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Concours Commun INP 2025
Épreuve de mathématiques I, MP, quatre heures
(corrigé (d’après le corrigé de B.Winckler))

EXERCICE I
Q1. On note que ]−1, 1[ est un intervalle, donc une partie connexe par arcs de R. Comme une application

continue préserve la connexité par arcs, et que f ′ est continue en tant que dérivée d’une fonction
de classe C1.
Conclusion : f ′(]− 1, 1[) est une partie connexe par arcs de R2 .

Q2. a) Démontrons la dérivabilité en 0 composante par composante. Soit t strictement positif au
voisinage de 0. On a :

t2 sin
(

1
t

)
− 0

t− 0 = t sin
(1
t

)
= O

t→0
(t) = o

t→0
(1),

donc : lim
t→0+

t2 sin( 1
t )−0

t−0 = 0. On trouve de même : lim
t→0+

t2 cos( 1
t )−0

t−0 = 0. La limite à gauche étant
trivialement nulle aussi, on a démontré :

lim
t→0

1
t
(f(t)− f(0)) = (0, 0),

donc f est dérivable en 0 et : f ′(0) = (0, 0) .
La dérivabilité de f sur ]− 1, 1[\{0} ne pose pas de problème grâce aux théorèmes généraux
sur les fonctions dérivables. En effet, t 7→ 1

t
est dérivable sur ]0, 1[ et à valeurs dans R, et

le cosinus et le sinus sont dérivables sur R : par composition, t 7→ sin
(

1
t

)
et t 7→ cos

(
1
t

)
,

or t 7→ t2 l’est aussi. Par produit, chaque composante de f est dérivable sur ]0, 1[ donc f
l’est aussi. Le raisonnement est plus direct sur ] − 1, 0[ puisque la restriction de f y est
identiquement nulle.
On a en outre, pour tout t ∈]0, 1[ :

f ′(t) =
(

2t sin
(1
t

)
− cos

(1
t

)
, 2t cos

(1
t

)
+ sin

(1
t

))
.

Pour t ∈]− 1, 0[, la dérivée est bien sûr nulle.
Conclusion : f est dérivable sur ]− 1, 1[ .

b) Soit t ∈]0, 1[. On a , en développant :

‖f ′(t)‖2
2 =

(
2t sin

(1
t

)
− cos

(1
t

))2
+
(

2t cos
(1
t

)
+ sin

(1
t

))2

= cos
(1
t

)2
+ sin

(1
t

)2
+ (2t)2

(
cos

(1
t

)2
+ sin

(1
t

)2)
= 1 + (2t)2

> 1,

Conclusion : ‖f ′(t)‖2 > 1 .
On a donc : f ′(]0, 1[) ⊆ R2 \ BF (0, 1) (pour la norme ‖ · ‖).
Déduisons-en que f ′(] − 1, 1[) n’est pas connexe par arcs en raisonnant par l’absurde : sup-
posons l’existence d’un chemin continu γ : [0, 1] → f ′(] − 1, 1[) liant f ′(0) = (0, 0) et
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f ′
(

1
2

)
. Par continuité de ‖γ‖2 : [0, 1] → R – en effet toute norme est continue car lip-

schitzienne par l’inégalité triangulaire renversée – et le théorème des valeurs intermédiaires
(avec ‖γ(0)‖2 = ‖(0, 0)‖2 = 0 et ‖γ(1)‖2 =

∥∥∥f ′ (1
2

)∥∥∥
2
> 1), il existe t0 ∈ [0, 1] tel que :

‖γ(t0)‖2 = 1
2 (le réel 1

2 n’a pas d’importance : ce peut être tout élément de ]0, 1[). Or ‖γ(t0)‖2
appartient à ‖f ′‖2(] − 1, 1[), qui lui-même est inclus dans {0} ∪ [1,+∞[ d’après l’étude qui
précède : il ne peut donc pas être égal à 1

2 : contradiction.
Par l’absurde, f ′(]− 1, 1[) n’est pas connexe par arcs.
Remarque. Le sujet autorisait à prendre un dessin en appui. Représentons donc {(0, 0)} =
f ′(]− 1, 0[) et f ′(]0, 1[) :

x

y

−1 1

−1

1

Il est manifeste que {(0, 0)} = f ′(] − 1, 0]) et f ′(]0, 1[) forment deux composantes connexes
distinctes : on ne peut pas passer continûment d’un vecteur « presque unitaire » au vecteur nul
sans passer par toutes les normes intermédiaires. C’est ce que nous avons formalisé ci-dessus.

EXERCICE II : (cet exercice n’est pas celui de ccinp 2025)
Q3. a) Voir le cours.

b) Posons fn(x) = dx

xn + ex
et I = [0,+∞[.

On a

i) fn(x) −→
n→+∞



0 si x > 1
1

1 + e
si x = 1

1
ex

= e−x si x ∈ [0, 1[

Posons donc g(x) =



0 si x > 1
1

1 + e
si x = 1

1
ex

= e−x si x ∈ [0, 1[
On a donc (fn) qui converge simplement vers g sur I.
ii) fn et g sont continues sur I par théorèmes généraux.
iii) HD :

∀x ∈ I , ∀n ∈ N : |fn(x)| 6 1
ex

= e−x = ϕ(x)

2
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ϕ est continue et intégrable sur I (intégrale de référence).
On a donc la HD.
Le théorème permet donc de dire
i) que fn existe pour tout entier n (dit autrement : fn est intégrable sur I) et

ii) lim
n→+∞

∫ +∞

0

dx

xn + ex
=
∫ 1

0
e−xdx =

[
− e−x

]1

0
= 1− 1

e
.

Conclusion : lim
n→+∞

un = 1− 1
e
.

Q4. a) Voir le cours.
b) Pour tout t > 0 :

t

et − 1 = t

et
1

1− e−t = te−t
+∞∑
n=0

e−nt =
+∞∑
n=0

te−(n+1)t =
+∞∑
n=1

te−nt (CDV n = n+ 1).

Conclusion : Pour tout t > 0 : t

et − 1 =
+∞∑
n=1

te−nt .

c) Posons un(t) = te−nt et I =]0,+∞[.
On a

i) d’après le b) (∑un) qui converge simplement sur I vers la fonction F : t 7−→ t

et − 1.

ii) un et F sont continues sur I par théorèmes généraux.
iii) HD :
Montrons d’abord que ∀n > 1, un est intégrable sur I :
• un est continue sur I (c’est le ii)).
• En 0 : la fonction un se prolonge par continuité en 0 par un(0) = 0, donc par T.C. , un est
intégrable sur ]0, 1

2].
• En +∞ :

Comme t2 · un(t) = t3e−nt −→
n→+∞

0 par croissances comparées (n > 1), donc un(t) = o
n→+∞

( 1
t2

)
.

Comme la fonction t 7−→ 1
t2

est intégrable sur [1,+∞[, par T.C. , un est intégrable sur [1,+∞[.
Conséquence : un est intégrable sur ]0,+∞[.

Montrons que
(∑∫ +∞

0
|te−nt| dt

)
n
converge.∫ +∞

0
|te−nt| dt =

∫ +∞

0
te−nt dt =

[
t
e−nt

−n

]+∞

0
−
∫ +∞

0
1 · e

−nt

−n
dt avec l’I.P.P.

{
u = t
v′ = e−nt

.

On a
[
t
e−nt

−n

]+∞

0
= 0− 0 = 0 par C.C.

On en déduit que
∫ +∞

0
|te−nt| dt = −

[
e−nt

n2

]+∞

0
= 0 + 1

n2 = 1
n2 .

Comme la série (∑ 1
n2 ) est convergente, on peut appliquer le théorème de Lebesgue :

Conclusion :

∫ +∞

0

tdt

et − 1 =
+∞∑
n=1

1
n2 (et donc π

2

6 ).

3



Mathématiques I MP : DS 7 CC INP 2025, corrigé

PROBLÈME
Autour du théorème de comparaison avec une intégrale

Partie I – Théorème de comparaison avec une intégrale

Q5. Comme f est positive, on a : ∀n ∈ N, Sn+1 − Sn = f(n+ 1) > 0, et : Jn+1 − Jn =
∫ n+1

n
f > 0 (on

utilise là la relation de Chasles et la croissance de l’intégrale). On en déduit que :

les suites (Sn)n∈N et (Jn)n∈N sont croissantes .

Ensuite, par décroissance de f sur [k − 1, k], on a pour tout k ∈ N \ {0} :

f(k) =
∫ k

k−1
f(k)dt 6

∫ k

k−1
f(t)dt 6

∫ k

k−1
f(k − 1)dt = f(k − 1),

d’où le résultat : f(k) 6
∫ k

k−1
f(t)dt 6 f(k− 1). L’hypothèse de continuité intervient pour assurer

la convergence de toutes ces intégrales sur des segments.
Q6. Soit n ∈ N\{0}. On somme de k = 1 à k = n l’encadrement de la question précédente et on utilise

la relation de Chasles. On obtient :
n∑
k=1

f(k) 6
∫ n

0
f(t)dt 6

n∑
k=1

f(k − 1) =
n−1∑
k=0

f(k),

d’où le résultat : Sn − f(0) 6 Jn 6 Sn−1 .
Q7. Notons que f est bien continue, positive et décroissante sur R+.

(1) Supposons f intégrable sur R+. Par positivité, on a pour tout n ∈ N \ {0} :

Sn
(Q 6)
6 Jn + f(0) 6

∫ +∞

0
f + f(0) < +∞.

Ainsi la suite (Sn)n∈N est croissante (Q5) et majorée : elle converge, c’est-à-dire la série
∑
n>0

f(n)
converge.
Réciproquement, si la série

∑
n>0

f(n) converge, alors par positivité de f (qui autorise les calculs

dans [0,+∞]) on a : ∫
R+
|f | =

∫
R+
f = lim

n→+∞

∫ n

0
f = lim

n→+∞
Jn.

Par la question précédente et convergence de la série
∑
n>0

f(n), on a les inégalités suivantes en

passant à la limite : lim
n→+∞

Jn 6 lim
n→+∞

Sn−1 =
+∞∑
n=0

f(k) < +∞, donc :
∫
R+
|f | < +∞, ce qui

démontre l’intégrabilité de f sur R+. Ceci achève de démontrer que

f est intégrable sur R+ si et seulement si la série
∑
n>0

f(n) converge .

(2) Démontrons que la série
∑
n>1

(∫ n

n−1
f(t)dt− f(n)

)
converge.
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Par la question Q5, le terme général wn de cette série est positif et pour tout N > 1 :
N∑
n=1

wn =
N∑
n=1

(∫ n

n−1
f(t)dt− f(n)

)
6

N∑
n=1

(f(n− 1)− f(n)) = f(0)− f(N) < f(0),

Les sommes partielles de (∑wn) sont donc majorées.

Conclusion : La série à termes positifs
∑
n>1

(∫ n

n−1
f(t)dt− f(n)

)
converge .

Remarque. La convergence de la série
∑
n>1

(∫ n

n−1
f(t)dt− f(n)

)
est visuelle, et cette visualisation

motive d’ailleurs les majorations ci-dessus. En effet, cette série représente la somme des aires bleues
ci-dessous :

x

y

y = f(x)y = f(x)

1 n− 1 n

f(n)

n+ 1

Si l’on « empile » ces aires, on voit immédiatement un majorant convenable :

x

y

...

f(0)

f(1)

f(2)

f(3)
f(4)

1 2

6 =

x

y

...

f(0)

f(1)

f(2)

f(3)
f(4)

1 2
x

y

f(0)

1 2

5
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Ainsi la somme des aires bleues définit une suite croissante majorée : elle converge. Le rectangle
vert servant de majorant est la somme télescopique de la résolution.

Q8. a) Comme α > 0, la fonction f est décroissante en tant que produit des fonctions décroissantes
et positives x 7−→ 1

x
et x 7−→ 1

(ln(x))α . Elle est aussi continue et positive sur [2,+∞[. On a en
outre, pour tout x > 2 :∫ x

2

dt
t ln(t) = [ln(| ln(t)|)]x2 = ln(ln(x))− ln(ln(2)),

tandis que, si α 6= 1 :

∀x > 2,
∫ x

2

dt
t(ln(t))α =

[
− 1

1− α
1

(ln(t))α−1

]x
2

= 1
α− 1

(
1

(ln(2))α−1 −
1

(ln(x))α−1

)
.

On en déduit :
lim

x→+∞

∫ x

2
f =

{ 1
(α−1)(ln(2))α−1 < +∞ si α > 1,

+∞ si α 6 1.
Comme f est positive, cela démontre qu’elle est intégrable sur [2,+∞[ si et seulement si :
α > 1.
Par la question précédente, dont toutes les hypothèses sont vérifiées (pour se ramener à R+,
il suffit de prolonger f en posant f(x) = f(2), pour x ∈ [0, 2] : la fonction ainsi prolongée est
toujours continue, positive et décroissante sur R+ ou bien de considérer la fonction translatée
x 7→ f(x+ 2), ce qui ne change rien à la nature des intégrales et séries en jeu),

Conclusion : la série
∑
n>2

1
n(ln(n))α converge si et seulement si : α > 1 .

b) Si α = 2, alors la question Q6 (où l’on considère encore la fonction prolongée sur R+) donne :

∀n ∈ N \ {0, 1},
∫ n+1

2

1
x(ln(x))2 dx 6

n∑
k=2

1
k(ln(k))2 6

∫ n

2

1
x(ln(x))2 dx+ 1

2(ln(2))2 ,

et donc, quand n→ +∞, par le calcul de la question précédente :

1
ln(2) 6

+∞∑
k=2

1
k(ln(k))2 6

1
ln(2) + 1

2(ln(2))2 .

Q9. a) Pour tout n > 2 on a :

Tn =
n∑
k=1

1
k
−
∫ n

1

1
x

dx = 1−
n∑
k=2

(∫ k

k−1

1
x
− 1
k

)
.

En appliquant la question Q7 à la fonction continue, positive et décroissante x 7−→ 1
x
(ou plu-

tôt à sa translatée x 7→ 1
x+1 qui vérifie les mêmes hypothèses sur R+), la série

∑
k>2

(∫ k

k−1

1
x
− 1
k

)
converge, ce qui démontre la convergence de la suite (Tn)n∈N\{0} .

b) Par la question précédente : Tn = γ + o
n→+∞

(1), donc par définition de Tn :

n∑
k=1

1
k

= ln(n) + γ + o
n→+∞

(1).

Comme le logarithme tend vers l’infini, on en déduit :

6
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n∑
k=1

1
k

= ln(n) + o
n→+∞

(ln(n)) ∼
n→+∞

ln(n).

Q10. a) Soit x ∈]0,+∞[, gn(x) ∼
+∞

x

n2 > 0.

Comme la série (∑ 1
n2 ) converge, par T.C. la série (∑ gn(x)) converge.

Conclusion : la série (∑ gn) converge simplement sur ]0,+∞[
b) Notons d’abord que f est définie et continue sur R+ par TG, puisque le dénominateur est

continu et ne s’annule pas sur cet intervalle.
La fonction t 7−→ t2 étant positive et croissante sur R+, les opérations élémentaires sur les
inégalités impliquent que f est décroissante et positive sur R+. On peut donc lui appliquer
la question Q5, d’où le résultat en sommant l’inégalité f(k) 6

∫ k

k−1
f(t)dt de k = 0 à k = n,

puis en sommant l’inégalité
∫ k

k−1
f(t)dt 6 f(k − 1) de k = 1 à k = n+ 1 :

∀n ∈ N \ {0},
∫ n+1

1
f(t)dt 6

n∑
k=1

f(k) 6
∫ n

0
f(t)dt.

c) Soit n ∈ N \ {0}. On a :∫ n

0
f(t)dt =

∫ n

0

1
x

1(
t
x

)2
+ 1

dt =
[
arctan

(
t

x

)]n
0

= arctan
(
n

x

)

et de même : ∫ n+1

1
f(t)dt = arctan

(
n+ 1
x

)
− arctan

(1
x

)
.

Comme x est strictement positif, on a : lim
n→+∞

n+ 1
x

= lim
n→+∞

n

x
= +∞, donc par composition

de limites :

lim
n→+∞

∫ n

0
f(t)dt = π

2 , et : lim
n→+∞

∫ n+1

1
f(t)dt = π

2 − arctan
(1
x

)
.

On passe à la limite dans l’encadrement de la question précédente. Notons que la limite quand
n → +∞ de

n∑
k=1

f(k) existe bien (dans [0,+∞] a priori) puisque nous sommons des termes

positifs. Comme f(k) = gk(x) pour tout k ∈ N \ {0}, on en déduit :

π

2 − arctan
(1
x

)
6

+∞∑
n=1

gn(x) 6 π

2 ,

d’où le résultat, pour tout x > 0. Ceci démontre en passant la convergence simple de la série
de fonctions positives

∑
n>1

gn sur R∗+.

d) Par la question précédente et le théorème d’encadrement : lim
x→+∞

+∞∑
n=1

gn(x) = π

2 .

Partie II – Contre-exemples

7
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Q11. a) Soit n ∈ N\{0}. Notons que le sinus est positif sur [0, π] et négatif sur [π, 2π]. Par périodicité
de péridoe 1, x 7−→ sin(2πx) est positive sur

[
n, n+ 1

2

]
et négative sur

[
n+ 1

2 , n+ 1
]
. On a

alors, par la relation de Chasles :∫ n+1

n
f =

∫ n+ 1
2

n
f +

∫ n+1

n+ 1
2

f

=
∫ n+ 1

2

n
sin(2πx)dx−

∫ n+1

n+ 1
2

sin(2πx)dx

=
[
−cos(2πx)

2π

]n+ 1
2

n

−
[
−cos(2πx)

2π

]n+1

n+ 1
2

= −cos(2πn+ π)
2π + cos(2πn)

2π −
(
−cos(2π(n+ 1))

2π + cos(2πn+ π)
2π

)

= −−1
2π + 1

2π −
(
− 1

2π + −1
2π

)
= 2
π
.

Conclusion :
∫ n+1

n
f(t)dt = 2

π

b) Soit x ∈ [1,+∞[. Par positivité de l’intégrande, on a :

∫ x

1
| sin(2πt)|dt >

∫ bxc
1
| sin(2πt)|dt =

bxc−1∑
n=1

∫ n+1

n
| sin(2πt)|dt (a))=

bxc−1∑
n=1

2
π

= 2
π

(bxc − 1) ,

ce qui donne la minoration attendue. Comme le minorant tend vers l’infini, on en déduit :

lim
x→+∞

∫ x

1
f(t)dt = +∞,

donc f n’est pas intégrable sur [1,+∞[ .
Or le sinus est nul en tous les multiples entiers de π, donc
la série

∑
n>1

f(n) =
∑
n>1

0 est trivialement convergente .

Elle n’est pas de même nature que l’intégrale
∫ +∞

1
f . C’est bien sûr lanon monotonie de f

qui ne permet pas d’appliquer la question Q7.

Q12. Il suffit de prendre an = 1
n2 . La longueur de [n−an, n+an] est alors égale à 2

n2 , or l’aire du triangle
de base [n − an, n + an] et de hauteur 1 est égale à la longueur de la base fois la hauteur divisée
par 2 : son aire est bien égale à 1

n2 .
Voici le graphe de la fonction décrite par l’énoncé. Du moins, nous ne respectons la description
que pour n > 2, car les intervalles [1 − a1, 1 + a1] et [2 − a2, 2 + a2] ne sont pas disjoints (on a
1 + a1 = 2) : nous posons la fonction comme étant nulle sur [1, 2− a2]. Ceci étant dit :

x

y

1

0 1 2 3 4 5 6 7 8 9

8
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Cette fonction est continue et positive. On a dans [0,+∞] :
∫ +∞

1
f =

+∞∑
n=2

∫ n+an

n−an
f =

+∞∑
n=2

1
n2 < +∞,

puisqu’on reconnaît une série de Riemann d’exposant strictement supérieur à 1. Pourtant, toujours
dans [0,+∞] :

+∞∑
n=1

f(n) =
+∞∑
n=2

1 = +∞,

donc la série
∑
n>1

f(n) et l’intégrale
∫ +∞

1
f n’ont pas la même nature. C’est bien sûr la monotonie

de f qui est encore mise en défaut.
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