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# NainsChevaliersExecution.py

001| from numpy import *
002| from numpy.linalg import *
003| 
004| 
005| def vidage(n,X): # vidage effectue les n
distributions à partir de X
006|     Y=X;
007|     for i in range(0,n):
008|         for j in range(0,n):
009|             if j!=i:
010|                 Y[j]=Y[j]+Y[i]/(n-1)
011|         Y[i]=0
012|     return(Y)
013| 
014| def mat(n):
015|     M=[]
016|     for j in range(n):
017|         X=list(n*[0])
018|         X[j]=1
019|         Y=vidage(n,X)
020|         M=M+Y
021|     A=reshape(M,(n,n)) #matrice de taille n*n
022|     A=A.transpose() # on transpose
023|     return(A)
024| 
025| 
026| def normalisation(X,c): # fonction qui renvoie le
vecteur c.X
027|     Y=X[::]
028|     for i in range(len(X)):
029|         Y[i]=c*Y[i]
030|     return(Y)
031| 
032| 
033| X=[1,20,300,14,175,784]
034| n=6
035| print('voici la distibution de départ: ',X)
036| for i in range(0,100):
037|     X=vidage(n,X)
038| print(' et voici la distibution après 100
passages: ',X)
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039| print(' et voici la distibution après 101
passages: ',vidage(n,X))
040| 
041| print(' et voici X normalisé : ',normalisation(X,
(n-1)/X[0]))
042| 
043| print('idem avec une autre dimension et un autre
vecteur...')
044| 
045| X=[0,2,1300,14,1]
046| n=5
047| print('voici la distibution de départ: ',X)
048| for i in range(0,100):
049|     X=vidage(n,X)
050| print(' et voici la distibution après 100
passages: ',X)
051| print(' et voici la distibution après 101
passages: ',vidage(n,X))
052| 
053| print(' et voici X normalisé : ',normalisation(X,
(n-1)/X[0]))
054| 
055| 
056| #A =
matrix((5/8,3/4,1/2,3/8,1/4,1/2,0,0,0)).reshape((3,3))
057| print(' et voici la matrice qui effectue les n
transformations : ')
058| A=mat(4)
059| X= matrix((7,2,3,10)).reshape((4,1))
#distribution de départ
060| print('A',A)
061| print('AX=',A*X) # renvoie toto(n,X)
062| print('et voici vidage(4,X)',vidage(4,
[7,2,3,10]))
063| print('eigvals(A)=',eigvals(A)) # valeurs propre
de A
064| print('eig(A)=',eig(A)) # vecteurs propre de A
065| print('Remarque: la présentation de eig(A) n''est
pas très facile!!!')
066| print('eig(A) fournit un premier tableau des
valeurs propres puis une matrice')
067| print('des vecteurs propres en colonne: si on
regarde bien on retrouve bien ')
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068| print('le vecteur [3,2,1,0] qui est solution du
problème')
069| 
070| print('Voir la page Maple qui suit')
071| 
072| #ET L'EXECUTION :
073| 
074| #In [1]: (executing lines 1 to 70 of
"NainsChevaliers.py")
075| #voici la distibution de départ:  [1, 20, 300,
14, 175, 784]
076| # et voici la distibution après 100 passages:
[431.33333333333326, 345.0666666666666,
258.79999999999995, 172.5333333333333,
86.26666666666665, 0]
077| # et voici la distibution après 101 passages:
[431.33333333333326, 345.0666666666666,
258.79999999999995, 172.5333333333333,
86.26666666666665, 0]
078| # et voici X normalisé :  [5.0, 4.0, 3.0, 2.0,
1.0, 0.0]
079| #idem avec une autre dimension et un autre
vecteur...
080| #voici la distibution de départ:  [0, 2, 1300,
14, 1]
081|  #et voici la distibution après 100 passages:
[526.8, 395.09999999999997, 263.4, 131.7, 0]
082| # et voici la distibution après 101 passages:
[526.8, 395.09999999999997, 263.4, 131.7, 0]
083| # et voici X normalisé :  [4.0, 3.0, 2.0, 1.0,
0.0]
084| # et voici la matrice qui effectue les n
transformations :
085| #A [[ 0.45679012  0.59259259  0.44444444
0.33333333]
086| # [ 0.34567901  0.25925926  0.44444444
0.33333333]
087| # [ 0.19753086  0.14814815  0.11111111
0.33333333]
088| # [ 0.          0.          0.          0.
]]
089| #AX= [[ 9.04938272]
090| # [ 7.60493827]

3



091| # [ 5.34567901]
092| # [ 0.        ]]
093| #et voici vidage(4,X) [9.049382716049383,
7.604938271604939, 5.34567901234568, 0]
094| #eigvals(A)= [ 1.00000000+0.j
-0.08641975+0.06983771j -0.08641975-0.06983771j
095| #  0.00000000+0.j        ]
096| #eig(A)= (array([ 1.00000000+0.j        ,
-0.08641975+0.06983771j,
097| #       -0.08641975-0.06983771j,  0.00000000+0.j
]), array([[ 0.80178373+0.j        ,  0.70710678+0.j
,
098| #         0.70710678-0.j        , -0.86602540+0.j
],
099| #       [ 0.53452248+0.j        ,
-0.47140452+0.33333333j,
100| #        -0.47140452-0.33333333j,  0.28867513+0.j
],
101| #       [ 0.26726124+0.j        ,
-0.23570226-0.33333333j,
102| #        -0.23570226+0.33333333j,  0.28867513+0.j
],
103| #       [ 0.00000000+0.j        ,  0.00000000-0.j
,
104| #         0.00000000+0.j        ,  0.28867513+0.j
]]))
105| #Remarque: la présentation de eig(A) nest pas
très facile!!!
106| #eig(A) fournit un premier tableau des valeurs
propres puis une matrice
107| #des vecteurs propres en colonne: si on regarde
bien on retrouve bien
108| #le vecteur [3,2,1,0] qui est solution du
problème
109| #Voir la page Maple qui suit
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> with(linalg):
Warning, the protected names norm and trace have been redefined and unprotected
> vidage:=proc(n,X)
> local Y,i,j;
> Y:=X;
> for i from 1 to n do
> for j from 1 to n do
> if j<>i then Y[j]:=Y[j]+Y[i]/(n-1);
> fi;
> od;
> Y[i]:=0;
> od;
> Y; #le "return"
> end:
> X:=[1,2,123.,3,87];

X := [1, 2, 123., 3, 87]

> X:=vidage(5,X);
X := [72.07128905, 71.50878905, 40.55566405, 31.86425780, 0]

> for i from 1 to 10 do X:=vidage(5,X);od;
X := [86.68703935, 64.30538652, 44.06660174, 20.94097232, 0]

X := [86.39449475, 64.90020816, 43.09204612, 21.61325092, 0]

X := [86.40891736, 64.78420940, 43.20536496, 21.60150821, 0]

X := [86.39807014, 64.80146046, 43.20040946, 21.60005990, 0]

X := [86.40019636, 64.79995186, 43.19990898, 21.59994278, 0]

X := [86.39999382, 64.79999358, 43.20000400, 21.60000858, 0]

X := [86.39999889, 64.80000088, 43.20000076, 21.59999947, 0]

X := [86.40000017, 64.80000002, 43.19999986, 21.59999998, 0]

X := [86.40000001, 64.79999999, 43.20000001, 21.60000001, 0]

X := [86.40000000, 64.80000000, 43.20000000, 21.60000000, 0]
>
> X:=[x,y,z];

X := [x, y, z]
> X:=vidage(3,X);

X := [3/4 y + 5/8 x + 1/2 z, 1/2 z + 3/8 x + 1/4 y, 0]
> A:=matrix(3,3,[5/8,3/4,1/2,3/8,1/4,1/2,0,0,0]);

[5/8 3/4 1/2]
[ ]

A := [3/8 1/4 1/2]
[ ]
[ 0 0 0 ]

> eigenvects(A); # les éléments propres
[1, 1, {[2, 1, 0]}], [-1/8, 1, {[1, -1, 0]}], [0, 1, {[-2, 1, 1]}]

> matriceVidage:=proc(n) # Matrice de l’opération de vidage
> local X,Z,A,i,j;
> X:=[seq(x[i],i=1..n)];
> Z:=vidage(n,X);A:=matrix(n,n);
> for i from 1 to n do
> for j from 1 to n do
> A[i,j]:=coeff(Z[i],x[j],1);
> od;od;
> evalm(A);end:
>
> V:=matriceVidage(3);kernel(V-1);

[5/8 3/4 1/2]
[ ]

V := [3/8 1/4 1/2]
[ ]
[ 0 0 0 ]

{[2, 1, 0]}



> V:=matriceVidage(7);kernel(V-1);
[70993 16807 2401 343 49 ]
[------ , ----- , ---- , ---- , --- , 7/36 , 1/6]
[279936 46656 7776 1296 216 ]
[ ]
[63217 9031 2401 343 49 ]
[------ , ----- , ---- , ---- , --- , 7/36 , 1/6]
[279936 46656 7776 1296 216 ]
[ ]
[54145 7735 1105 343 49 ]
[------ , ----- , ---- , ---- , --- , 7/36 , 1/6]
[279936 46656 7776 1296 216 ]
[ ]

V := [43561 6223 889 127 49 ]
[------ , ----- , ---- , ---- , --- , 7/36 , 1/6]
[279936 46656 7776 1296 216 ]
[ ]
[31213 4459 637 91 13 ]
[------ , ----- , ---- , ---- , --- , 7/36 , 1/6]
[279936 46656 7776 1296 216 ]
[ ]
[16807 2401 343 49 ]
[------ , ----- , ---- , ---- , 7/216 , 1/36 , 1/6]
[279936 46656 7776 1296 ]
[ ]
[0 , 0 , 0 , 0 , 0 , 0 , 0]

{[6, 5, 4, 3, 2, 1, 0]}
>
>



E.P.I.T.A.
     

Corrigé de l'épreuve de mathématiques (3 h)

1°) Calculs de probabilités conditionnelles
a) La probabilité PABnHABn+1L est la probabilité, sachant que A et B sont face à face, que

A et B ratent leurs cibles, et par indépendance des résultats des tirs, c'est 1
3

ä 2
3

= 2
9

.

b) La probabilité PABnHAn+1L  est la probabilité, sachant que A et B sont face à face, que
A réussisse son tir et que B rate le sien.
Par indépendance des résultats des tirs, c'est 2

3
ä 2
3

= 4
9

.

De même, on s'assurera que PABnHBn+1L = 1
9

.

Enfin,  la  probabilité  PABnH«n+1L  est  la  probabilité,  sachant  que  A et  B sont  face  à  face,

que A et B réussissent leurs tirs, et par indépendance des résultats des tirs, c'est 2
3

ä 1
3

= 2
9

.

c)  Comme  HABn, An, Bn, «nL  forme  un  système  complet  d'événements,  la  formule  des
probabilités totales montre que la probabilité PHABn+1L est égale à :

PABnHABn+1L PHABnL + PAnHABn+1L PHAnL + PBnHABn+1L PHBnL + P«nHABn+1L PH«nL.
Comme PAnHABn+1L = PBnHABn+1L = P«nHABn+1L = 0, il reste donc :

PHABn+1L = PABnHABn+1L PHABnL =
2
9

 PHABnL.
En raisonnant de même, et en n'écrivant que les termes non nuls, on obtient :

PHAn+1L = PABnHAn+1L PHABnL + PAnHAn+1L PHAnL =
4
9

 PHABnL + PHAnL.
PHBn+1L = PABnHBn+1L PHABnL + PBnHBn+1L PHBnL =

1
9

 PHABnL + PHBnL.
PH«n+1L = PABnH«n+1L PHABnL + P«nH«n+1L PH«nL =

2
9

 PHABnL + PH«nL.
Ces relations se traduisent matriciellement comme suit :

En+1 = En

2
9

4
9

1
9

2
9

0 1 0 0
0 0 1 0
0 0 0 1

.

Et par récurrence facile, on a donc En = E0 M n = H1, 0, 0, 0L M n où M est stochastique.

2°) Diagonalisation de la matrice M
a) La matrice M étant triangulaire, on lit sur sa diagonale ses valeurs propres : 2

9
, 1, 1, 1.

b) Le sous-espace propre associé à 2
9

 est clairement la droite VectHe1L où e1 = H1, 0, 0, 0L.
En  effet,  si  v  est  le  vecteur  de  composantes  x1, x2, x3, x4  dans  la  base  canonique  de  C4,
alors l'égalité M v = 2

9
 v équivaut à x2 = x3 = x4 = 0.

Le sous-espace propre associé à 1 est l'hyperplan d'équation 7 x1 - 4 x2 - x3 - 2 x4 = 0.
En  effet,  si  v  est  le  vecteur  de  composantes  x1, x2, x3, x4  dans  la  base  canonique  de  C4,
alors l'égalité M v = v équivaut à 7 x1 - 4 x2 - x3 - 2 x4 = 0.
Il  est  de  dimension  3  en  tant  qu'hyperplan  de  R4,  et  la  somme des  dimensions  des  sous-
espaces propres de M étant égale à 1 + 3 = 4, la matrice M est diagonalisable.

c) On considère 3 réels x, y, z et la matrice P définie par :
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2°) Diagonalisation de la matrice M
a) La matrice M étant triangulaire, on lit sur sa diagonale ses valeurs propres : 2

9
, 1, 1, 1.

b) Le sous-espace propre associé à 2
9

 est clairement la droite VectHe1L où e1 = H1, 0, 0, 0L.
En  effet,  si  v  est  le  vecteur  de  composantes  x1, x2, x3, x4  dans  la  base  canonique  de  C4,
alors l'égalité M v = 2

9
 v équivaut à x2 = x3 = x4 = 0.

Le sous-espace propre associé à 1 est l'hyperplan d'équation 7 x1 - 4 x2 - x3 - 2 x4 = 0.
En  effet,  si  v  est  le  vecteur  de  composantes  x1, x2, x3, x4  dans  la  base  canonique  de  C4,
alors l'égalité M v = v équivaut à 7 x1 - 4 x2 - x3 - 2 x4 = 0.
Il  est  de  dimension  3  en  tant  qu'hyperplan  de  R4,  et  la  somme des  dimensions  des  sous-
espaces propres de M étant égale à 1 + 3 = 4, la matrice M est diagonalisable.

c) On considère 3 réels x, y, z et la matrice P définie par :

P =

1 x y z
0 7 0 0
0 0 7 0
0 0 0 7

Le premier vecteur-colonne de P est vecteur propre associé à 2
9

.

Les  vecteurs-colonnes  suivants  ne  peuvent  être  associés  à  la  valeur  propre  2/9,  et  ils  sont
associés à 1 s'ils vérifient 7 x1 - 4 x2 - x3 - 2 x4 = 0. C'est le cas si x = 4, y = 1, z = 2.
La matrice P obtenue est inversible puisqu'elle est triangulaire avec detHPL = 73 ¹≠ 0.

En désignant par He1, e2, e3, e4L la base canonique de C4, on observe que :
P e1 = e1, P e2 = 4 e1 + 7 e2, P e3 = e1 + 7 e3, P e4 = 2 e1 + 7 e4.

Il en résulte que :
7 e2 = P e2 - 4 P e1, 7 e3 = P e3 - P e1, 7 e4 = P e4 - 2 P e1.

Puis en multipliant par P-1:  
P-1 e1 = e1, 7 P-1 e2 = e2 - 4 e1, 7 P-1 e3 = e3 - e1, 7 P-1 e4 = e4 - 2 e1.

La matrice inverse de P en résulte aussitôt :

P =

1 4 1 2
0 7 0 0
0 0 7 0
0 0 0 7

et P-1 =
1
7

 

7 -4 -1 -2
0 1 0 0
0 0 1 0
0 0 0 1

.

Sans faire aucun calcul, on observe que P  est la matrice de passage de la base canonique à
une base de vecteurs propres associés à 2

9
, 1, 1, 1.

Ainsi, P-1 M P  est la matrice de l'endomorphisme canoniquement associé à M dans la base
de vecteurs propres précédente, et c'est donc la matrice suivante :

D = P-1 M P =

2
9

0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

.

3°) Probabilités pour que A ou B remportent le combat
a) Par définition de la convergence d'une suite de matrices dans 4HCL, on a :

E.P.I.T.A. 2015, math (3h) 5       



3°) Probabilités pour que A ou B remportent le combat
a) Par définition de la convergence d'une suite de matrices dans 4HCL, on a :

lim
nØ +¶

Dn =

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Et par continuité des opérations matricielles, on a :

lim
nØ +¶

M n = lim
nØ +¶

P Dn P-1 = P K lim
nØ +¶

DnO P-1

=
1
7

 

1 4 1 2
0 7 0 0
0 0 7 0
0 0 0 7

 

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

7 -4 -1 -2
0 1 0 0
0 0 1 0
0 0 0 1

=
1
7

 

0 4 1 2
0 7 0 0
0 0 7 0
0 0 0 7

.

b) Comme En = H1, 0, 0, 0L M n, on a lim En = H1, 0, 0, 0L lim M n = J0, 4
7

, 1
7

, 2
7
N.

Donc A et B remportent le combat avec les probabilités 4
7

 et 1
7

,  tous deux étant éliminés

avec la probabilité 2
7

.

4°) Durée moyenne du combat
a)  On  a  clairement    PHT = 1L = PHA1‹ B1‹ «1L,  et  ces  trois  événements  étant  deux  à
deux incompatibles, il vient PHT = 1L = PHA1L + PHB1L + PH«1L = 4

9
+ 1
9

+ 2
9

= 7
9

.

b) Pour tout entier naturel n, on a AB1› AB2› ... › ABn = HT > nL car :
- si l'événement AB1› AB2› ... › ABn a lieu, le combat n'est pas fini à la nème épreuve.
- si le combat n'est pas fini à la nème épreuve, A et B sont encore en présence à ce moment
  et l'événement AB1› AB2› ... › ABn est bien réalisé.
Il en résulte qu'on a :
PHT > nL = PHAB1› AB2› ... › ABnL = PHAB1L PAB1HAB2L ...PAB1› ...›ABn-1

HABnL.
Il en résulte que PHT > nL = J 2

9
Nn et comme HT > n - 1L = HT = nL ‹ HT > nL, on a :

PHT = nL = PHT > n - 1L - PHT > nL =
2
9

n-1
-

2
9

n
=

7
9

 
2
9

n-1
.

On reconnaît une loi géométrique de paramètre 2/9.

c) Un simple calcul faisant intervenir la série géométrique conduit à :

‚
n=1

+¶

PHT = nL =
7
9

 ‚
n=1

+¶ 2
9

n-1
=

7
9

1
1 - 2 ê9

= 1.

De même, un calcul calcul faisant intervenir la série-dérivée de la série géométrique donne :

EHTL = ‚
n=1

+¶

nPHT = nL =
7
9

 ‚
n=1

+¶

n
2
9

n-1
=

7
9

1

H1 - 2 ê9L2 =
9
7

.
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‡ Partie II
5°) Premiers résultats de convergence
a) Considérons deux matrices A, B e n et montrons que C = AB e n :
•  les coefficients ci j = ⁄k=1

n ai k  bk j sont positifs puisque les ai k et bk j le sont.
•  les sommes des lignes de C = AB valent 1 puisqu'on a pour 1 § i § n :

‚
j=1

n
ci j = ‚

j=1

n ‚
k=1

n
ai k  bk j = ‚

k=1

n ‚
j=1

n
ai k  bk j = ‚

k=1

n
ai k ‚

j=1

n
bk j = ‚

k=1

n
ai k = 1.

Il en résulte aussitôt que les puissances d'une matrice stochastique sont stochastiques.

b) Si HMkL est une suite de matrices stochastiques convergeant vers M, on sait que 
les coefficients mi j

HkL de Mk convergent vers les coefficients mi j de M, et donc :

•  les coefficients mi j = limkØ +¶ mi j
HkL sont positifs puisque les mi j

HkL  le sont.
•  les sommes des lignes de M  valent 1 puisque les lignes des Mk valent 1 :

" i e P1, nT, mi 1 + mi 2 + ... + mi n = lim
kØ +¶

Imi 1HkL + mi 2
HkL + ... + mi n

HkLM = 1.

c) Si la suite IM kM converge vers L, la suite IM 2 kM converge aussi vers L en tant que suite
extraite de IM kM, et elle converge vers L2 en remarquant que M 2 k = M k ä M k.
Par unicité de la limite, on a L2 = L et L est une matrice de projection.

5.d)  Il  s'agit  donc  d'établir  que  la  suite  k ö Ck  converge  vers  L = lim M k,  autrement  dit
que la suite réelle °Ck - L¥¶ converge vers 0. A cet effet, remarquons d'abord que :

°Ck - L¥¶ =
1

n + 1
 ‚
k=0

n IM k - LM
¶

§
1

n + 1
 ‚
k=0

n ±M k - Lµ¶.

Par ailleurs, comme L = lim M k, on a par définition :
H" ¶ε > 0L, H$ N e NL, H" n e NL : n ¥ N ï ±M k - Lµ¶ § ¶ε.

Pour n ¥ N , on a donc :

°Ck - L¥¶ §
1

n + 1
 ‚
k=0

n ±M k - Lµ¶ =
1

n + 1
 ‚
k=0

N-1 ±M k - Lµ¶ +
1

n + 1
 ‚
k=N

n ±M k - Lµ¶.

La première somme ⁄k=0
N-1 ±M k - Lµ¶ est une constante C.

La seconde somme compte moins de n + 1 termes, tous inférieurs à ¶ε.
On en déduit que :

°Ck - L¥¶ §
C

n + 1
+ ¶ε.

Le premier terme tend vers 0 et est aussi inférieur à ¶ε pour n ¥ C
¶ε

- 1.

Ainsi donc, on a °Ck - L¥¶ § 2 ¶ε pour n ¥ maxJN , C
¶ε

- 1N.
Comme ¶ε > 0 est arbitraire, cela signifie par définition que lim Ck = L.

6°) L'espace Cn est somme directe de KerHM - InL et de ImHM - InL
a) Si M est stochastique, on a M v1 = v1 car la somme des lignes de M vaut 1.

b) Pour tout x e Cn, on a compte tenu de la positivité des coefficients mi j de M :
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6°) L'espace Cn est somme directe de KerHM - InL et de ImHM - InL
a) Si M est stochastique, on a M v1 = v1 car la somme des lignes de M vaut 1.

b) Pour tout x e Cn, on a compte tenu de la positivité des coefficients mi j de M :

" i e P1, nT, ‚
j=1

n
mi j x j § ‚

j=1

n
mi j °x j• § ‚

j=1

n
mi j °x¥¶ = °x¥¶.

Cette majoration étant valable pour tout i, on en déduit que °M x¥¶ § °x¥¶.
En particulier, si l est une valeur propre de M et x un vecteur propre associé (donc non nul),
on a °M x¥¶ = °l x¥¶ = †l§ °x¥¶ § °x¥¶, d'où †l§ § 1.

On en déduit que †DetHM L§ § 1 puisque DetHM L est le produit des n valeurs propres de M, et
on a par inégalité triangulaire †TrHM L§ § n puisque TrHM L est leur somme.
Ajoutons que la matrice In est stochastique et réalise les égalités ci-dessus.

c) Si y = M x - x e ImHM - InL › KerHM - InL, on a M y = y, et en composant par M :
y = M x -x, y = M 2 x - M x, ... , y = M k-1 x - M k-2 x, y = M k  x - M k-1 x.

Par addition, on obtient k y = M k  x - x, et puisque M k  e n (qui est stable par produit) :

°y¥¶ =
1
k

 ±M k  x - xµ¶ §
1
k

 I±M k  xµ¶ + °x¥¶M §
2 °x¥¶

k
.

d) En faisant tendre k vers +¶, on en déduit y = 0.
On a donc ImHM - InL › KerHM - InL = 80<.  Ainsi, la somme ImHM - InLÅ⊕KerHM - InL est
directe,  et  comme  le  théorème  du  rang  montre  que  sa  dimension  est  n,  on  a  établi  que
ImHM - InLÅ⊕KerHM - InL = Cn.

7°) Etude de la convergence de la suite k ö Ck
a) Pour tout x e Cn, posons x = x1 + x2 où x1 e KerHM - InL et x2 e ImHM - InL. 
On a donc M x1 = x1 et il existe z e Cn tel que x2 = M z - z, ce qui donne :

Ck  x =
1

k + 1
‚
j=0

k
M j x = x1 +

1
k + 1

 ‚
j=0

k IM j+1 z - M j zM = x1 +
1

k + 1
 IM k+1 z - zM.

Compte tenu de M k  e n (qui est stable par produit) et de la question 6°, on en déduit :

°Ck  x - x1¥¶ =
1

k + 1
 ±M k+1 z - zµ¶ §

1
k + 1

 I±M k+1 zµ¶ + °z¥¶M §
2 °z¥¶

k + 1
.

Comme x1 = Px, on obtient en faisant tendre k vers +¶ : lim Ck  x = Px.

b) Quitte à appliquer ceci aux vecteurs e1, ... , en, on observe que Ck  e j, qui n'est autre que
la jème colonne de Ck, converge vers Pe j, qui n'est autre que la jème colonne de P.
Ainsi, chaque élément de Ck  a pour limite l'élément correspondant de P, ce qui signifie que
la suite HCkL converge vers P au sens de ° . ¥¶  (ou de toute autre norme, qui est équivalente
puisque l'espace vectoriel nHCL est de dimension finie).

c)  Si  la  suite  IM kM  converge  vers  L,  on  a  démontré  que  HCkL  converge  aussi  vers  L,  et
comme  on  vient  de  voir  que  HCkL  converge  vers  P,  ceci  implique  que  si  IM kM  converge,
c'est vers la matrice de projection P sur KerHM - InL dans la direction ImHM - InL.
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c)  Si  la  suite  IM kM  converge  vers  L,  on  a  démontré  que  HCkL  converge  aussi  vers  L,  et
comme  on  vient  de  voir  que  HCkL  converge  vers  P,  ceci  implique  que  si  IM kM  converge,
c'est vers la matrice de projection P sur KerHM - InL dans la direction ImHM - InL.
8°) Etude de la convergence de la suite k ö M k

a) Si l ¹≠ 1 est valeur propre de M et si x est vecteur propre associé, on a M x = l x.
Donc HM - InL x = Hl - 1L x, d'où x = HM - InL x

l-1
 e ImHM - InL. 

Il en résulte que KerHM - l InL Õ ImHM - InL pour l valeur propre de M distincte de 1.

b) Par conséquent, la somme directe des sous-espaces propres associés aux valeurs propres
l ¹≠ 1 est bien incluse dans ImHM - InL.
Et comme M est diagonalisable, la somme directe des sous-espaces propres de M est Cn :

KerHM - InLÅ⊕KerHM - l2 InLÅ⊕ ... Å⊕KerHM - lp InM = Cn.
On en déduit que ⁄i=2p dimHKerHM - li InL = n - dimHKerHM - InLL = dimHImHM - InLL.
Et comme la somme directe des sous-espaces propres associées aux valeurs propres autres
que 1 est incluse dans ImHM - InL, cette égalité des dimensions donne le résultat voulu :

KerHM - l2 InLÅ⊕ ... Å⊕KerHM - lp InM = ImHM - InL.
c) Comme M  diagonalisable, tout vecteur x  peut s'écrire x = x1 + x2 + ... + xp  où chaque xi
appartient au sous-espace propre KerHM - li InL et vérifie donc M xi = li xi.
Notons que x1  étant la projection sur KerHM - InL  dans la direction de la somme des autres
sous-espaces  propres  dont  on  a  vu  qu'elle  est  égale  à  ImHM - InL,  c'est  la  projection  sur
KerHM - InL dans la direction ImHM - InL, de sorte qu'on a bien x1 = P x.
Par ailleurs, comme on a M xi = li xi pour 1 § i § p avec l1 = 1, il est clair que :

" k e N, M k  x = x1 + l2
k  x2 + ... + lp

k  xk.
On en déduit que M k  x - Px = M k  x - x1 = l2

k  x2 + ... + lp
k  xk.

Par inégalité triangulaire, on a alors :
±M k  x - Pxµ¶ § †l2§k  °x2¥¶ + ... + °lp•k  °xk¥¶.

Les valeurs propres l2, ... , lp  autres que 1 étant ici de module strictement inférieur à 1,
cette expression tend bien vers 0 quand k  tend vers +¶,  ce qui implique lim M k  x = P x.
Quitte à appliquer ceci aux vecteurs e1, ... , en, on observe que M k  e j, qui n'est autre que
la jème colonne de M k, converge vers Pe j, qui n'est autre que la jème colonne de P.
Ainsi,  chaque élément de M k  a  pour limite l'élément correspondant de P,  ce qui signifie
que la suite IM kM converge vers P au sens de ° . ¥¶ (ou de toute autre norme).

d) Comme la suite k ö M k  converge dès lors que M est diagonalisable et que 1 est sa seule
valeur propre de module 1, considérons la matrice suivante dont les valeurs propres sont ±1 :

M =
0 1
1 0

.

Cette matrice M est clairement stochastique, et on voit que M 2 = I2, donc M 3 = M , etc. 
On a ainsi M 2 k = I2 et M 2 k+1 = M  pour tout entier naturel k.
Et comme M ¹≠ I2, il est clair que la suite IM kM est alors divergente.
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