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DM 6
Électromagnétisme

Exercice 1 : Approximation des régimes quasi-stationnaires
L’objet de cet exercice est de dégager ce que recouvre l’approximation des régimes quasi-stationnaires en
électromagnétisme (notée dorénavant ARQS).

Formulaire :
• Formule sur les opérateurs vectoriels : −→rot(−→rotA⃗) = −−→grad(divA⃗) − ∆A⃗

• Opérateurs vectoriels en coordonnées cylindriques :
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• Constantes : ε0 = 8,85 × 10−12 F · m−1 ; µ0 = 4π · 10−7kg · m · A−2 · s−2 ; c = 3 × 108 m · s−1.

Q.1 Enoncer les équations de Maxwell en présence de charges et de courants. Pour chacune d’entre elles,
en donner la forme intégrale.

I – Condensateur plan en régime sinusoïdal forcé
On considère un condensateur plan constitué de deux armatures planes de forme circulaire, d’axe (Oz) et
de rayon R, distantes de e (Figure 1.a). L’espace interarmatures est vide et la charge totale stockée sur
l’armature supérieure du condensateur est donnée en notation complexe par :

Q(t) = Q0e
iωt

avec Q0 réel positif). On suppose que R ≫ e, de sorte à pouvoir négliger tout effet de bord. Vu la géométrie
du problème, on travaille en coordonnées cylindriques (r, θ, z) d’axe d’axe (Oz). On s’intéresse ici à un régime
non stationnaire de fonctionnement, en l’occurrence un régime sinusoïdal forcé de pulsation ω.

Q.2 Par une analyse des symétries et invariances du problème, déterminer la forme a priori du champ
électromagnétique (E⃗, B⃗) entre les armatures.
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Un raisonnement en ordre de grandeur (non demandé) montre qu’il est légitime de négliger les effet de bords,
donc de chercher le champ électromagnétique sous la forme :{

E⃗ = E(r, t) u⃗z

B⃗ = B(r, t) u⃗θ

Q.3 Montrer à partir des équations de Maxwell que la fonction E(r, t) vérifie entre les armatures l’équa-
tion :
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On cherche les solutions complexes de la forme : E(r, t) = E0f(r)eiωt avec ω la pulsation des oscillations et
f(0) = 1. On définit la variable réelle u = ωr

c
.

Q.4 Établir l’équation différentielle à laquelle obéit f(u), qu’on ne cherchera pas à résoudre. La solution
de cette équation s’écrit :
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Q.5 Par application de l’équation de Maxwell-Faraday, déterminer l’expression du champ magnétique com-
plexe B(r, t) en fonction de f(r) et des constantes du problème (on prendra la constante d’intégration
nulle).

On désire maintenant trouver le développement perturbatif du champ électromagnétique à l’intérieur du
condensateur. La forme du champ électromagnétique est la même que précédemment, puisque les hypo-
thèses sont les mêmes. En particulier, les effets de bord sont négligés. Nous travaillons toujours en notation
complexe.

L’idée fondamentale du traitement est la suivante : à l’ordre le plus bas, le champ électrique entre les
armatures est approximativement uniforme (comme en électrostatique) soit en notation complexe : E⃗0 =
E0e

iωt
u⃗z avec E0 réel. Comme ce champ varie au cours du temps, il crée un champ magnétique B⃗1 =

B1(r, t)u⃗θ variable et non uniforme a priori. Ce champ magnétique engendre à son tour un champ électrique
E⃗2 = E2(r, t)u⃗z, qui crée lui même un champ magnétique B⃗3 = B3(r, t)u⃗θ, qui engendre E⃗4 = E4(r, t)u⃗z,
etc. Lors des intégrations successives, on ne retiendra que les solutions nulles sur l’axe.

Q.6 Partant de la première expression approchée du champ électrique E⃗0, déterminer le champ magnétique
B⃗1 par application de l’équation de Maxwell-Ampère.

Q.7 La présence du champ magnétique modifie le champ électrique, en apportant le terme correctif E⃗2. De
quel phénomène s’agit-il ? À l’aide de l’équation de Maxwell appropriée, déterminer ce terme correctif
E⃗2.

Q.8 Réitérer ce raisonnement pour aboutir à B⃗3 et E⃗4.

Q.9 Montrer alors que l’expression du champ électrique complexe E(r, t) à l’ordre 4 en u = ωr

c
s’écrit :
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Q.10 Montrer que l’expression du champ magnétique complexe B(r, t) à l’ordre 3 en u s’écrit :

B(r, t) ≈ i B0

(
u
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)
e
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on précisera l’expression de B0 en fonction de E0.
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Q.11 Par application du théorème de Gauss à une surface bien choisie, déterminer l’expression de l’am-
plitude réelle E0 en fonction des paramètres du condensateur. Le théorème de Gauss étant valable
à toute fréquence, on peut choisir de se placer à basse fréquence pour répondre à cette question. En
déduire B0.

II – Solénoïde infini en régime sinusoïdal forcé
On cherche à déterminer le champ électromagnétique créé par un solénoïde infini, parcouru par une intensité
I(t) = I0e

iωt en notation complexe avec I0 un réel positif. Ce solénoïde de section circulaire comporte n
spires jointives par unité de longueur.

Q.12 Qu’entend-on par l’expression "solénoïde infini" ? Déterminer la forme a priori du champ magnétique.

D’après les hypothèses, on peut montrer qu’il est légitime de chercher le champ électromagnétique sous la
forme : {

E⃗ = E(r, t) u⃗θ

B⃗ = B(r, t) u⃗z

Q.13 Trouver l’équation à laquelle obéit B(r, t).

Le principe est le même que précédemment : à l’ordre le plus bas, le champ magnétique dans le solénoïde
est approximativement uniforme (comme en magnétostatique) soit en notation complexe : B⃗0 = B0e

iωt
u⃗z

avec B0 réel. Comme ce champ varie au cours du temps, il crée un champ électrique E⃗1 = E1(r, t)u⃗θ, etc.

Q.14 Déduire de la partie précédente, l’expression approchée du champ magnétique à l’ordre 4 en u.

Q.15 Par application de l’équation de Maxwell qui convient, déterminer E1(r, t) et en déduire l’expression
du champ électrique à l’ordre 3 en u.

Q.16 Quel est le domaine fréquentiel de validité du théorème d’Ampère ? Par application du théorème
d’Ampère à un contour bien choisi, déterminer l’amplitude réelle B0 en fonction des paramètres du
solénoïde.

III – Approche énergétique

On fait maintenant l’hypothèse d’un régime lentement variable, c’est-à-dire que l’on suppose que u = ωr

c
≪ 1

dans toutes les expressions calculées ci-dessus. On suppose négligeables tous les termes d’ordre supérieur ou
égal à 2 dans les expressions des champs.

Q.17 Evaluer en ordre de grandeur le domaine de fréquences correspondant à cette approximation pour
les composants utilisés usuellement en montage d’électricité ou d’électronique. Cette approximation
vous semble-t-elle raisonnable ?

Q.18 D’après ce qui précède, donner l’expression du champ électromagnétique réel (E⃗, B⃗) à l’ordre 1 en
ωr

c
pour le condensateur d’une part et pour le solénoïde d’autre part.

Q.19 Que peut-on dire, en ordre de grandeur, du rapport
∣∣∣∣ E

cB

∣∣∣∣ pour ωr

c
≪ 1 dans le condensateur d’une

part et dans le solénoïde d’autre part ?

Q.20 Dans les deux cas, donner l’expression de la densité volumique instantanée d’énergie électromagné-
tique uem(r, t) toujours dans le cadre de l’approximation ωr

c
≪ 1.

Q.21 Quelle approximation est-il légitime de faire dans l’expression de uem(r, t) suivant que l’on soit dans
le cas du condensateur ou du solénoïde ? Quel système peut-on qualifier de système à dominante
électrique ? magnétique ?
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Q.22 Calculer le vecteur de Poynting Π⃗(r, t) dans le condensateur d’une part et dans le solénoïde d’autre
part, toujours pour ωr

c
≪ 1.

Q.23 Effectuer un bilan énergétique global sur la zone d’espace correspondant à l’intérieur du condensateur
d’une part, du solénoïde d’autre part. Commenter.

IV – Premier contact avec l’ARQS

Q.24 Dans l’hypothèse des régimes lentement variables énoncée et étudiée ci-dessus (ωr

c
≪ 1), déduire de

ce qui précède que l’équation de Maxwell-Faraday pour un système « à dominante électrique » s’écrit
de manière approchée sous la forme : −→rotE⃗ = 0⃗. Que peut-on dire de l’équation de Maxwell-Ampère ?

Q.25 De même, pour un système « à dominante magnétique », donner l’expression approchée des équations
de Maxwell-Faraday et Maxwell-Ampère en régime lentement variable.

On vient d’établir que la notion d’approximation des régimes quasi–stationnaires est ambigue. On parlera
plutôt d’ARQS magnétique ou d’ARQS électrique. Dans l’ARQS magnétique, on peut montrer que l’équa-
tion locale de conservation de la charge est la même qu’en statique : div⃗j ≃ 0. Dans ces conditions, on
retrouve notamment la loi des nœuds et les lois usuelles de l’électrocinétique, qui relèvent donc de l’ARQS
magnétique (la loi des nœuds n’existe pas dans l’ARQS électrique !). En pratique, sauf dans des systèmes
« pathologiques » comme les condensateurs, l’ARQS se confond avec l’ARQS magnétique. La raison est
simple : les conducteurs sont neutres, donc la densité volumique de charge est nulle en général, alors que
des courants peuvent circuler. Par conséquent, c’est la limite magnétique de l’ARQS qui nous est familière
et que l’on nomme souvent tout simplement ARQS.

• • • FIN • • •
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