SPE MP · · · · · 2025-2026

PROGRAMME DE COLLE 11:

COURS + EXERCICES : TOUT SUR LA RÉDUCTION

Sous-espaces stables par un endomorphisme

f induit sur un SEV F stable un endomorphisme de F noté \widehat{f} .

Polynôme d'endomorphismes et de matrices - $\ker P(f)$ et imP(f) sont stable par f-polynôme annulateur - structure d'idéal de l'ensemble des polynômes annulateurs d'un endomorphisme.

Polynôme minimal (noté Π_f) : existence en dimension finie.

Structure de $\mathbb{K}[f]$ et sa dimension égale au degré de Π_f .

Théorème de décomposition des Noyaux (TDN).

Valeurs propres - Spectre - Vecteurs propres - Sous-Espaces propres d'endomorphismes.

Stabilité : Si $f \circ g = g \circ f$ alors pour toute valeur propre λ de $f : E_{\lambda}(f)$ est stable par g.

Théorème fondamental : Les sous-espaces propres sont en somme directe.

Polynôme d'endomorphisme et éléments propres- valeurs propres possible d'un endomorphisme.

Spectre d'une homothétie, d'un projecteur, d'une symétrie.

Valeurs propres - Spectre - Vecteurs propres des matrices - Immersion $\mathbb{R} \subset \mathbb{C}$.

Matrices semblables et éléments propres.

Polynôme caractéristique : $\chi_f(x) = x^n - tr(f)x^{n-1} + \cdots + (-1)^n \det f$. Les étudiants doivent connaître et démontrer les 3 coefficients "connus".

Le polynôme caractéristique de \widehat{f} induit par f sur un SEV F stable divise le polynôme caractéristique de $f:\chi_{\widehat{f}}(x)|\chi_f(x)$.

Ordre de multiplicité m_{λ} d'une valeur propre; $1 \leq \dim E_{\lambda} \leq m_{\lambda}$.

Théorème de Cayley-Hamilton (démonstration non exigible (exigible pour les meilleurs))

lacktriangle Le polynôme caractéristique et le polynôme minimal de f ont les mêmes racines.

Réduction en dimension finie :

Diagonalisation : f est diagonalisable si la somme des sous-espaces propres est égale à E.

<u>lère caractérisation</u>: Caractérisation avec une base de vecteurs propres ou avec une matrice diagonale dans une bonne base.

- 2ème caractérisation : $\chi_f(X)$ est scindé et pour toutes les valeurs propres : dim $E_{\lambda} = m_{\lambda}$ Polynôme d'endomorphisme et réduction :
- $\fbox{\ 3\`{e}me\ caract\'erisation}: f$ s'annule sur un polynôme scindé et n'ayant que des racines simples Polynôme minimal d'un endomorphisme diagonalisable.

Si f est diagonalisable et F stable par f alors \widehat{f} est aussi diagonalisable.

Endomorphisme trigonalisable :

• **caractérisation** : f est trigonalisable SSI le polynôme caractéristique de f est scindé sur \mathbb{K} .

Réduction des matrices : matrices diagonalisables - trigonalisables

• Endomorphismes nilpotents - indice de nilpotence.

 $\overleftarrow{\text{Equivalences}}: f \text{ est nilpotent} \iff f \text{ est trigonalisable avec 0 comme seule valeur propre} \iff \chi_f = x^n.$

- Réduction des endomorphismes nilpotents dans le cas où dim $E=n, f^n=0$ et $f^{n-1}\neq 0$
- Soit $f \in \mathcal{L}(E)$ un endomorphisme tel que $\Pi_f(X)$ soit scindé dans \mathbb{K} . Alors E se décompose en somme directes de SEV stables par f sur chacun desquels f induit la somme d'une homothétie et d'un endomorphisme nilpotent.

Étude exhaustive de la réduction en dimension 2 et 3.

Prévisions : EVN