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# NainsChevaliersExecution.py

01| from numpy import *

002| from numpy.linalg import *

003 |

004 |

005| def vidage(n,X): # vidage effectue les n
distributions a partir de X

006 | Y=X;

007 | for i in range(0,n):

008 | for j in range(0,n):

009 | if jl=i:

010| Y[31=Y[j1+Y[11/(n-1)
011 Y[1]=0

012| return(Y)

013

014| def mat(n):

015| M=[1]

016 | for j in range(n):

017 | X=list(n*[0])

018| X[j1=1

019| Y=vidage(n,X)

020 M=M+Y

021 A=reshape(M, (n,n)) #matrice de taille n*n
022 | A=A.transpose() # on transpose
023 return(A)

024 |

025|

026| def normalisation(X,c): # fonction qui renvoie le
vecteur c.X

027 Y=X[::]

028 for i in range(len(X)):
029 Y[i]=c*Y[i]

030 | return(Y)

031]

032

033| X=[1,20,300,14,175,784]
034| n=6

035| print('voici la distibution de départ: ',X)
036| for i in range(0,100):

037| X=vidage(n,X)

038| print(' et voici la distibution apres 100
passages: ',bX)



039| print(' et voici la distibution apres 101

passages: ',vidage(n,X))

040 |

041| print(' et voici X normalisé : ',normalisation(X,
(n-1)/X[0]))

042 |

043| print('idem avec une autre dimension et un autre
vecteur...")

044 |

045| X=[0,2,1300,14,1]

046| n=5

047| print('voici la distibution de départ: ',X)
048| for i in range(0,100):

049 | X=vidage(n,X)

50| print(' et voici la distibution apres 100
passages: ',X)

051| print(' et voici la distibution apres 101
passages: ',vidage(n,X))

052

053| print(' et voici X normalisé : ',normalisation(X,
(n-1)/X[0]))

054 |

055

056| #A =

matrix((5/8,3/4,1/2,3/8,1/4,1/2,0,0,0)).reshape((3,3))
057| print(' et voici la matrice qui effectue les n
transformations : ')

058| A=mat(4)

059| X= matrix((7,2,3,10)).reshape((4,1))
#distribution de départ

060| print('A',A)

061| print('AX=',A*X) # renvoie toto(n,X)

062| print('et voici vidage(4,X)',vidage(4,
[7,2,3,10]))

063| print('eigvals(A)="',eigvals(A)) # valeurs propre
de A

064 | print('eig(A)="',eig(A)) # vecteurs propre de A
065| print('Remarque: la présentation de eig(A) n''est
pas tres facile!!!l")

066| print('eig(A) fournit un premier tableau des
valeurs propres puis une matrice')

067| print('des vecteurs propres en colonne: si on
regarde bien on retrouve bien ')



068| print('le vecteur [3,2,1,0] qui est solution du
probléeme')

069 |

070| print('Voir la page Maple qui suit')

071]

072| #ET L'EXECUTION :

073]

074| #In [1]: (executing lines 1 to 70 of
"NainsChevaliers.py")

075| #voici la distibution de départ: [1, 20, 300,
14, 175, 784]

076| # et voici la distibution apres 100 passages:
[431.33333333333326, 345.0666666666666,
258.79999999999995, 172.5333333333333,
86.26666666666665, 0]

077| # et voici la distibution apres 101 passages:
[431.33333333333326, 345.0666666666666,
258.79999999999995, 172.5333333333333,
86.26666666666665, 0]

078| # et voici X normalisé : [5.0, 4.0, 3.0, 2.0,
1.0, 0.0]

079| #idem avec une autre dimension et un autre
vecteur...

080| #voici la distibution de départ: [0, 2, 1300,
14, 1]

081| #et voici la distibution apres 100 passages:
[526.8, 395.09999999999997, 263.4, 131.7, 0]

082| # et voici la distibution apres 101 passages:
[526.8, 395.09999999999997, 263.4, 131.7, 0]

083| # et voici X normalisé : [4.0, 3.0, 2.0, 1.0,
0.0]

084| # et voici la matrice qui effectue les n
transformations :

085| #A [[ 0.45679012 0.59259259 0.44444444
0.33333333]

086| # [ 0.34567901 0.25925926 0.44444444
0.33333333]

087| # [ 0.19753086 0.14814815 0.11111111
0.33333333]

088| # [ 0. 0. 0. 0.

1]

089| #AX= [[ 9.04938272]

090| # [ 7.60493827]



091| # [ 5.34567901]

092| # [ O. 11]

093| #et voici vidage(4,X) [9.049382716049383,
7.604938271604939, 5.34567901234568, 0]

094 | #eigvals(A)= [ 1.00000000+0.j
-0.08641975+0.06983771j) -0.08641975-0.06983771j
095| # 0.00000000+0.] ]

096| #eig(A)= (array([ 1.00000000+0. ] ,
-0.08641975+0.06983771j,

097| # .0.08641975-0.06983771j, 0.00000000+0. ]
1), array([[ 0.80178373+0.] . 0.70710678+0. ]
098| # 0.70710678-0. ] . -0.86602540+0. ]
1,

099| # [ 0.53452248+0. ,

-0.47140452+0. 333333337,

100| # 20.47140452-0.33333333j, 0.28867513+0. ]
1,

101| # [ 0.26726124+0. ,
-0.23570226-0.33333333],

102| # 20.23570226+0.33333333j, 0.28867513+0. ]
1,

103| # [ 0.0000000040. ] . 0.00000000-0. ]
104| # 0.00000000+0. j . 0.28867513+0.

11))

105| #Remarque: la présentation de eig(A) nest pas
tres facile!!!

106| #eig(A) fournit un premier tableau des valeurs
propres puis une matrice

107| #des vecteurs propres en colonne: si on regarde
bien on retrouve bien

108 | #le vecteur [3,2,1,0] qui est solution du
probleme

109| #Voir la page Maple qui suit



> with(linalg):
Warning, the protected names norm and trace have been redefined and unprotected
> vidage:=proc(n,X)
local Y,1i,j;
Y:=X;
for i from 1 to n do
for j from 1 to n do

if j<>i then Y[jl:=Y[j1+Y[il/(n-1);
fi;
od;
Y[i]:=0;
od;
Y; #le "return"

end:
X:=[1,2,123.,3,87];

VVVVVVVYV VVYVYV

X :=[1, 2, 123., 3, 87]

> X:=vidage(5,X);
X := [72.07128905, 71.50878905, 40.55566405, 31.86425780, 0]
> for i from 1 to 10 do X:=vidage(5,X);od;
:= [86.68703935, 64.30538652, 44.06660174, 20.94097232, 0]

X
X := [86.39449475, 64.90020816, 43.09204612, 21.61325092, 0]
X := [86.40891736, 64.78420940, 43.20536496, 21.60150821, 0]
X := [86.39807014, 64.80146046, 43.20040946, 21.60005990, 0]
X := [86.40019636, 64.79995186, 43.19990898, 21.59994278, 0]
X := [86.39999382, 64.79999358, 43.20000400, 21.60000858, 0]
X := [86.39999889, 64.80000088, 43.20000076, 21.59999947, 0]
X := [86.40000017, 64.80000002, 43.19999986, 21.59999998, 0]
X := [86.40000001, 64.79999999, 43.20000001, 21.60000001, 0]
X := [86.40000000, 64.80000000, 43.20000000, 21.60000000, 0]
X:=[x,y,z];
X := [x, vy, z]
> X:=vidage(3,X);
X :=[3/4y+5/8x+1/2 2z, 1/2z + 3/8x + 1/4 vy, 0]

> A:=matrix(3,3,[5/8,3/4,1/2,3/8,1/4,1/2,0,0,0]);
[5/8 3/4 1/2]

[ ]
A = E3/8 1/4 1/2%

[0 0 0]
> eigenvects(A); # les éléments propres
1, 1, {f2, 1, 0131, [-1/8, 1, {[1, -1, 01}1, [0, 1, {[-2, 1, 11}]
matriceVidage:=proc(n) # Matrice de 1’opération de vidage
local X,Z,A,1,];
X:=[seq(x[i],i=1..n)];
Z:=vidage(n,X);A:=matrix(n,n);

for i from 1 to n do
for j from 1 to n do

Ali,jl:=coeff(Z[i],x[j]1,1);
od;od;
evalm(A) ;end:

V:=matriceVidage(3) ;kernel (V-1);
[5/8 3/4 1/2]

[ ]

Vo= E3/8 1/4 1/2%
[ O 0 0]
{[2, 1, 0]}

VVVVYV VVYVYVYVYV



> V:=matriceVidage(7) ;kernel (V-1);

VvV

70993

[0,

(279936

0

16807 2401
46656 = 7776
9031 2401
16656 7776
7735 1105
16656 = 7776
6223 889
46656 = 7776
4459 637
46656 = 7776
2401 343
46656 = 7776
; 0,
{6, 5, 4, 3,

343 49
* 1206 © 216
343 49
" 1206 216
343 49
* 1206 © 216
127 49
* 1206 © 216

91 13
* 1206 © 216
49
—-, T7/216
1296
0, 0,
2, 1, 0]}

7/36

7/36

7/36

7/36

7/36

1/36

1/65
1/65
16
16
1/65

1/6]




E.P.I.T.A.

Corrigé de I'épreuve de mathématiques (3 h)

1°) Calculs de probabilités conditionnelles
a) La probabilite Pop (AB,, ) est la probabilité, sachant que A et B sont face a face, que

A et B ratent leurs cibles, et par indépendance des résultats des tirs, c'est % X % = %.
b) La probabilité Pop (A,,;) est la probabilité, sachant que A et B sont face a face, que

A réussisse son tir et que B rate le sien.

Par indépendance des résultats des tirs, c'est % X % = ‘9—‘.
De méme, on s'assurera que Ppp, (B,11) = é.
Enfin, la probabilité¢ Pp (Q,1) est la probabilité, sachant que A et B sont face a face,

que A et B réussissent leurs tirs, et par indépendance des résultats des tirs, c'est % x é = %.

¢) Comme (AB,, A,, B,, ®,) forme un systéme complet d'événements, la formule des
probabilités totales montre que la probabilité P(AB,,, ;) est égale a :

Pag,(AB,+1)P(AB,) + P4, (AB, ) P(A,) + Pg,(AB,, ) P(B,) + [P(Z)n (AB,,, ) P(]),).
Comme Py, (AB,,|) =Pg,(AB,,1) =Py (AB,,;) =0, il reste donc :
2
P(AB,.1) =Psg,(AB, 1) P(AB,) = 5 P(AB,).
En raisonnant de méme, et en n'écrivant que les termes non nuls, on obtient :

4

P(A,41) =Pap, (Aus1) P(AB,) + Py (A, 1) P(A,) = 9 P(AB,) +P(Ay).
1

P(B,11) =Pag,(B,+1) P(AB,) + P, (B, 1) P(B,) = 5 P(AB,,) + P(B,).

2
P(®,11) =P, (@, ) P(AB,) + Py (D, ) P(Dn) = 5 P(AB,) +P(®y).

Ces relations se traduisent matriciellement comme suit :

2 4 1 2
9 9 9 9
E,. =E, 01 0 0]
0010
0 001
Et par récurrence facile, on a donc E,, = E, M" = (1, 0, 0, 0) M" ou M est stochastique.

2°) Diagonalisation de la matrice M

a) La matrice M étant triangulaire, on lit sur sa diagonale ses valeurs propres : %, I, 1, 1.
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b) Le sous-espace propre associé a % est clairement la droite Vect(e;) ou e; = (1, 0, 0, 0).

En effet, si v est le vecteur de composantes x;, X,, X3, X, dans la base canonique de C*,

alors I'égalité M v = % v équivaut a x, = x3 = x4 = 0.

Le sous-espace propre associ¢ a 1 est I'hyperplan d'équation 7 x; —4x, —x3 —2 x4 = 0.

En effet, si v est le vecteur de composantes x;, X,, X3, X, dans la base canonique de C*,
alors 'égalité M v =v équivauta 7x; —4xy, —x3 —2x4 = 0.

Il est de dimension 3 en tant qu'hyperplan de R*, et la somme des dimensions des sous-
espaces propres de M étant égale a 1 + 3 = 4, la matrice M est diagonalisable.

¢) On considere 3 réels x, y, z et la matrice P définie par :
Il x y z
0700
0070
0007

. crn 2
Le premier vecteur-colonne de P est vecteur propre associé a 5

Les vecteurs-colonnes suivants ne peuvent étre associés a la valeur propre 2/9, et ils sont
associés a 1 s'ils vérifient 7x; —4xy, —x3—2x4 =0.Clestlecassix=4,y=1,z=2.

La matrice P obtenue est inversible puisqu'elle est triangulaire avec det(P) = 73 # 0.

En désignant par (e}, e,, e3, e,4) la base canonique de C*, on observe que :
Pe =e,Pey=4e1+7ey, Pes=e;+7e3, Pey=2e1+7ey.
Il en résulte que :
7e,=Pe;—4Pe;,7e3=Pes—Pe;,7es=Pes—2Pe.
Puis en multipliant par P!
Ple =e, 7P ley=ey,—4de;, TP es=e3—e;, TP leg=e,—2e.
La matrice inverse de P en résulte aussitot :

1 41 2 7 -4 -1 -2

0700 Lo 1o 1 0 o
P= et P '=-—

0070 0 O 1 0

000 7 0O 0 O 1

Sans faire aucun calcul, on observe que P est la matrice de passage de la base canonique a

a2
une base de vecteurs propres associés a 5 1,1, 1.

Ainsi, P~' M P est la matrice de l'endomorphisme canoniquement associé a M dans la base
de vecteurs propres précédente, et c'est donc la matrice suivante :

2.0 0 0
9
p=p'mMp=[0 1 0 0}
0 0 1 0
0 0 0 1




3°) Probabilités pour que A ou B remportent le combat
a) Par définition de la convergence d'une suite de matrices dans M,(C), on a :

0 0 0 O
0 1 0 0
lim D" = :
n— +oo 0 0 1 0
0 0 0 1
Et par continuité des opérations matricielles, on a :

lim M" = lim PD”P‘I:P( lim D”)P‘l
n— +oo n— +00 n— 400
1412Y0 0 0 0Y(7 -4 -1 =2 0412
~1{o7o00ffo 1 0o offo 1 0 of 1|0o700
7100700 o 1 oflo o 1 o] 7|l0o07 0]
0o007J)lo o o 1/)lo 0o o 1 0007

b) Comme E,, = (1, 0, 0, 0) M", on a lim E, = (1, 0, 0, 0) lim M" = (0, S %)

Donc A et B remportent le combat avec les probabilités % et %, tous deux étant éliminés

avec la probabilité %

4°) Durée moyenne du combat
a) On a clairement P(7 =1)=P(A; UB;U®)), et ces trois événements étant deux a

deux incompatibles, il vient P(7T = 1) = P(A) + P(B;) + P(});) = g + é + % = %.

b) Pour tout entier naturel n, ona AB; (VAB, () ... (VAB,, = (T > n) car:

- si I'événement AB, () AB, () ... () AB,, a lieu, le combat n'est pas fini & la n°™ épreuve.

- si le combat n'est pas fini a la n°™ épreuve, A et B sont encore en présence a ce moment
et I'événement AB; () AB, () ... [ ) AB,, est bien réalisé.

Il en résulte qu'on a :

[P(T > n) = [P(AB] m ABZ m ﬂ ABn) = [P(ABI)[PABI(ABZ) [PABlﬁ.-- ﬁABn_l(AB”)'
Il en résulte que P(T > n) = (%)" etcomme (T >n-1)=T=n)UJ(T >n),ona:
2 n—1 2\" 7 (2 n—1
[P(T:n):[P(T>n—1)—[P(T>n):(—) —(—) = —(—) .

9 9 919
On reconnait une loi géométrique de parametre 2/9.

c¢) Un simple calcul faisant intervenir la série gé¢ométrique conduit a :

pREED Y
— 9 ~\9 91-2/9
n=1 n=1

De méme, un calcul calcul faisant intervenir la série-dérivée de la série géométrique donne :

+o00 7+oo 2 n—1 7 1 9
E TW = P ]Y: = — — = - — =
(T) Z}n (T =n) 921,4(9) T
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m Partie II
5°) Premiers résultats de convergence
a) Considérons deux matrices 4, B €S, et montrons que C = AB€ S,
* les coefficients ¢; ; = ZZ:] a; i by ; sont positifs puisque les a;, et by v le sont.
* les sommes des lignes de C = AB valent 1 puisqu'onapour 1 <i<n:
n n
ZC‘J Z Z aj b j =Z Zaikbkj =Z i Zbk, :Z aj = 1.
j=1\k=1 k=1\,=1 k=1 k=1
Il en resulte aussitot que les puissances d'une matrice stochasthue sont stochastiques.

b) Si (M,) est une suite de matrices stochastiques convergeant vers M, on sait que

les coefficients m ) de M, convergent vers les coefficients m; ; de M, et donc :

m®

e les coefficients m; ; = limy _, ., m;’; sont positifs puisque les m( ) le sont.

ij
* les sommes des lignes de M valent 1 puisque les lignes des M}, Valent l:
. . k k k
Viel[l,n], mj+mp+ ... +m, = kl_l)t}g@(mfl) + mfz) + ..+ mﬁ,}) =1.

¢) Si la suite (M k) converge vers L, la suite (M 2 k) converge aussi vers L en tant que suite
extraite de (M k), et elle converge vers L? en remarquant que M>* = M*x M*.

Par unicité de la limite, on a L?> = L et L est une matrice de projection.

5.d) 11 s'agit donc d'établir que la suite k — C}, converge vers L = lim M*, autrement dit
que la suite réelle [|Cy, — L|| , converge vers 0. A cet effet, remarquons d'abord que :

n

1 1 <
ICe = Lllg = —— DM -L)l = EHM"—LHOO

5=0 Lontlig
Par ailleurs, comme L = lim M*, on a par définition :
(Ve>0), ANeN), (¥neN): n=N = |M*-LI|_ <e
Pourn = N, on a donc :

1 N-1 1 n
_ L k K
10~ % g St -t = i Sl

La premiére somme Zk:ol ||M k- L||Oo est une constante C.

La seconde somme compte moins de n + 1 termes, tous inférieurs a .
On en déduit que :

1Ck = Lll, =

+ &
Le premier terme tend vers 0 et est aussi inférieur a € pour n = o1
&

Ainsi donc, on a ||Cy — L|| <2 &pourn = maX(N, c_ 1).
&

Comme ¢ > 0 est arbitraire, cela signifie par définition que lim Cj, = L




6°) L'espace C" est somme directe de Ker(M — I,,) et de Im(M — 1))
a) Si M est stochastique, on a M v| = v| car la somme des lignes de M vaut 1.

b) Pour tout x € C", on a compte tenu de la positivit€ des coefficients m; ; de M :
n n n
Viell,nl, | mijxil = > mijle] < > mijlixle = ¥l
j=1 j=1 j=1

Cette majoration étant valable pour tout i, on en déduit que ||M x|l < ||¥]|co-
En particulier, si A est une valeur propre de M et x un vecteur propre associé (donc non nul),
ona [|[Mxlle = llA x|l = 1A] [Ix]loo = [I¥]leo, d'ou [A] < 1.
On en déduit que |Det(M)| < 1 puisque Det(M) est le produit des n valeurs propres de M, et
on a par inégalité triangulaire |Tr(M )| < n puisque Tr(M) est leur somme.

Ajoutons que la matrice /, est stochastique et réalise les égalités ci-dessus.

¢)Siy=Mx—xelm(M - 1,) (\Ker(M —I,), ona My = y, et en composant par M :

y=Mx —x, y:sz—Mx, e y:Mk_lx—Mk_zx, y:ka—Mk_lx.
Par addition, on obtient k y = M* x — x, et puisque M* € S, (qui est stable par produit) :
1 1 2 Ixlleo
IVl = = M x| < = (||M*x]|_ +IIxle) < :
o = 2 0o = 7 (0o + el = 2

d) En faisant tendre k vers +oo, on en déduit y = 0.

On a donc Im(M - I,) ( Ker(M - I,,) = {0}. Ainsi, la somme Im(M - I,,) ® Ker(M — I,,) est
directe, et comme le théoréme du rang montre que sa dimension est n, on a établi que
Im(M - I,)®Ker(M - 1,,) = C".

7°) Etude de la convergence de la suite k — C.
a) Pour tout x e C", posons x = x; + x, ou x; e Ker(M — I,)) et x, e Im(M — I,).
On adonc M x| = x; etil existe zeC" tel que x, = Mz —z, ce qui donne :

C.x=
k k+1

Compte tenu de M* € S, (qui est stable par produit) et de la question 6°, on en déduit :

1 1 2|l
_ — k+1 k+1 ®
ICx = xill = — Mtz -2 < P (M 2|+ llzlleo) < P

Comme x; = Px, on obtient en faisant tendre & vers +oo : lim C; x = Px.

b) Quitte a appliquer ceci aux vecteurs ey, ..., e,, on observe que Cy e;, qui n'est autre que
la /™ colonne de Cy, converge vers Pe 7, qui n'est autre que la ™ colonne de P.

Ainsi, chaque ¢élément de C; a pour limite 1'élément correspondant de P, ce qui signifie que
la suite (C;) converge vers P au sens de || . ||, (ou de toute autre norme, qui est équivalente

puisque l'espace vectoriel M,,(C) est de dimension finie).

¢) Si la suite (M k) converge vers L, on a démontré que (C,) converge aussi vers L, et
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comme on vient de voir que (C;) converge vers P, ceci implique que si (M k) converge,
c'est vers la matrice de projection P sur Ker(M — I,,) dans la direction Im(M — I,).

8°) Etude de la convergence de la suite k — M*
a) Si A # 1 est valeur propre de M et si x est vecteur propre associé, on a Mx = A x.
Donc (M —I))x=QA—-1)x,doux =M - 1) /\le elm(M - I,).

I1 en résulte que Ker(M — A I,,)) c Im(M — I,,) pour A valeur propre de M distincte de 1.

b) Par conséquent, la somme directe des sous-espaces propres associés aux valeurs propres

A # 1 est bien incluse dans Im(M — 1,,).

Et comme M est diagonalisable, la somme directe des sous-espaces propres de M est C” :
Ker(M —1,) ®Ker(M — A, I,)® ... ®Ker(M — A, In) =C".

On en déduit que Zfzz dim(Ker(M — A; 1,,)) = n — dim(Ker(M — 1,,)) = dim(Im(M - I,,)).

Et comme la somme directe des sous-espaces propres associées aux valeurs propres autres

que 1 est incluse dans Im(M — 1)), cette égalité des dimensions donne le résultat voulu :

Ker(M — 2, 1,)® ... ®Ker(M — A, 1,) = Im(M — 1,).

c) Comme M diagonalisable, tout vecteur x peut s'écrire x = x| +x; + ... +Xx, ou chaque x;
appartient au sous-espace propre Ker(M — A; I,,) et vérifie donc M x; = A; x;.
Notons que x; étant la projection sur Ker(M — I,) dans la direction de la somme des autres
sous-espaces propres dont on a vu qu'elle est égale a Im(M — I,,), c'est la projection sur
Ker(M — I,,) dans la direction Im(M — I,,), de sorte qu'on a bien x; = P x.
Par ailleurs, comme on a M x; = A; x; pour 1 <i < p avec A = 1, il est clair que :
VikeN, MFx =X +?L12‘x2 + .. +?L]1‘7xk.

On en déduit que M* x — Px = M¥x — x| = Agxz + .. +/1][‘,xk.
Par inégalité triangulaire, on a alors :

||ka - Px”oo < L Il + o + |/\p|k [l -
Les valeurs propres A,, ..., A, autres que 1 étant ici de module strictement inférieur a 1,
cette expression tend bien vers 0 quand k tend vers +oo, ce qui implique lim M* x = P x.
Quitte a appliquer ceci aux vecteurs ey, ..., e,, on observe que M¥ e 7, qui n'est autre que
la /™ colonne de M*, converge vers Pe j» qui n'est autre que la j¢me colonne de P.
Ainsi, chaque ¢lément de M* a pour limite 1'élément correspondant de P, ce qui signifie
que la suite (M k) converge vers P au sens de || . ||, (ou de toute autre norme).

d) Comme la suite £ — M* converge dés lors que M est diagonalisable et que 1 est sa seule
valeur propre de module 1, considérons la matrice suivante dont les valeurs propres sont £1 :

M- (0 1 )
1 0)
Cette matrice M est clairement stochastique, et on voit que M 2= I, donc M 3 =M, etc.

On a ainsi M2* = I, et M?*¥*1 = M pour tout entier naturel k.
Et comme M +# I,, il est clair que la suite (M k) est alors divergente.




