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I Partie I

I.A Quelques résultats préliminaires

Q 1. — Soit A,B ∈ Mn(R) et λ ∈ R.

tr(λA+B) =

n∑
k=1

[λA+B]kk

=
n∑

k=1

λ[A]kk + [B]kk

= λ
n∑

k=1

[A]kk +
n∑

k=1

[B]kk

= λ tr(A) + tr(B)

donc tr est une forme linéaire .
— Soit A,B ∈ Mn(R).

tr(AB) =
n∑

k=1

[AB]kk

=
n∑

k=1

n∑
i=1

[A]ki[B]ik

=
n∑

i=1

n∑
k=1

[B]ik[A]ki

=
n∑

i=1

[BA]ii

donc tr(AB) = tr(BA) .

Q 2. — Symétrie : soit A,B ∈ Mn(R) :

tr(A⊤B) = tr
(
(A⊤B)⊤

)
= tr(B⊤A)

car la trace d’une matrice est égale à la trace de sa transposée.
— Bilinéarité : soit A,B,C ∈ Mn(R) et λ ∈ R :

tr(A⊤(λB + C)) = tr(λA⊤B +A⊤C) = λ tr(A⊤B) + tr(A⊤C)

par linéarité de la trace. L’application est donc linéaire à droite, et par symétrie, elle est bilinéaire.
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— Positivité et définition : soit A ∈ Mn(R), alors

tr(A⊤A) =

n∑
k=1

[A⊤A]kk

=

n∑
k=1

n∑
i=1

[A⊤]ki[A]ik

=

n∑
k=1

n∑
i=1

([A]ik)
2

Comme A est à coefficients réels, tr(A⊤A) ⩾ 0. De plus, tr(A⊤A) = 0 si et seulement si tous les
termes de la somme sont nuls : tr(A⊤A) = 0 ⇐⇒ A = 0n.

L’application donnée est bien un produit scalaire sur Mn(R) .

Q 3. Soit A ∈ Mn(R) telle que A⊤A = 0n. En particulier, tr(A⊤A) = 0, donc A = 0n par définition du
produit scalaire.

I.B Quelques propriétés de Nn

Q 4. Soit A ∈ Nn. Alors il existe k ∈ N∗ tel que Ak = 0n. En particulier, A n’est pas inversible. Ainsi,
le noyau de A n’est pas réduit au vecteur nul : il existe X ∈ Mn,1(R) non nul tel que AX = 0 ·X,
donc 0 est valeur propre de A .
Soit λ ∈ R une valeur propre de A et soit X ∈ Mn,1(R) un vecteur propre associé. Alors AX = λX,
et par récurrence immédiate, AkX = λkX. Donc λkX = 0n. Comme X est non nul, λk = 0, donc
λ = 0. La seule valeur propre de A est donc 0 .

Q 5. Soit A ∈ Nn. D’après la question précédente, A n’est pas inversible, donc det(A) = 0 .
D’autre part A est trigonalisable sur C : il existe P ∈ Mn(C) inversible telle que T = PAP−1 est
triangulaire supérieure. En outre, les coefficients diagonaux de T sont les valeurs propres de A : ils
sont donc tous nuls d’après la question précédente. Ainsi,

tr(A) = tr(P−1TP ) = tr(PP−1T ) = tr(T ) = 0.

Donc tr(A) = 0 .

Q 6. Soit M ∈ Nn. Alors il existe k ∈ N∗ tel que Mk = 0n. Puis, pour tout ℓ ⩾ k, M ℓ = MkM ℓ−k = 0n.
Donc (M2)k = M2k = 0n. La matrice M2 est nilpotente .

Q 7. Soit M,N ∈ Nn telles que MN = NM . Il existe k, k′ ∈ N∗ avec Mk = Nk′ = 0n. Alors (MN)k+k′ =

Mk+k′Nk+k′ car M et N commutent, puis Mk+k′ = Nk+k′ = 0n. Donc MN est nilpotente .
On peut d’autre part appliquer la formule du binome de Newton :

(M +N)k+k′ =

k+k′∑
i=0

(
k + k′

i

)
M iNk+k′−i

Or, pour i < k, Nk+k′−i = Nk′Nk−i = 0n et pour i ⩾ k, Mk = 0n. Tous les termes de la somme
précédente sont nuls : (M +N)k+k′ = 0n. La matrice M +N est nilpotente .

Q 8. Soit M,N ∈ Nn telles que M +N ∈ Nn. On a :

(M +N)2 −M2 −N2 = MN +NM.
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Or, M2, N2 et (M + N)2 sont nilpotentes d’après 6. D’après la question 5, tr((M + N)2) =
tr(M2) = tr(N2) = 0, donc par linéarité, tr(MN +NM) = 0. Or tr(MN +NM) = 2 tr(MN). D’où
tr(MN) = 0 .

Q 9. Soit M ∈ M2(R). D’après la question 5, si M est nilpotente, alors tr(M) = det(M) = 0.
Réciproquement, supposons que tr(M) = det(M) = 0. Alors χM (X) = X2 − tr(M)X + det(M) =
X2. D’après le théorème de Cayley-Hamilton, χM (M) = 0n. D’où M2 = 02 et M est nilpotente.
Ainsi, M ∈ N2 ⇐⇒ det(M) = tr(M) = 0 .

Q 10. Soit M ∈ Mn(R) nilpotente et symétrique. D’après la question 4, la seule valeur propre de M est
0. Comme M est symétrique réelle, elle est diagonalisable. Donc M est semblable à la matrice nulle.
Ainsi, M = 0n .

Q 11. Soit A ∈ Mn(R) une matrice nilpotente et antisymétrique. On a A⊤A = −A2. Comme A est
nilpotente, A2 aussi, puis −A2 aussi. Ainsi, A⊤A est nilpotente.
Or (A⊤A)⊤ = A⊤A, donc A⊤A est symétrique.
D’après la question précédente, A⊤A = 0n .
D’après la question 3, A = 0n .

Q 12. On peut prendre par exemple une matrice diagonale : M =

0 0 0
0 1 0
0 0 −1

 ∈ M3(R). On a det(M) =

tr(M) = 0. Par contre, si k ∈ N est pair, Mk =

0 0 0
0 1 0
0 0 1

 et si k est impair, Mk = M . Donc M

n’est pas nilpotente.
On peut donner un exemple pour tout n ⩾ 3 en prenant M = diag(0, . . . , 0, 1,−1).

II Matrices aléatoires à coefficients dans {−1, 1}

II.A Quelques résultats algébriques

Q 13. Soit i ∈ J1, nK. Alors Ei =
1

2
V − 1

2
(V − 2Ei) .

Or pour tout i ∈ J1, nK, V − 2Ei ∈ Vn,1 et V ∈ Vn,1, donc Ei ∈ Vect(Vn,1). Comme (E1, . . . , En)

engendre Mn,1(R), Mn,1(R) = Vect(Vn,1)

Q 14. — Unicité : soit i, j ∈ J1, n− 1K tels que :{
(C1, . . . , Ci) est libre
Ci+1 ∈ Vect(C1, . . . , Ci)

et

{
(C1, . . . , Cj) est libre
Cj+1 ∈ Vect(C1, . . . , Cj)

Alors (C1, . . . , Ci+1) est liée, donc pour tout k ⩾ i+1, (C1, . . . , Ck) est liée. En particulier, j ⩽ i.
De même, i ⩽ j. Donc i = j .

— Existence : soit A = {j ∈ J1, n−1K, (C1, . . . , Cj) est libre}. L’ensemble A est non vide car C1 est
non nulle. Prenons donc j0 = max(A) ∈ J1, n− 1K. En particulier, (C1, . . . , Cj0) est libre.
De plus, si j0 = n− 1, alors (C1, . . . , Cj0+1) = (C1, . . . , Cn) est liée par hypothèse.
Si j0 < n− 1, alors j0 + 1 ∈ J1, n− 1K donc (C1, . . . , Cj0+1) est liée par maximalité de j0.
Ainsi, j0 vérifie les conditions voulues .

Q 15. Ça ressemble à une projection sur un sous-espace vectoriel de Mn,1(R) engendré par d vecteurs de
la base canonique.
Plus précisément, comme (U1, . . . , Ud) est libre, on peut compléter la famille avec n− d vecteurs de
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la base canonique pour obtenir une base de Mn,1(R). Notons 1 ⩽ i1 < · · · < id ⩽ n les indices des
vecteurs de la base canonique non utilisés pour cette complétion. Alors, H et Vect((Ei)i ̸∈{i1,...,id})
sont supplémentaires dans Mn,1(R).
Posons alors φ : H → Md,1(R) telle que φ(x1, . . . , xn) = (xi1 , . . . , xid). C’est une application li-
néaire. Vérifions que φ est injective : soit (x1, . . . , xn) ∈ ker(φ). Alors xi1 = · · · = xid = 0. Ainsi,
(x1, . . . , xn) ∈ Vect((Ei)i ̸∈{i1,...,id}) ∩H, donc (x1, . . . , xn) = 0n.
Comme dim(H) = dim(Md,1(R)), φ est donc un isomorphisme .

Q 16. Comme W est de dimension d, il existe une base (U1, . . . , Ud) de W. D’après la question 15, il
existe 1 ⩽ i1 < · · · < id ⩽ n tels que∣∣∣∣∣∣∣∣∣

φ : W → Md,1(R)x1
...
xn

 7→

xi1
...

xid


est une bijection. Or φ (W ∩ Vn,1) ⊂ Vd,1. Donc

card(W ∩ Vn,1) = card(φ(W ∩ Vn,1)) ⩽ card(Vd,1) = 2d

II.B Une loi de probabilité

Q 17. La variable 1

2
(X + 1) suit la loi de Bernoulli de paramètre 1

2
.

Q 18. Soit X qui suit la loi R.

E(X) = −1 ·P(X = −1)+1 ·P(X = 1) = 0 et E(X2) = (−1)2 ·P(X = −1)+12 · · ·P(X = 1) = 1

Donc V(X) = E(X2)− E(X)2 = 1. Donc E(X) = 0 et V(X) = 1 .
Q 19. Soient X et Y suivant R et indépendantes. Notons Z = XY . Alors Z prend les valeurs 1 et −1.

De plus,

P(Z = 1) = P(X = 1, Y = 1)+P(X = −1, Y = −1) = P(X = 1)P(Y = 1)+P(X = −1)P(Y = −1) =
1

2

par indépendance. Donc Z suit aussi la loi R .

II.C Un premier procédé de génération de matrices aléatoires à coefficients dans
{−1, 1}

Q 20. Par linéarité de l’espérance,

E(τn) = E

(
n∑

i=1

mi,i

)
=

n∑
i=1

E(mi,i).

Comme les mi,i (i ∈ J1, nK) suivent la loi R, leur espérance est nulle (question 18). Donc E(τn) = 0 .
Comme les mi,i (i ∈ J1, nK) sont mutuellement indépendantes,

V(τn) =
n∑

i=1

V(mi,i).

D’après la question 18, on obtient V(τn) = n .
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Q 21. En développant le déterminant par rapport à la première ligne :

δn =
n∑

j=1

m1,j∆1,j

où ∆1,1, . . . ,∆1,n sont les mineurs de la matrice Mn. D’après le lemme des coalitions, pour tout
j ∈ J1, nK, m1,j et ∆1,j sont indépendantes. Donc

E(δn) =
n∑

j=1

E(m1,j)︸ ︷︷ ︸
=0

E(∆1,j).

Ainsi, E(δn) = 0 .
Q 22. Montrons par récurrence la propriété Pn : pour toute matrice aléatoire Nn de taille n dont les

coefficients sont mutuellement indépendants et suivent la loi R, V(det(Nn)) = n!.
— Initialisation : pour n = 1, soit N1 une matrice aléatoire de taille dont le coefficient suit R. Alors

V(det(N1)) = V(n1,1) = 1 d’après la question 18. Donc P1 est vraie.
— Hérédité : soit n ⩾ 1 telle que Pn est vraie. Soit Nn+1 une matrice de taille n + 1 dont les

coefficients sont mutuellement indépendants et suivent la loi R. En développant par rapport à
la première ligne :

det(Nn+1) =

n+1∑
j=1

n1,j∆1,j ,

où ∆1,j sont les mineurs de Nn+1. Puis,

E(det(Nn+1)
2) = E

 ∑
1⩽j,k⩽n+1

n1,jn1,k∆1,j∆1,k

 =
∑

1⩽j,k⩽n+1

E(n1,jn1,k∆1,j∆1,k)

par linéarité de l’espérance. D’après le lemme des coalitions, n1,jn1,k et ∆1,j∆1,k sont indépen-
dantes, et d’après la question 19, si j 6= k, n1,jn1,k suit la loi R. Donc

E(det(Nn+1)
2) =

∑
1⩽j,k⩽n+1

E(n1,jn1,k)︸ ︷︷ ︸
=0 si j ̸=k

E(∆1,j∆1,k) =
n+1∑
j=1

E(n2
1,j)E(∆2

1,j).

De plus, pour tout j ∈ J1, nK, n2
1,j vaut 1 avec probabilité 1 et d’après la question 21, E(∆2

1,j) =
V(∆1,j). Par hypothèse de récurrence, V(∆1,j) = n!. Donc

E(det(Nn+1)
2) =

n+1∑
j=1

n! = (n+ 1)!

Enfin, d’après la question 21, V(det(Nn+1)) = E(det(Nn+1)
2).

Ainsi, la propriété Pn+1 est vraie.
D’après le principe de récurrence, on en déduit que δn = n! .

Q 23. D’après la question 9, (M2 ∈ N2) = (δ2 = 0) ∩ (τ2 = 0). Donc d’après la formule des probabilités
composées :

P(M2 ∈ N2) = P(τ2 = 0)P(τ2=0)(δ2 = 0)

Or, P(τ2=0)(δ2 = 0) = P(−m2
1,1 − m1,2m2,1 = 0) = P(m1,2m2,1 = −1) =

1

2
d’après la question 19.

D’autre part, P(τ2 = 0) = P(m1,1 = −m2,2) = P(m1,1 = 1,m2,2 = −1)+P(m1,1 = −1,m2,2 = 1) =
1

2

par indépendance. Ainsi, P(M2 ∈ N2) =
1

4
.
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Q 24. P(M2 ∈ Gℓ2(R)) = P(δ2 6= 0) = 1− P(δ2 = 0). Or

P(δ2 = 0) = P(m1,1m2,2 = m2,1m1,2).

D’après 19, les variables a = m1,1m2,2 et b = m2,1m1,2 suivent la loi R. Elles sont de plus indépen-
dantes d’après le lemme des coalitions. Donc

P(δ2 = 0) = P(a = 1, b = 1) + P(a = −1, b = −1) = P(a = 1)P(b = 1) + P(a = −1)P(b = −1) =
1

2
.

Ainsi, P(M2 ∈ Gℓ2(R)) =
1

2
.

II.D Une généralisation

Q 25. Comme les variables c1, . . . , cn sont mutuellement indépendantes, pour tout (ε1, . . . , εn) ∈ {−1, 1}n,

P((c1 = ε1) ∩ · · · ∩ (cn = εn)) = P(c1 = ε1) · · ·P(cn = εn) =
1

2n
.

Q 26. Soit ω ∈ Ω. Supposons que (C(ω), C ′(ω)) est liée. Il existe alors α, α′ ∈ R tels que αC(ω) +

α′C ′(ω) = 0n. Comme C(ω) est non nul, α′ est non nul, donc C ′(ω) = − α

α′C(ω). On pose ε = − α

α′ ,

de sorte que C ′(ω) = εC(ω). Puis, comme c′1(ω) = εc1(ω) et c1(ω) 6= 0, ε = c′1(ω)

c1(ω)
∈ {−1, 1}.

Réciproquement, s’il existe ε ∈ {−1, 1} tel que C ′(ω) = εC(ω) alors (C(ω), C ′(ω)) est bien liée.
Ainsi, pour tout ω ∈ Ω, (C(ω), C ′(ω)) est liée ssi il existe ε ∈ {−1, 1} tel que C ′(ω) = εC(ω) .

Q 27. D’après la question précédente,

P((C,C ′) est liée) = P((C = C ′) ∪ (C = −C ′)) = P(C = C ′) + P(C = −C ′).

Or
P(C = C ′) =

∑
(ε1,...,εn)∈{−1,1}n

P(c1 = ε1, c
′
1 = ε1, . . . , cn = εn, c

′
n = εn)

D’après la question 25 et par indépendance,

P(C = C ′) =
∑

(ε1,...,εn)∈{−1,1}n

1

22n
=

1

2n
.

De la même façon, on trouve P(C = −C ′) =
1

2n
. Donc P((C ′C ′) est liée) = 1

2n−1
.

Q 28. Soit ω ∈ Ω. D’après la question 14,
— soit (C1(ω), . . . , Cn(ω)) est libre et alors ω ∈ Rn et ω 6∈ Rk pour k ∈ J1, n− 1K,
— soit il existe un unique j ∈ J1, n− 1K tel que ω ∈ Rj .

Ainsi, Ω =

n⋃
j=1

Rj et l’union est disjointe. Donc (R1, . . . , Rn) est un système complet d’évènements .

Q 29. Une matrice M est inversible si et seulement si la famille de ses vecteurs colonnes est libre. Donc
(Mn 6∈ Gℓn(R)) = ((C1, . . . , Cn) est liée). D’après la formule des probabilités totales appliquée avec
le système complet d’évènements (R1, . . . , Rn) :

P(Mn 6∈ Gℓn(R)) =
n∑

j=1

P (((C1, . . . , Cn) est liée) ∩Rj) .
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Or, P (((C1, . . . , Cn) est liée) ∩Rn) = 0 et pour j ∈ J1, n− 1K, (((C1, . . . , Cn) est liée) ∩Rj) = Rj ⊂
(Cj+1 ∈ Vect(C1, . . . , Cj)). Par croissance de la probabilité :

P(Mn 6∈ Gℓn(R)) ⩽
n−1∑
j=1

P(Cj+1 ∈ Vect(C1, . . . , Cj)).

Q 30. Soit j ∈ J1, n − 1K. La famille ((C1 = v1) ∩ · · · ∩ (Cj = vj))(v1,...,vj)∈Vj
n,1

est un système complet
d’évènements. D’après la formule des probabilités totales :

P (Cj+1 ∈ Vect(C1, . . . , Cj)) =
∑

(v1,...,vj)∈Vj
n,1

P ((Cj+1 ∈ Vect(C1, . . . , Cj)) ∩ ((C1 = v1) ∩ · · · ∩ (Cj = vj)))

=
∑

(v1,...,vj)∈Vj
n,1

P((C1=v1)∩···∩(Cj=vj)) (Cj+1 ∈ Vect(C1, . . . , Cj))×

P ((C1 = v1) ∩ · · · ∩ (Cj = vj))

d’après la formule des probabilités composées. Or

P((C1=v1)∩···∩(Cj=vj)) (Cj+1 ∈ Vect(C1, . . . , Cj)) = P (Cj+1 ∈ Vect(v1, . . . , vj)) .

Donc

P (Cj+1 ∈ Vect(C1, . . . , Cj)) =
∑

(v1,...,vj)∈Vj
n,1

P (Cj+1 ∈ Vect(v1, . . . , vj))P ((C1 = v1) ∩ · · · ∩ (Cj = vj)) .

Q 31. Soit j ∈ J1, n − 1K. Prenons (v1, . . . , vj) ∈ V
j
n,1. Alors dim(Vect(v1, . . . , vj)) ⩽ j, donc d’après la

question 16, card(Vect(v1, . . . , vj)∩Vn,1) ⩽ 2j . Puis, si v ∈ Vect(v1, . . . , vj)∩Vn,1, d’après la question
25, P(Cj+1 = v) =

1

2n
. Or (Cj+1 ∈ Vect(v1, . . . , vj)) = (Cj+1 ∈ Vect(v1, . . . , vj) ∩ Vn,1), donc

P(Cj+1 ∈ Vect(v1, . . . , vj)) = card(Vect(v1, . . . , vj) ∩ Vn,1)
1

2n
⩽ 2j−n.

D’après la question précédente,

P(Cj+1 ∈ Vect(C1, . . . , Cj)) ⩽
∑

(v1,...,vj)∈Vj
n,1

2j−nP ((C1 = v1) ∩ · · · ∩ (Cj = vj)) = 2j−n

car ((C1 = v1) ∩ · · · ∩ (Cj = vj))(v1,...,vj)∈Vj
n,1

est un système complet d’évènements. On a donc bien

P(Cj+1 ∈ Vect(C1, . . . , Cj)) ⩽ 2j−n .

Q 32. D’après les questions 29 et 31,

P(Mn 6∈ Gℓn(R)) ⩽
n−1∑
j=1

2j−n = 21−n 2
n−1 − 1

2− 1
= 1− 1

2n−1
.

Ainsi, P(Mn ∈ Gℓn(R)) = 1− P( 6∈ Gℓn(R)) ⩾
1

2n−1
.

Rémi Crétois - 7 - CCS PSI MATHS1 - 2022



CCS PSI MATHS1 Corrigé 2022 - Filière PSI

III Un autre procédé de construction de matrices aléatoires à coeffi-
cients dans {−1, 1}

Q 33. Pas besoin de tester si le coefficient vaut 1, mais on le fait quand-même pour la lisibilité.
def modifie_matrice (p, A):

n, m = A. shape
for i in range (n):

for j in range(m):
if A[i,j] = 1 and rd. binomial (1, p) == 1:

A[i,j] = -1

Q 34. Pour tester si Ak = −A0, on peut calculer la somme des coefficients de Ak : on aura Ak = −A0

ssi cette somme vaut −n2.
def nb_tours (p, n):

A = np.ones ((n, n))
k = 0
while A.sum () > -n ** 2:

modifie_matrice (p, A)
k = k + 1

return k

Q 35. Rien de particulier ici.
def moyenne_tours (p, n, nbe):

s = 0
for i in range (nbe):

s = s + nb_tours (p, n)
return s/nbe

IV Vecteurs aléatoires unitaires
Q 36. Notons E =

{
|〈ui|uj〉|, (i, j) ∈ I2, i 6= j

}
. Comme I a au moins deux éléments, E est non vide.

Soit (i, j) ∈ I2 avec i 6= j. Alors d’après l’inégalité de Cauchy-Schwarz : |〈ui|uj〉| ⩽ 〈ui|ui〉〈uj |uj〉 = 1
car les vecteurs sont unitaires.
Ainsi, E ⊂ [0, 1] : c’est une partie non vide majorée de R . E admet donc une borne supérieure. De
plus, sa borne supérieure est dans [0, 1].

Q 37. Supposons que C(u) = 0. Alors pour tout (i, j) ∈ I2 avec i 6= j, |〈ui|uj〉| ⩽ 0, donc 〈ui|uj〉 = 0 et
ui et uj sont orthogonaux.
Ainsi, la famille u est une famille orthogonale, qui est donc libre : comme dim(Mn,1(R)) = n, u est
une famille finie qui a au maximum n éléments. D’où card {ui, i ∈ I} ⩽ n .

Q 38. On peut prendre le logarithme de l’inégalité puis faire une étude de fonction, ou bien passer par

les séries entières : les fonctions t 7→ ch(t) et t 7→ exp

(
t2

2

)
sont développables en série entière sur

R avec :

∀t ∈ R, ch(t) =

+∞∑
n=0

t2n

(2n)!
et exp

(
t2

2

)
=

+∞∑
n=0

t2n

2nn!
.

Or, pour n = 0, 1

(2n)!
=

1

2nn!
et pour n ⩾ 1,

2nn!

(2n)!
=

1∏n
k=1(2k − 1)

⩽ 1 donc 1

(2n)!
⩽ 1

2nn!
.
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D’où, ∀t ∈ R, ch(t) ⩽ exp

(
t2

2

)
.

Q 39. Soit t ∈ R. Alors

exp (t〈X|Y 〉) = exp

(
n∑

k=1

t

n
XkYk

)
=

n∏
k=1

exp

(
t

n
XkYk

)
.

Or, d’après le lemme des coalitions, les variables aléatoires exp
(
t

n
X1Y1

)
et

n∏
k=2

exp

(
t

n
XkYk

)
sont

indépendantes donc :

E (exp (t〈X|Y 〉)) = E
(
exp

(
t

n
X1Y1

))
E

(
n∏

k=2

exp

(
t

n
XkYk

))

et par une récurrence immédiate :

E (exp (t〈X|Y 〉)) =
n∏

k=1

E
(
exp

(
t

n
XkYk

))
.

Puis, si k ∈ J1, nK, la variable Zk = XkYk suit la loi R d’après 19, donc

E
(
exp

(
t

n
XkYk

))
=

1

2
exp

(
t

n

)
+

1

2
exp

(
− t

n

)
= ch

(
t

n

)
.

D’où E (exp (t〈X|Y 〉)) =
n∏

k=1

ch

(
t

n

)
=

(
ch

(
t

n

))n

.

Q 40. D’après la question 38, pour tout t ∈ R, ch

(
t

n

)
⩽ exp

(
(t/n)2

2

)
. Comme les deux côtés de

l’inégalité sont positifs, on obtient :

∀t ∈ R,
(
ch

(
t

n

))n

⩽
(
exp

(
t2

2n2

))n

= exp

(
t2

2n

)
.

En appliquant la question précédente :

∀t ∈ R, E (exp(t〈X|Y 〉)) ⩽ exp

(
t2

2n

)
.

Q 41. Soit t ∈ R+. Posons T = exp(tZ). Par hypothèse, T est positive et admet un espérance finie, donc
d’après l’inégalité de Markov appliquée à T :

P(T ⩾ exp(λt)) ⩽ E(T )
exp(λt)

⩽ exp

(
σ2t2

2
− λt

)

par hypothèse. Si t 6= 0 alors (T ⩾ exp(λt)) = (tZ ⩾ λt) = (Z ⩾ λ), donc P(Z ⩾ λ) ⩽ exp

(
σ2t2

2
− λt

)
.

Si t = 0, alors le terme exp

(
σ2t2

2
− λt

)
vaut 1, donc l’inégalité est aussi vérifiée.
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Q 42. Prenons U = −Z. Alors pour tout t ∈ R, exp(tU) = exp((−t)Z) admet une espérance finie et

E (exp(tU)) = E (exp((−t)Z)) ⩽ exp

(
σ2(−t)2

2

)
.

D’après la question 41 appliquée à la variable U , on a donc :

∀t ∈ R+, P(U ⩾ λ) ⩽ exp

(
σ2t2

2
− λt

)
.

Puis,

∀t ∈ R+, P(|Z| ⩾ λ) = P(Z ⩾ λ) + P(U ⩾ λ) ⩽ 2 exp

(
σ2t2

2
− λt

)
.

On cherche alors t de sorte que : σ
2t2

2
−λt = − λ2

2σ2
ou encore 0 =

σ2t2

2
−λt+

λ2

2σ2
=

(
σt√
2
− λ

σ
√
2

)2

.

On pose donc t =
λ

σ2
∈ R+ et on obtient :

P(|Z| ⩾ λ) ⩽ 2 exp

(
− λ2

2σ2

)
.

Q 43. On pose Z = 〈X|Y 〉. C’est une variable aléatoire réelle et pour tout t ∈ R, exp(tZ) est d’espérance
finie (car elle ne prend qu’un nombre fini de valeurs) et d’après la question 40, en posant σ =

1√
n

,

on a bien
E(exp(tZ)) ⩽ exp

(
σ2t2

2

)
.

On prend alors ε ∈ [0, 1]. Si ε = 0, l’inégalité demandée est évidente, sinon on applique la question
42 en prenant λ = ε :

P(|〈X|Y 〉| ⩾ ε) ⩽ 2 exp

(
−ε2n

2

)
.

Q 44. Par sous-additivité :

P

 ⋃
1⩽i<j⩽N

|〈Xi|Xj〉| ⩾ ε

 ⩽
∑

1⩽i<j⩽N

P
(
|〈Xi|Xj〉| ⩾ ε

)
.

D’après la question 43, pour tout (i, j) ∈ J1, nK2 avec i 6= j, comme Xi
1, . . . , X

i
n, Y

j
1 , . . . , Y

j
n sont

mutuellement indépendantes et de même loi R, on a

P(|〈Xi|Xj〉| ⩾ ε) ⩽ 2 exp

(
−ε2n

2

)
.

Ainsi,

P

 ⋃
1⩽i<j⩽N

|〈Xi|Xj〉| ⩾ ε

 ⩽
∑

1⩽i<j⩽N

2 exp

(
−ε2n

2

)
= 2 exp

(
−ε2n

2

) N∑
j=2

j−1∑
i=1

1

= 2 exp

(
−ε2n

2

)N−1∑
j=1

j

= 2 exp

(
−ε2n

2

)
N(N − 1)

2
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D’où

P

 ⋃
1⩽i<j⩽N

|〈Xi|Xj〉| ⩾ ε

 ⩽ N(N − 1) exp

(
−ε2n

2

)
.

Q 45. Comme n ⩾ 4
lnN

ε2
, ε2n

2
⩾ 2 ln(N) et −ε2n

2
⩽ −2 ln(N). Par croissance de l’exponentielle :

N(N − 1) exp

(
−ε2n

2

)
⩽ N(N − 1) exp(−2 ln(N)) =

N(N − 1)

N2
< 1.

D’après la question précédente :

P

 ⋃
1⩽i<j⩽N

|〈Xi|Xj〉| ⩾ ε

 ⩽ N(N − 1) exp

(
−ε2n

2

)
< 1.

Q 46. Soit N ∈ N tel que N ⩽ exp

(
ε2n

4

)
. Alors n ⩾ 4 ln(N)

ε2
. D’après la question précédente,

P

 ⋂
1⩽i<j⩽N

|〈Xi|Xj〉| < ε

 > 0.

Ainsi,
⋂

1⩽i<j⩽N

|〈Xi|Xj〉| < ε est non vide : il existe au moins un ω ∈
⋂

1⩽i<j⩽N

|〈Xi|Xj〉| < ε. Posons

ui = Xi(ω) pour tout 1 ⩽ i ⩽ N . Alors par définition, C(u) < ε .

• • • FIN • • •

Rémi Crétois - 11 - CCS PSI MATHS1 - 2022


	Partie I
	Quelques résultats préliminaires
	Quelques propriétés de Nn

	Matrices aléatoires à coefficients dans {-1, 1}
	Quelques résultats algébriques
	Une loi de probabilité
	Un premier procédé de génération de matrices aléatoires à coefficients dans {-1, 1}
	Une généralisation

	Un autre procédé de construction de matrices aléatoires à coefficients dans {-1, 1}
	Vecteurs aléatoires unitaires

