1, . . . , xn}, on a

∀t ∈ I , ϕX(t) =

n∑
k=1

etxkP (X = xk) (formule de transfert). Par théorèmes généraux (somme finie), on peut

conclure :

conclusion: ϕX est de classe C∞ sur I = IR

1.1.4) c) ∀t ∈ I , ϕX(t) =

+∞∑
n=1

pne
txn (formule de transfert).

Posons pour tout entier n : un(t) = pne
txn .

i) Par théorèmes généraux, un est de classe C∞ sur IR donc continue sur I et de classe C∞ sur l’intérieur de I et

∀t ∈ I̊ , ∀k ∈ IN∗ , u(k)
n (t) = pnx

k
ne
txn .

ii) La série (
∑
un) converge simplement sur I car ∀t ∈ I E(etX) < +∞, donc par théorème de transfert, (

∑
un(t))

converge absolument.

iii) ∀t ∈ [a, b] ∈ I , |un(t)| = pne
txn 6 pn(eaxn + ebxn) = αn et (

∑
αn) converge et de somme E(eaX) + E(ebX).

On en déduit la convergence normale de (
∑
un) sur [a, b] et donc la continuité de ϕX sur I.

iii) ∀t ∈ [c, d] ∈ I̊ , il existe (a, b) ∈ I2 tels que a < c < d < b , ∀k ∈ IN∗ ,

|u(k)
n (t)| = pn|xkn|etxn 6Mk,a,b,c,d(e

axn + ebxn) = βn et (
∑
βn) converge et de somme Mk,a,b,c,d(E(eaX) +E(ebX)).

On en déduit la convergence normale de (
∑
u

(k)
n ) sur [c, d].

On en déduit que ϕX est C∞sur I̊. On conclut avec le théorème de dérivation des séries de fonctions :

conclusion: ϕX est continue sur I et C∞sur I̊.

1.1.4) d) Avec le théorème de dérivation des séries de fonctions, on a : ∀k ∈ IN et ∀t ∈ I̊ :

ϕ
(k)
X (t) =

+∞∑
n=1

xknpne
txn = E(XketX) (formule de transfert).

conclusion: ∀k ∈ IN et ∀t ∈ I̊ : ϕ(k)
X (t) = E(XketX)

1.1.4) e) (Erreur d’énoncé ψX n’est définie que sur I̊ et non sur I)

Comme ϕX(t) > 0 pour tout t ∈ I, comme quotient, la fonction ψX est de classe C∞sur I̊.

On a ∀t ∈ I̊ : ψ′X(t) =
ϕ′′X(t)ϕX(t)− ϕ′X(t)ϕ′X(t)

ϕX(t)2
=
E(X2etX)E(etX)− E(XetX)2

ϕX(t)2
.

Si on pose U = XetX/2 et V = etX/2, alors ψ′X(t) =
E(U2)E(V 2)− E(UV )2

ϕX(t)2
> 0 avec le 1.1.1) et comme V n’est

pas presque surement nulle, ψ′X(t) = 0 si et seulement s’il existe λ ∈ IR tel que λV +U = 0 presque surement et donc

X = −λ presque surement.

conclusion: ψX est croissante sur I̊ et strictement croissante sur I̊ si X n’est pas constant p.s.
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1.2.1)

P (|Sn − nE(X)| > nδ) = P
(
|Sn
n
− E(X)| > δ

)
, or E(

Sn
n

) = E(X) (par linéarité de l’espérance) et comme X

admet un moment d’ordre 2, Sn

n aussi et par indépendance des Xi, V (
Sn
n

) =
1

n2
(V (X1) + · · ·+ V (Xn)) =

V (X)

n
.

Il ne reste plus qu’à appliquer l’inégalité de Bienaymé-Tchebichev pour conclure :

conclusion: P (|Sn − nE(X)| > nδ) 6
V (X)

nδ2

1.2.2) D’abord, on a 1 > P (|Sn − nE(X)| < nδ) = 1−P (|Sn − nE(X)| > nδ) > 1− V (X)

nδ2
, donc par théorème

d’encadrement, lim
n→+∞

P (|Sn − nE(X)| < nδ) = 1.

Ensuite |Sn − nE(X)| < nδ ⇐⇒ nE(X)− nδ < Sn < nE(X) + nδ.

On souhaiterais avoir nE(X) + nδ 6 nv et nE(X)− nδ > nu, ce qui est possible si

0 < δ 6 v − E(X) et 0 < δ 6 E(X)− u.

Prenons donc δ = min(E(X)− u, v − E(x)) > 0, on a alors :

|Sn − nE(X)| < nδ =⇒ nu 6 Sn 6 nv et donc (|Sn − nE(X)| < nδ) ⊂ (nu 6 Sn 6 nv)

On en déduit que P (|Sn − nE(X)| < nδ) 6 P (nu 6 Sn 6 nv) 6 1 et l’on conclut par théorème d’encadrement :

conclusion: lim
n→+∞

πn = 1

1.3.1) On a un = umq+r > umq + ur et par récurrence sur q, umq > qum

Conclusion1 : un > qum + ur

un > qum + ur =⇒ un − ns > qum + ur − ns = qum + ur − qms− rs = q(um −ms) + ur − rs

Conclusion2 : un − ns > q(um −ms) + ur − rs

1.3.2) On en déduit que ∀n = mqn + rn > 0 ,
un
n
− s > qn

n
(um −ms) +

urn − rns
n

donc on a
un
n

>
qn
n
um + s− qn

n
ms+

urn − rns
n

Or on a
qn
n

=
qn

mqn + rn
=

1

m+ rn
qn

et pour n > m(> rn), on a qn =
n− rn
m

donc
qn
n

=
1

m+ rnm
n−rn

.

Comme (rn) est bornée (par 0 et m), que m est fixé, on a lim
n→+∞

qn
n

=
1

m
et donc comme (urn − rns) est aussi

bornée (ne prend qu’un nombre fini de valeurs), on en déduit que :

lim
n→+∞

(qn
n
um + s− qn

n
ms+

urn − rns
n

)
=
um
m

+ s− s+ 0 =
um
m

.

Pour ε > 0, il existe N > r tel que ∀n > N :
qn
n
um + s− qn

n
ms+

urn − rns
n

>
um
m
− ε.

On peut donc conclure :

conclusion: il existe N > r tel que ∀n > N :
un
n

>
um
m
− ε.

1.3.3) Soit ε > 0 fixé. Comme s = sup
{un
n
, n ∈ IN∗

}
, il existe m0 ∈ IN∗ tel que

um0

m0
> s− ε/2. Pour ce m0 avec

la question ci-dessus, il existe N > m0 tel que ∀n > N :
un
n

>
um0

m0
− ε/2 > s− ε, comme on a ∀n > N :

un
n

6 s, on

a donc ∀n > N : s− ε 6 un
n

6 s, on conclut :

conclusion: lim
n→+∞

un
n

= s

2.1.1) Si tout les Xi sont supérieurs à a alors Sn est supérieur à na. Précisons :

(X1 > a) ∩ · · · ∩ (Xn > a) ⊂ (Sn > na), donc P ((X1 > a) ∩ · · · ∩ (Xn > a)) 6 P (Sn > na), et par indépendance

mutuelle des Xi ∼ X, on a donc P (X1 > a)
n 6 P (Sn > na).

En conséquence si P (Sn > na) = 0 alors P (X1 > a)
n

= 0 et donc P (X1 > a) = 0

Réciproquement on a : (Sn > na) ⊂ (X1 > a) ∪ · · · ∪ (Xn > a), d’où (par inégalité de Boole)

P (Sn > na) 6 P ((X1 > a) ∪ · · · ∪ (Xn > a)) 6 P (X1 > a) + · · ·+ P (Xn > a) = nP (X > a) .

En conséquence si P (X1 > a) = 0 alors P (Sn > na) = 0.
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conclusion: P (X1 > a) = 0 ⇐⇒ P (Sn > na) = 0

2.1.2) a) Posons X(Ω) = {xn , n ∈ J ⊂ IN} et Y = {x1 + · · ·+ xn , (x1, . . . , xn) ∈ X(Ω)n}.

On a Y qui est dénombrable car X(Ω)n est dénombrable. ∀y ∈ Y :

P (Sm+n − Sm = y) = P (Xm+1 + · · ·+Xm+n = y)

=
∑

(x1,...,xn)∈X(Ω)n,x1+···+xn=y

P (Xm+1 = x1, Xm+2 = x2, . . . , Xm+n−1 = xn−1, Xm+n = xn)

=
∑

(x1,...,xn)∈X(Ω)n,x1+···+xn=y

P (Xm+1 = x1) · · ·P (Xm+n = xn) (avec l’indépendance)

=
∑

(x1,...,xn)∈X(Ω)n,x1+···+xn=y

P (X1 = x1) · · ·P (Xn = xn)

= P (X1 + · · ·+Xn = y)

conclusion: Sm+n − Sm et Sn ont la même loi

2.1.2) b)

P (Sn > nb) P (Sm > mb) = P (Sm+n − Sm > nb) P (Sn > nb)

= P

(
m+n∑
k=m+1

Xk > nb

)
P

(
m∑
k=1

Xk > mb

)

Par le lemme des coalitions,
m+n∑
k=m+1

Xk et
m∑
k=1

Xk sont indépendantes, donc

P (Sn > nb) P (Sm > mb) = P

(( m+n∑
k=m+1

Xk > nb
)
∩
( m∑
k=1

Xk > mb
))

Comme
( m+n∑
k=m+1

Xk > nb
)
∩
( m∑
k=1

Xk > mb
)
⊂
(m+n∑
k=1

Xk > nb+mb
)
, on peut conclure :

conclusion: P (Sn > nb) P (Sm > mb) 6 P (Sn+m > (n+m)b)

2.1.3) D’après le 2.1.1) et l’hypothèse, ∀n ∈ IN∗ , P (Sn > na) > 0 et donc son logarithme est bien définie et donc

la suite aussi.

Comme γa = sup
{un
n
, n ∈ IN∗

}
, avec un = ln(P (Sn > nb)) qui est sur-additive (2.1.2), existe et γa 6 ln 1 = 0 ,

on conclut avec le 1.3.3) et le 2.1.2)b) que

la suite
( ln(P (Sn > na))

n

)
converge vers γa 6 0 ,

enfin par croissance de l’exponentielle et par définition de la borne supérieure, on a

∀n ∈ IN∗ , P (Sn > na) 6 enγa .

2.2.1) etSn = etX1 · · · etXn et par lemme des coalitions etX1 , . . . , etXn sont indépendantes et admettent une

espérance finie car t ∈ I donc E(etSn) = E(etX)n = ϕX(t)n.

Premier cas : t > 0

Pour l’inégalité, utilisons Markov : (Sn > na) = (etSn > enta) car t > 0 et l’exponentielle croissante d’où

P (Sn > na) 6
E(etSn)

enta
=
ϕX(t)n

enta
.

Deuxième cas : t = 0

L’inégalité est triviale car
ϕX(t)n

enta
= 1/1 = 1, on peut donc conclure

conclusion: ∀t ∈ I ∩ IR+ , E(etSn) = ϕX(t)n et P (Sn > na) 6
ϕX(t)n

enta

2.2.2) a)

Passons au logarithme dans l’inégalité précédente (tout est strictement positif) :

ln
(
P (Sn > na)

)
6 n ln(ϕX(t)) − nta, d’où pour n = 1, ln

(
P (S1 > a)

)
6 ln(ϕX(t)) − ta = χ(t) et comme

S1 = X,

conclusion: χ est minorée par ln
(
P (X > a)

)
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2.2.2) b) La fonction ϕX est dérivable en 0 car 0 ∈ I̊ et ϕ′X(0) = E(X0e0X) (grâce au 1.1.4d)) On en déduit en 0

que χ(t) = ln(ϕX(0) + ϕ′X(0)t+ o(t))− a+ o(t) = (E(X)− a)t+ o(t). Comme a > E(X), on a E(X)− a < 0 et donc

χ(t) ∼0 (E(X)− a)t

On en déduit que localement en 0 χ(t) est du signe (E(X)−a)t qui est strictement négatif en 0+. On peut conclure :

conclusion: χ(t) ∼0 (E(X)− a)t et ηa < 0

2.2.2) c) ∀n ∈ IN∗, ∀t ∈ I∩IR+ , ln
(
P (Sn > na)

)
6 n ln(χ(t)) , donc

ln
(
P (Sn > na)

)
n

minore χ sur ∀t ∈ I∩IR+

et par propriété de la borne inférieure (plus grand des minorants), on a :
ln
(
P (Sn > na)

)
n

6 ηa, enfin on multiplie

par n et l’on passe à l’exponentielle :

conclusion: ∀n ∈ IN∗, P (Sn > na) 6 enηa

Enfin ∀n ∈ IN∗,
ln
(
P (Sn > na)

)
n

6 ηa prouve aussi que ηa est un majorant de
{un
n
, n ∈ IN∗

}
(toujours avec

un = P (Sn > nb)) et donc γa 6 ηa < 0

conclusion: γa < 0

2.2.2) d) i. Comme X(Ω) = {0, 1}, P (X > a) > 0 si et seulement si a 6 1. Comme E(X) = p, on conclut :

conclusion: l’ensemble des a qui conviennent est l’intervalle ]p, 1]

Ensuite ϕX(t) = pet + 1 − p, donc χ(t) = ln(pet + 1 − p) − at, d’où χ′(t) =
pet

pet + 1− p
− a, χ′(t) = 0 ssi

t = ln
(a(1− p)
p(1− a)

)
= c et χ est décroissante sur [0, c] puis croissante sur [c,+∞[.

On en déduit que ηa = χ(c) =
(1− p

1− a

)
− a ln

(a(1− p)
p(1− a)

)
conclusion: ηa = ln

(1− p
1− a

)
− a ln

(a(1− p)
p(1− a)

)
2.2.2) d) ii. Comme X(Ω) = IN, P (X > a) > 0 et E(X) = λ, on conclut :

conclusion: l’ensemble des a qui conviennent est l’intervalle ]λ,+∞[

Ensuite ϕX(t) = E(etX) = e−λee
tλ (1.1.3a) donc χ(t) = λ(et − 1)− ta , χ′(t) = λet − a, on obtient comme au i) :

conclusion: ηa = a− λ− a ln(
a

λ
)

2.3.1) a)

Par la formule de transfert E(etX) et , il vient immédiatement :

conclusion:
∑

x∈X(Ω)

etX

E(etX)
P (X = x) = 1

2.3.1) b)

Étudions la série (
∑

xP (X ′ = x)) : xP (X ′ = x) = x
etX

E(etX)
P (X = x) et cette famille est sommable de somme

E(XetX)

E(etX)
, on conclut avec 1.1.4d)

conclusion: E(X ′) =
ϕ′X(t)

ϕX(t)

Avec le 1.1.4e) cette fonction de t est strictement croissante sur I.

D’autre part χ′(t) =
ϕ′X(t)

ϕX(t)
− a et comme χ présente un extremum en σ intérieur à I ∩ IR+, on a χ′(σ) = 0, soit

ϕ′X(σ)

ϕX(σ)
= a, enfin comme t > σ ,

ϕ′X(t)

ϕX(t)
>
ϕ′X(σ)

ϕX(σ)
d’où on conclut :

conclusion: E(X ′) > a

2.3.2) a) f(X ′1, . . . , X
′
n) = 1A où A = (na 6 X ′1 + · · · + X ′n 6 nb). On en déduit que E(f(X ′1, . . . , X

′
n)) =

E(1A) = P (A) = P (na 6 S′n 6 nb) =
E(f(X1, . . . , Xn)etSn)

ϕX(t)n
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D’autre part, f(X1, . . . , Xn)etSn = 1B où B = (na 6 X1 + · · · + Xn = Sn 6 nb) = C ∩ D avec (na 6 Sn) et

D = (Sn 6 nb), comme 1B = 1C · 1D et que 1DetSn = 1(Sn6nb)e
ntb 6 entb (on a égalité si Sn(ω) 6 nb et sinon on a

0 6 entb).

On a donc f(X1, . . . , Xn)etSn 6 1(Sn>na)e
ntb et par croissance , linéarité et espérance d’une fonction indicatrice :

E(f(X1, . . . , Xn)etSn) 6 P (Sn > na) entb, on conclut :

conclusion: P (na 6 S′n 6 nb) 6 P (Sn > na)
entb

ϕX(t)n

2.3.2) b) Le 1.2.2, donne π′n = P (na 6 S′n 6 nb) tend vers 1 à l’infini car a < E(X ′) < b.

De l’inégalité de la question précédente, on en déduit que

ln(π′n) 6 ln(P (Sn > na)) + ntb − n ln(ϕX(t)), ensuite on divise par n et l’on fait tendre n vers l’infini d’où on

obtient : 0 6 γa + tb− ln(ϕX(t)).

On a donc 0 6 γa + tb− χ(t) + ta d’où ηa 6 χ(t) 6 γa + t(b− a)

Donc ηa 6 γa + t(b− a)

Soit ε > 0, comme a =
ϕ′X(σ)

ϕX(σ)
, par continuité de

ϕ′X
ϕX

, on peut donc choisir t > σ tel que

|ϕ
′
X(t)

ϕX(t)
−ϕ
′
X(σ)

ϕX(σ)
| 6 ε, en prenant b =

ϕ′X(t)

ϕX(t)
+ε, ona bien b >

ϕ′X(t)

ϕX(t)
et 0 < b−a < 2ε. On a donc ηa 6 γa+t(b−a) 6

γa + 2tε, quitte à prendre un t plus petit, on peut supposer que t 6 σ + 1, donc ηa 6 γa + t(b− a) 6 γa + 2(σ + 1)ε.

En faisant tendre ε vers 0, on obtient ηa 6 γa.

Avec le 2.2.2)c), on avait γa 6 ηa. On peut donc conclure que

conclusion: γa = ηa

2.3.3) a) L’idée avec le coefficient binomial est de sommer des Bernoulli. Considérons des variables indépendantes

Xn suivant toutes une loi de Bernoulli de paramètre
1

2
.

Dans ce cas on a Xn ∼ B(n, 1/2).

On a alors Un =
∑
k∈An

2nP (Sn = k) = 2nP (Sn ∈ An)

Or (Sn ∈ An) =
(
Sn > (

1

2
+ α)n

)
∪
(
Sn 6 (

1

2
− α)n

)
(réunion disjointe)

D’autre part k 6 (
1

2
− α)n si et seulement si n− k > (

1

2
+ α)n.

On en déduit (comme
(
n

k

)
=

(
n

n− k

)
) que

Un = 2nP
(
Sn > (

1

2
+ α)n

)
/2 = 2n−1P

(
Sn > (

1

2
+ α)n

)
.

On a donc
1

n
lnUn =

n− 1

n
ln 2 +

1

n
ln
(
P
(
Sn > (

1

2
+ α)n

))
Avec le 2.2.2d) lim

n→+∞

1

n
lnUn = ln 2 +

(1− p
1− a

)
− a ln

(a(1− p)
p(1− a)

)
avec p =

1

2
et a = α+

1

2
.

conclusion: lim
n→+∞

U
1
n
n =

1

(1/2− α)1/2−α(α+ 1/2)α+1/2

2.3.3) b)

On redémontre (le faire !) que la somme de deux loi de Poisson indépendante est une loi de Poisson de paramètre

la somme des paramètre. On considère donc une suite (Xn) indépendantes qui suivent toutes une loi de Poisson de

paramètre λ.

Comme au a) on a e−nλTn = P (Sn > αn) avec Sn ∼ P(nλ).

On en déduit lim
n→+∞

1

n
lnTn = a− a ln(

a

λ
) avec a = α d’où

conclusion: lim
n→+∞

T
1
n
n = eα(

λ

α
)α
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