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I Partiel

I.A  Quelques résultats préliminaires

Q1. — Soit A,B € M,(R) et A e R.

donc ‘tr est une forme linéaire ‘

— Soit A, B € My, (R).

donc ‘tr(AB) = tr(BA) ‘
Q 2. — Symétrie : soit A, B € M, (R) :

tr(ATB) = tr ((ATB)T) — tr(BT A)

car la trace d’une matrice est égale a la trace de sa transposée.
— Bilinéarité : soit A, B,C € M,(R) et A € R :

tr(AT(AB+C)) =tr(MATB+ ATC) = Mtr(A"B) + tr(A'C)

par linéarité de la trace. L’application est donc linéaire a droite, et par symétrie, elle est bilinéaire.
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I.B

Q 4.

Q5.

Q 6.

Q7.

Q 8.

— Positivité et définition : soit A € M, (R), alors

n

tr(ATA) = [AT Al
k=1

= > (A klAl
k=11i=1

=33 (Al

k=11i=1

Comme A est & coefficients réels, tr(A"T A) > 0. De plus, tr(AT A) = 0 si et seulement si tous les
termes de la somme sont nuls : tr(ATA) =0 < A=0,.

L’application donnée ‘est bien un produit scalaire sur M, (R) ‘

. Soit A € M, (R) telle que AT A = 0,,. En particulier, [tr(A" A) = 0, donc A = 0,, | par définition du

produit scalaire.

Quelques propriétés de N,

Soit A € N,,. Alors il existe k € N* tel que A¥ = 0,,. En particulier, A n’est pas inversible. Ainsi,
le noyau de A n’est pas réduit au vecteur nul : il existe X € M, 1(R) non nul tel que AX =0-X,

donc ‘O est valeur propre de A |.

Soit A € R une valeur propre de A et soit X € M,, ;1 (R) un vecteur propre associé. Alors AX = \X,
et par récurrence immédiate, A*X = A*X. Donc A*X = 0,,. Comme X est non nul, \¥ = 0, donc
A=0. ‘La seule valeur propre de A est donc 0 ‘

Soit A € N,,. D’apres la question précédente, A n’est pas inversible, donc |det(A) =0 |.

D’autre part A est trigonalisable sur C : il existe P € M, (C) inversible telle que T = PAP ™! est
triangulaire supérieure. En outre, les coefficients diagonaux de 1" sont les valeurs propres de A : ils
sont donc tous nuls d’apres la question précédente. Ainsi,

tr(A) = tr(P~'TP) = tr(PP'T) = tx(T) = 0.

‘Donc tr(A) =0 ‘

Soit M € N,,. Alors il existe k € N* tel que M* = 0,,. Puis, pour tout ¢ > k, M* = M*M** = 0,.
Donc (M?)F = M? = 0,,. | La matrice M? est nilpotente |.

Soit M, N € N,, telles que MN = NM. Il existe k, k' € N* avec M*¥ = N* = 0,,. Alors (M N)FtF =
MFHE NFHE car M et N commutent, puis MFHE = NF+K — 0. Donc | M N est nilpotente ‘
On peut d’autre part appliquer la formule du binome de Newton :

(M+N)k+k/ _ Z
1=0

k+k (k—i—k’
(]

> MiNk‘-i-k,—i

Or, pour i < k, NFHF =i = NF NE—i = 0, et pour i > k, M* = 0,. Tous les termes de la somme
précédente sont nuls : (M + N)F =0,,. ‘La matrice M + N est nilpotente |

Soit M, N € N,, telles que M + N € N,,. On a :

(M +N)?>—M? - N?=MN + NM.
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Or, M?, N? et (M + N)? sont nilpotentes d’aprés B. D’aprés la question B, tr((M + N)?) =
tr(M?) = tr(N?) = 0, donc par linéarité, tr(MN + NM) = 0. Or tr(MN + NM) = 2tr(MN). D’ott
tr(MN)=0|

Q 9. Soit M € My(R). D’apres la question B, si M est nilpotente, alors tr(M) = det(M) = 0.
Réciproquement, supposons que tr(M) = det(M) = 0. Alors xa7(X) = X? — tr(M)X + det(M) =
X2, D’aprés le théoréme de Cayley-Hamilton, xm (M) =0,. D'ou M? =0y et M est nilpotente.

M € Ny < det(M) =tr(M) = 0‘.

Q 10. Soit M € M, (R) nilpotente et symétrique. D’apres la question B, la seule valeur propre de M est
0. Comme M est symétrique réelle, elle est diagonalisable. Donc M est semblable & la matrice nulle.

Ainsi, .

Q 11. Soit A € M,(R) une matrice nilpotente et antisymétrique. On a A’ A = —A%. Comme A est
nilpotente, A? aussi, puis —A? aussi. Ainsi, AT A est nilpotente.
Or (ATA)T = AT A, donc AT A est symétrique.

D’aprés la question précédente, | AT A =0, |

D’apres la question B, .

Ainsi,

00 O
Q 12. On peut prendre par exemple une matrice diagonale : M = [0 1 0 | € M3(R). Onadet(M) =
00 —1
0 0 0
tr(M) = 0. Par contre, si k € N est pair, MF=1{0 1 0] etsik estimpair, M*¥ = M. Donc M
0 0 1
n’est pas nilpotente.
On peut donner un exemple pour tout n > 3 en prenant M = diag(0,...,0,1, —1).

IT Matrices aléatoires a coefficients dans {—1, 1}

II.A  Quelques résultats algébriques

1 1
Q 13. Soit i € [1,n]. Alors | E; = §V - §(V —2E;) |
Or pour tout i € [1,n], V —2E; € V,1 et V € V,, 1, donc E; € Vect(V,,1). Comme (Ey,..., E),)
engendre M,, 1 (R), | M,, 1(R) = Vect(Vy, 1)

Q 14. — Unicité : soit 4,j € [1,n — 1] tels que :

(C1,...,C;) est libre ‘ (Cy,...,Cj) est libre
e
Ci+1 S VeCt(Cl,...,CZ') Cj+1 S Vect(Cl,...,Cj)

Alors (C1,...,Cit1) est liée, donc pour tout k > i+1, (C1,...,Cy) est liée. En particulier, j < i.
De méme, ¢ < j. Donc |1 = j |

— Existence : soit A = {j € [1,n—1],(C4,...,Cj) est libre}. L’ensemble A est non vide car Cy est
non nulle. Prenons donc jy = max(A) € [1,n — 1]. En particulier, (C1,...,C},) est libre.
De plus, si jo =n — 1, alors (C1,...,Cjy+1) = (C1,...,Cy) est liée par hypothese.
Si jo <n—1,alors jo+1 € [1,n— 1] donc (C4,...,Cjy+1) est liée par maximalité de jo.

Ainsi, ‘ Jjo vérifie les conditions voulues ‘

Q 15. Ca ressemble a une projection sur un sous-espace vectoriel de M, 1(R) engendré par d vecteurs de
la base canonique.
Plus précisément, comme (Uy, ..., Uy) est libre, on peut compléter la famille avec n — d vecteurs de
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la base canonique pour obtenir une base de M, 1(R). Notons 1 < i; < --- < ig < n les indices des
vecteurs de la base canonique non utilisés pour cette complétion. Alors, H et Vect((Ei)ig{il’m,i )
sont supplémentaires dans M,, ; (R).

Posons alors ¢ : H — Mg 1(R) telle que ¢(z1,...,2,) = (24,...,2i,). C'est une application li-
néaire. Vérifions que ¢ est injective : soit (x1,...,xy) € ker(yp). Alors x;, = --- = x;, = 0. Ainsi,
(T1,...,2n) € VeCt((Ei)ie{il,...,id}) N H, donc (x1,...,2y,) = Op.

Comme dim(H) = dim(Mg4; (R)),

Q 16. Comme W est de dimension d, il existe une base (Uy,...,U;) de W. D’apres la question @3, il
existe 1 <11 < -+ < ig < n tels que

i est donc un isomorphisme ‘

e: W = Mgi(R)
T T
H

-rn mid

est une bijection. Or ¢ (WN 'V, 1) C V41. Donc

card(WN V1) = card(p(WNV,, 1)) < card(Vy,;) = 2¢

II.B  Une loi de probabilité

1 1
Q 17. La variable §(X + 1) suit la |loi de Bernoulli de parameétre 1.

Q 18. Soit X qui suit la loi R.

EX)=-1-PX=-1)+1-P(X=1)=0 et EX)=(-12PX=-1D+1%2...PX=1)=1

Done V(X) = E(X?) — E(X)? = 1. Donc |[E(X) = 0 et V(X) = 1|

Q 19. Soient X et Y suivant R et indépendantes. Notons Z = XY. Alors Z prend les valeurs 1 et —1.
De plus,

P(Z=1)=P(X=1Y=1+P(X =—1,Y =—1) =P(X = )P(Y = )+P(X = —~1)P(Y = —1) =

par indépendance. Donc ‘ Z suit aussi la loi R ‘

II.C Un premier procédé de génération de matrices aléatoires a coefficients dans
{_17 1}

Q 20. Par linéarité de ’espérance,

=1 =1

Comme les m;; (i € [1,n]) suivent la loi R, leur espérance est nulle (question 0R). Donc |E(7,) =0 |.
Comme les m;; (i € [1,n]) sont mutuellement indépendantes,

i=1

D’apres la question ¥, on obtient .
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Q 21. En développant le déterminant par rapport a la premiere ligne :

n
On =Y my Ay
=1

ou Ay q,...,Aq, sont les mineurs de la matrice M,,. D’apres le lemme des coalitions, pour tout
J € [1,n], mi; et Ay ; sont indépendantes. Donc

ZE mlj Al])

0
Ainsi, |E(,) = 0|

Q 22. Montrons par récurrence la propriété P,, : pour toute matrice aléatoire N, de taille n dont les
coefficients sont mutuellement indépendants et suivent la loi R, V(det(N,,)) = n!.
— Initialisation : pour n = 1, soit N1 une matrice aléatoire de taille dont le coefficient suit R. Alors
V(det(N1)) = V(ny1) =1 d’apres la question [R. Donc P; est vraie.
— Hérédité : soit n > 1 telle que P, est vraie. Soit N,y une matrice de taille n + 1 dont les
coefficients sont mutuellement indépendants et suivent la loi R. En développant par rapport a

la premiere ligne :
n+1

det(Np41) an,]ALja

ou Ay ; sont les mineurs de N,,11. Puis,

2
E(det(Np+1)7) = E S nnipdiAg | = > E(ngnigAiAgg)
1< k<nt1 1< k<n+1
par linéarité de I'espérance. D’apres le lemme des coalitions, n jni ; et Ay ;A sont indépen-
dantes, et d’apres la question 9, si j # k, n1 jn suit la loi R. Donc

n+1

E(det(Np11)?) = Z E(nyjnix) E(A1;A1%) = ZE 1)

ISgksntl o o 4k

De plus, pour tout j € [1,n], n%j vaut 1 avec probabilité 1 et d’apres la question I, E(Aij) =
V(A1 ;). Par hypothese de récurrence, V(A ;) = n!. Donc

n+1
E(det(N, n+1 Z n!l=(n+1)!

Enfin, d’aprés la question 210, V(det( Ny 1)) = E(det(Nyp1)?).
Ainsi, la propriété P, est vraie.
D’apres le principe de récurrence, on en déduit que .
Q 23. D’apres la question A, (My € Ny) = (62 = 0) N (72 = 0). Donc d’apres la formule des probabilités
composées :

]P)(MQ S NQ) = ]P)(TQ = 0)]?(7.2:0) ((52 = 0)

1
Or, ]I”(TFO)(ég =0) = ]P’(—mil —miomaoy = 0) = P(miamge; = —1) = 3 d’apres la question 9.

1
D’autre part, P(1 = 0) = P(m11 = —map2) =P(mig =1,me2 = —1)+P(m11 = —1,me2 =1) = 5

par indépendance. Ainsi, |P(Ms € Na) =

1
il

Rémi Crétois -5- CCS PSI MATHS1 - 2022



CCS PSI MATHS1 Corrigé 2022 - Filiére PSI

P(d2 = 0) = P(m11me2 = ma1mi2).

D’apres 4, les variables a = my 1ma2 et b = mo 1mq 2 suivent la loi R. Elles sont de plus indépen-
dantes d’apres le lemme des coalitions. Donc

P(6y=0)=Pla=1,b=1)+Pla=-1,b=—1) =P(a

— 1)P(b=1)+Pla=—1)P(b=—1) = .

5"

Ainsi, | P(Ms € Gf5(R)) = % .

II.D Une généralisation

Q 25. Comme les variables cq,

...,y sont mutuellement indépendantes, pour tout (1, ...,&,) € {—1,1}",

P((c1 = £1) M-+ (cn = e0)) = P(er = £1) - - - Plen = L

Q 26. Soit w € Q. Supposons que (C(w),C’(w)) est lice. 1l existe alors a,a’ € R tels que aC(w) +
o' C’'(w) = 0,,. Comme C(w) est non nul, &’ est non nul, donc C’(w)

—%C(oj). On pose € = — a

Ja
/
de sorte que C’(w) = eC(w). Puis, comme ¢} (w) = ec1(w) et c1(w) #0, e = Clgwi e{-1,1}.
Cc1(w
Réciproquement, s’il existe € € {—1,1} tel que C'(w) = eC(w) alors (C(w),C’(w)) est bien lide.
Ainsi, | pour tout w € Q, (C(w),C’(w)) est liée ssi il existe e € {—1,1} tel que €' (w) = eC(w)
Q 27. D’apres la question précédente,
P((C,C") est lie) =P((C = C") U (C =-C") =P(C =C")+P(C =-C").
Or
P(C=C" = Z P(ci = €1,y =€1,...,¢n = €, C), = €n)
(e15esen)E{—1,1}"
D’apres la question 23 et par indépendance,
1 1
— N — _
(517 75n)6{_1 1}n
1
De la méme fagon, on trouve P(C' = —C’) = on° Donc | P((C'C") est liée) = 7|
Q 28. Soit w € Q. D’apres la question 04,
— soit (C1(w),...,Cp(w)) est libre et alors w € R, et w &€ Ry pour k € [1,n — 1],
— soit il existe un unique j € [1,n — 1] tel que w € R;.
n
Ainsi, Q = U R; et I'union est disjointe. ‘ Donc (Ry,...,Ry,) est un systéme complet d’événements
j=1

Q 29. Une matrice M est inversible si et seulement si la famille de ses vecteurs colonnes est libre. Donc

(M, & 90,(R)) = ((Ch,...,Cp) est liée). D’apres la formule des probabilités totales appliquée avec
le systéme complet d’événements (R, ..., R,) :

P(My & Gtn(R)) = > P (((Cy,...,Ch) est liée) N R;) .
j=1

Rémi Crétois
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Or, P(((Ch,...,Cy) est liée) N R,) =0 et pour j € [1,n—1], (((Cy,...,Cy) est liée) N Rj) = R; C

(Cj41 € Vect(Ch,...,C5)). Par croissance de la probabilité :

n—1

P(My & G§6n(R)) < Y _P(Cji1 € Vect(Cy, ..., Cy)).

Jj=1

Q 30. Soit j € [1,n — 1]. La famille ((C; =v)N---N(C; = vj))(vl vy)evi . est un systeme complet
e ¥] n,1

d’événements. D’apres la formule des probabilités totales :

P(CJ_H EVeCt(Cl,...,Cj)) = Z P((Cj_H S Vect(C’l,...
(vl,...,vj)EVZhl
= Pcr=v)n-n(cj=v))) (Cj41 € Vect(Ch,...,C5)) x

,Ci))N((Cr=wv1)N---N(Cj = vy)))

(vlr"ﬂ}j)eviyl

P((Cr=v1)Nn---N(Cj =vy))

d’apres la formule des probabilités composées. Or

P((Clzvl)ﬂ---ﬂ(Cj:vj)) (Cj+1 € Vect(Cy, ..., Cj)) =P(Cj1 € Vect(vy, .. ., vj)) .

Donc

,Cj)) = P (Cj+1 € Vect(vl, o ,’Uj)) P((Cl = ’Ul) n---N (C] = Uj)) .

(vl,...,vj)EVfl,l

P (Cj+1 S Vect(Cl, .

Q 31. Soit j € [1,n — 1]. Prenons (vy,...,v;) € \7{171. Alors dim(Vect(v,...,v;)) < j, donc d’apres la
question @8, card(Vect(vy,...,v;)NVy 1) < 27, Puis, si v € Vect(vy, ... ,0j)NVy, 1, d’apres la question

1
23, P(Cj41 =v) = o Or (Cjq1 € Vect(vi,...,vj)) = (Cj41 € Vect(vi,...,v) NVy 1), donc

1 .
P(Cj41 € Vect(vy,...,v;)) = card(Vect(vy,...,v;) N \7,%1)2—” <27

D’apres la question précédente,
P(Cj1 € Vect(Ch,...,CH)) < Y ZT"P((Cr=v)n---N(Cij=05)=2""
(011 VI

car (Cr=v)N---N(C; = vj))(v1 vy)evi | est un systeme complet d’éveénements. On a donc bien
(A n,l

P(Cj11 € Vect(Cy,...,C;) <27
Q 32. D’apres les questions 29 et B,

n—1 2n71 1 1

ST 1

P ESED S st = =l
1

Ainsi, | P(M,, € §0(R)) = 1 = B(¢ G0 (R)) > 5 |
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IIT Un autre procédé de construction de matrices aléatoires a coeffi-
cients dans {—1,1}

Q 33. Pas besoin de tester si le coefficient vaut 1, mais on le fait quand-méme pour la lisibilité.

def modifie_matrice(p, A):
n, m = A.shape
for i in range(mn):
for j in range(m):
if A[i,j] = 1 and rd.binomial(l, p) ==
Ali,j1 = -1

Q 34. Pour tester si Ay = —Ap, on peut calculer la somme des coefficients de Ay : on aura A = —Ag
2

ssi cette somme vaut —n”.
def nb_tours(p, n):
A = np.ones((n, n))
k =0
while A.sum() > -n**x2:
modifie_matrice(p, A)
k =k + 1
return k

Q 35. Rien de particulier ici.

def moyenne_tours(p, n, nbe):

s =0
for i in range (nbe):
s = s + nb_tours(p, n)

return s/nbe

IV  Vecteurs aléatoires unitaires

Q 36. Notons E = {|(us|u;)|, (4,5) € I?i # j}. Comme I a au moins deux éléments, E est non vide.
Soit (i,5) € I? avec i # j. Alors d’apres 'inégalité de Cauchy-Schwarz : | {u;|u;)| < (u;|u;)(ujluj) = 1
car les vecteurs sont unitaires.

Ainsi, ‘ E C [0,1] : ¢’est une partie non vide majorée de R ‘ E admet donc une borne supérieure. De

plus, sa borne supérieure est dans [0, 1].

Q 37. Supposons que C(u) = 0. Alors pour tout (i,) € I* avec i # 7, |(us|uj)| <0, donc (uijuj) =0 et
u; et u; sont orthogonaux.
Ainsi, la famille u est une famille orthogonale, qui est donc libre : comme dim(M,, 1(R)) = n, u est

une famille finie qui a au maximum n éléments. D’ou ‘Card {uj,ie I} <n ‘

Q 38. On peut prendre le logarithme de I’inégalité puis faire une étude de fonction, ou bien passer par
2

t
les séries entieres : les fonctions t — ch(t) et t — exp <2> sont développables en série entiere sur

R avec :
I 42n 42 T 42n
Vit e R, ch(t) = Z o)l et exp (2) = Z TR
n=0 n=0
1 1
Or, pour n =0, W = Sl et pour n > 1,
27! 1 <1 d 1 < 1
= < onc —— <
2n)! Tl (2k—1) 2n)! = 27n!
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2
D’ou, |Vt € R, ch(t) < exp <2> )

Q 39. Soit t € R. Alors
"¢ - t
HXI|Y)) = - XY | = - XY ).
GXP<< | >) eXP(%ﬂ k k) ’geXp<n k k>

t u t
Or, d’apres le lemme des coalitions, les variables aléatoires exp (X 1Y1> et H exp <X kYk> sont
n n
k=2
indépendantes donc :

E (exp (H(X]Y))) = E <exp (:LX1Y1>> E (ﬁ exp <2XkYk>>
k=2

et par une récurrence immédiate :

E (exp (H{X|Y))) = kliIlE (exp <:LXkYk>> .

Puis, si k € [1,n], la variable Z; = XY}, suit la loi R d’apres [, donc
t 1 t 1 t t
E(exp| —XrY: =—exp|—|+zexp|——) =ch|[—].
n 2 n 2 n n
Dot | E (exp (H(X]Y))) = f[ (L) = (an (L))
P N Pt n) n '

t t/n)?
Q 40. D’apres la question BR, pour tout ¢t € R, ch <> < exp (U)) Comme les deux cotés de

n 2
I’inégalité sont positifs, on obtient :

ven (O <o) -(£)

En appliquant la question précédente :

2n

2
Vi €R, E(exp(t{(X|Y))) < exp (t> .

Q 41. Soit t € R". Posons T = exp(tZ). Par hypothese, T est positive et admet un espérance finie, donc
d’apres 'inégalité de Markov appliquée a T :

o242
P(T > exp(At)) < efff(z;\)t) < exp ( - At)

o2t?

par hypothese. Sit # 0 alors (T > exp(At)) = (tZ > Xt) = (Z > N),donc|P(Z > \) < exp < — At

2

)

2,2
t
Sit =0, alors le terme exp (2 — )\t> vaut 1, donc 'inégalité est aussi vérifiée.
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Q 42. Prenons U = —Z. Alors pour tout t € R, exp(tU) = exp((—t)Z) admet une espérance finie et

E (exp(tU)) = E (exp((~1)2)) < exp (” = ) .

D’apres la question B appliquée a la variable U, on a donc :

2t2
VteRY, PU > \) <exp (" —/\t>.

2
Puis,
o?t?
VteRY, P(Z| 2N =P(Z >\ +PU >\ <2exp (2 - At) :
242 A2 242 A2 tA
On cherche alors t de sorte que : UT—)\t =52 ou encore 0 = UT—/\H—@ = (\U@ — U\/§> .

A
On pose donc t = — € R™ et on obtient :
o

)\2
P(|Z| =X <2 —— .
(121> 3 < 200 (515

Q 43. On pose Z = (X|Y). C’est une variable aléatoire réelle et pour tout ¢t € R, exp(tZ) est d’espérance
7

finie (car elle ne prend qu’'un nombre fini de valeurs) et d’apres la question B0, en posant o =

on a bien

E(exp(tZ)) < exp (0—2;2) .

On prend alors ¢ € [0,1]. Si e = 0, 'inégalité demandée est évidente, sinon on applique la question
B2 en prenant A =€ :

2

B((X|V)] > €) < 2exp (—2”) |

Q 44. Par sous-additivité :
Pl U 1xxze)< 3 PXIXY) >e).
1<i<j<N 1<i<j<N

D’apres la question B3, pour tout (,5) € [1,n]? avec i # j, comme X1,.. .,Xfl,Ylj, ..., Y7 sont
mutuellement indépendantes et de méme loi R, on a

o e2n
P((XX7)| > &) < 2exp (—2) .

Ainsi,
— e2n 20\ <. 1A
1y ) = __
Pl U lxiize) < ¥ zexp( 2)_zexp( 2)2 |
1<i<j<N 1<i<j<N 7=21=1
22\ V=1
=92 -
eXp( 5 > J
7j=1
2 N -1
=2exp _£n )
2 2
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D’ou
- e2n
P (X' X)) =>e | < NN —1)exp (—2>.
1<i<j<N
InN &e2n eln : .
Q 45. Comme n > 4——, 5 > 2In(N) et — < —21In(N). Par croissance de ’exponentielle :
€
2 N(N -1
N(N —1)exp (-2“) < N(N — 1) exp(—21In(N)) = % <1

D’apres la question précédente :

i . 5277/

1<i<j<N

2

41n(N
Q 46. Soit N € N tel que N < exp (T).Alorsn} n(N)

g2

. D’apres la question précédente,

Pl () KXIXI)|<e| >0

1<i<j<N

Ainsi, ﬂ (X' X7)| < & est non vide : il existe au moins un w € ﬂ |(X!|X7)| < e. Posons
1<i<j<N 1<i<G<N

u; = X' (w) pour tout 1 < i < N. Alors par définition, m

oo o[INeeoe
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