MP DS n’8 :Corrigé 25-26

’La correction de l’exercice est au début de la correction du DS8".

Probleme : séries trigonométriques

CCP2017 - MP1
Corrigé (d’apres le corrigé de M. Devulder)

Partie 1 : exemples

4. On utilise d’L.T.L. entre 0 et o avec la fonction vectorielle f : x — ¢ de R dans C qui est de
classe C*° par T.G. :

NN |£L’—0|N+1MN+1

N
. 1T
D DEm (N + 1)

sup |V ()] = 1.
te(0,z]

VreRet VN € N :

Comme f*(x) = i*e™® My,

+00 .0 on

. , , i"x
On conclut avec les croissances comparées : |Vx € R : e = E —
n!

n=0

5. On a
1 1. 1 1
o cos(nx) + 3 sin(nz)| <

Syt

Vr € R,

Le majorant est indépendant de z et est le terme général d'une série convergente.

Cl: ’La série de fonctions est donc normalement convergente sur R |.

Pour le calcul, on remarque que pour p > 2, ¢/p est de module < 1 et que donc (somme
géométrique)

Z<p> _1 6ix_p_eiz

n=0

p

En passant aux parties réelle et imaginaire, on a donc

i cos(nz)  p®— pcos(z) ot i sin(nz) psin(z)
pv p?—2pcos(z) +1 — " ~ p?—2pcos(z) + 1

n=0

Il reste a combiner les résultats pour p=2et p =3

f 1 cos(nz) + 1 sin(nz) ) = 4 — 2cos(x) N 3sin(x)
=\ 2" 3n 5 —4cos(x) 10 — 6cos(x)

6. En utilisant le DSE de ’exponentielle, on a

[e.9]

Vo € R, exp(e™) = Z

n=0

inx
e

n!



Or, exp(e®) = exp(cos(z)) exp(isin(z)) et la partie réelle de cette quantité est ¢(x)

o0

CL  |Vz €R, exp(cos(z))cos(sin(z)) = » _ Cosyi?m)

est le

1 et u,(z) = a,cos(nx). (a,) est de limite nulle mais u,(0) = "
n
terme général d’une série divergente.

7. Posons a, =

Cl: (Z u,) n’est donc pas simplement convergente sur R |

sin(nz)

vn

qui est le terme général d'une série divergente. Donc la série (D ||un|loor) diverge.

1 T
8. La norme infinie sur R de u,, : est immédiatement égale & — (atteinte en 2—)
n n

Cl: La série de fonction proposée n’est donc pas normalement convergente sur R ‘

Partie 2 : propriétés
Une condition suffisante

9. Posons u,(z) = a, cos(nx) + b, sin(nz). On a
Ve € R, |u,(z)| = |a, cos(nx) + by, sin(nz)| < |an| + |bn| = an

La série (> a,,) est convergente par hypothese sur (3 a,) et (D> by).

Cl: ’La série de fonctions est donc normalement convergente sur R ‘

Une condition nécessaire

10. Premiere méthode :

La réponse est évidente si a = b = 0. Supposons maintenant que (a,b) # (0,0).

a b
Vo € R, acos(x) + bsin(z) = Va2 + b? | —— cos(z) + ——=sin(x
(o)t beinle) (Ve @+ o
a
cos(l) = ——
JaZ L2
Or il existe 6 € R tel que ab—i—b , on a donc
sin(f) =

N
Vo € R, |acos(z) + bsin(z)| = vVa? + b?| cos(z) cos(#) + sin(z) sin(0)|
= Va? + b?| cos(x — )| < Va? + b? et majoration atteint en = = 6.

Cl: max la cos(z) + bsin(z)| = Va? + b?

Deuxieme méthode : On a ((.|.) étant le produit scalaire canonique sur R?)

Vo € R, |acos(z)+bsin(x)| = |((a,b)|(cos(z),sin(z)))] < ||(a,d)||-]|(cos(z), sin(z))|| = Va? + b?

De plus, il y a un cas d’égalité :
- c’est immédiat si a = b = 0 (n’importe quel x convient) ;

- si (a,b) # (0,0), (a/va2 +b2,b/+v/a? + b?) est un vecteur normé et il existe donc un z tel
que ce vecteur soit (cos(z),sin(x)).




11.

Posons u,(x) = a, cos(nz) + b, sin(nz). On suppose ici que Y (||unl/cor) converge (c’est la
caractérisation de la convergence normale). On a (avec la question précédente et car nx varie
dans R quand c’est le cas pour z si n > 0)

Vn € N, 0 < |a,| < a2 + b2 = ||up|lor €t VR € N*, 0 < [b,| < /a2 + 02 = ||un||or

Par théoreme de comparaison des séries positives, on conclut :
Cl: > (an) et > (b,) convergent absolument et donc les suites (a,) et (b,) tendent vers 0

Autres propriétés

12.

13.

14.

15.

La convergence normale sur R entraine la convergence uniforme sur R et cette derniere conserve
la continuité. Les fonctions de la séries étant continues sur R, il en est de méme de f.

La convergence normale sur R entraine la convergence simple sur R. La convergence simple
conserva la 2m-périodicité (si S, (z + 2m) = S,(x), on peut passer a la limite pour obtenir la
2m-périodicité de la limite). Ici, f est donc 27-périodique. Cl:

On effectue une linéarisation : cos?(nz) = i(cos(an) +1). On a donc

™ 1 T
Vn =1, / cos?(nx) do = {E sin(2nz) + g] B =7

—Tr

De méme, sin(kx) cos(nz) = E(sin(k’m + nz) + sin(kz — nx)). sin(pz) est d’intégrale nulle sur

os(px)

sinon). On en déduit que
p

[—m, ] (évident si p = 0, par primitivation en —

vn, k, / sin(kz) cos(nz) de =0

—T

Soit n € N. On a

/ f(z)cos(nzx) dx = / Z ay cos(kx) cos(nx) + by sin(kx) cos(nz)) dx

T k=0

Posons encore uy(z) = aj cos(kx) + by sin(kx). On a Vz, |ug(z) cos(nz)| < |ug(x)] < ||uk|cor-
Le majorant est indépendant de z et est le terme général d’une série convergente (par 1'hy-
pothese de normale convergence). On a donc sous 'intégrale une série de fonctions continues
normalement convergente sur le SEGMENT [—m, 7] et on est dans le cas ou on peut intervertir :

/ f(z)cos(nzx) de = Z <ak /ﬂ cos(kx) cos(nx) dx + bk/

k=0 —Tr —Tr

™

sin(ka) cos(nz)) dx)

Dans la somme, tous les termes sont nuls sauf celui d’indice & = n qui vaut a,m si n # 0
(question précédente et résultat admis) et 2wag si n = 0. Ainsi,

Cl: |Vn#0, a, = a,(f) et ap= %Oéo(f)

Il s’agit d’utiliser la question précédente avec ag = ao(f)/2, bp = 0 et pour n > 1, a,, = a,(f)
et b, = B,(f). La somme est ici égale a g et on obtient donc

3



Cl: [Yn €N, an(f) = anlg) et Bu(f) = Fulg)]

16. h— «a,(h) et h— B,(h) étant linéaire, on a ici a,,(g — f) = Bn(g — f) = 0 et, avec le résultat
admis g — f = 0.

Cl: |VzeR: f(x)=g(x)

17. Si f est paire, z — f(x)sin(nz) est impaire et sa fonction est donc d’intégrale nulle sur un
intervalle centré sur 0 (ce que l'on voit par le changement de variable affine ¢ = —x). En

particulier, VneN, B.(f)=0

x +— f(x)cos(nz) est paire et |Vn € N, a,,(f) = %/W f(x) cos(nx) dx
0

18. Utilisons un petit script Python. Pour calculer f(z), on cherche un entier k tel que x — 2km =
y € [—m, 7] et on renvoie y*.

from numpy import *
from matplotlib import pyplot as plt
def f(x):
k=floor ((x+pi)/(2*pi))
return (x-2xk*pi)**2
a,b=-3%pi,3*pi
pas=(b-a) /1000
1x=[atk#*pas for k in range(1000)]
ly=[f(x) for x in 1x]
plt.plot(1x,ly,’k’)
plt.axis(’scaled’)
plt.show()

10

iy

La fonction f étant paire, les coeffcients (3,,(f) sont tous nuls. De plus

[=:]

[=2]

S

N

0

a,(f) = 2 /7r 2% cos(nx) dx
0

T



Une double intégration par parties donne, pour n # 0,

s 2 s 2 71' 1 s
/ 2% cos(nx) dx = ——/ xsin(nz) dr = —— ([—M} + —/ cos(nzx) dx)
0 n Jo n n o nJo

et ainsi
4(—-1)"
Vn #0, a,(f) = ( 2)
n
2 [7 2
On a aussi : ao(f):—/ 2 dr = Sn?
T Jo 3

Comme > (an(f)) et D (Bn(f)) convergent absolument, on peut utiliser ce qui précede et
conclure

TL

Cl: |VzeR, f(z)= % Z cos(nzx)

la série étant normalement convergente sur R.

. Pour x = 0, on obtient

0 _1)n
Z(n2> BEED)

n=1

Pour x = 7, on obtient

=1 T

2
n
n=1 6

On découpe la somme en isolant les termes d’indice pair et ceux d’indice impair (c’est licite car
la série est absolument convergente et donc les trois séries en présence convergent) :

=1 =1 > 1
;ﬁ:;mn)ﬁz%m

n—

On en déduit que

o0

1 2 11
nzom—z—z;ﬁ—

In(l+ 2z . , .
. X — g est continue sur ]0, 1] par théoremes généraux.
z

En 0, la fonction est équivalente a L — 1 et est donc prolongeable par continuité. Notre fonction
x
est donc intégrable sur [0, 1].Utilisons le DSE de x +—— In(1 + z) :

In(1 & n—1
ve o], PR g
n=1



On en déduit que

11n(1+x) /1 s a1
— dx = B L N
| == PYCl

On veut intervertir somme et intégrale. Utilisons le théoreme d’intégration terme a terme.

n—1

- gn x> (1) est le terme général d’une série de fonctions continue qui converge
In(1 + z)

X

n

simplement sur |0, 1] vers g : © —
- gn et g sont continues sur |0, 1[.
1
- gy est intégrable sur |0, 1] et / |gn(z)| dv = — est le terme générale d'une série conver-
0 n

gente.

L’interversion est licite et donne

/Oln(1+x Z/ nlx _i(—;#—l:g

n=1

21. Dans l'exemple de la question 18, on a obtenu une série normalement convergente sur R.
Cependant la somme f n’est pas dérivable. En effet, f est dérivable a droite et gauche en 7
avec des nombres dérivés 27 (a gauche) et —27 (a droite).

Supposons que (Y nay,) et (> nby,) sont des séries absolument convergente. Montrons qu’alors
en posant u,(x) = a, cos(nzx)+b, sin(nzx), (3 u,) converge normalement sur R vers une fonction
de classe C! sur R. On utilise pour cela le théoréme de dérivation des séries de fonctions :

- Vn, u, € CY(R) et v/, () = —na, sin(nz) + nb, cos(nx).
- (> uy,) converge simplement sur R.

- [l ||eo < |nay| + |nby| est le terme général d'une série convergente et (> u),) est donc
normalement convergente sur R.

Le théoréme s’applique donc et indique non seulement que la somme est de classe C'* mais aussi
que sa dérivée est la somme de la série dérivée.

22. On a vu en question 5 que

sin nx) 3sin(z)
Vr € R, =
ve % 10 — 6 cos(x)

On est dans le cadre de la condition précédente avec a, = 0 et b, = 1/3". On en déduit (en
dérivant) que

. ncos(nz) 3 5cos(xz)—3
R S
vreR, Z 2 (5 — 3cos(x))?

n=0
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CONCOURS COMMUN MINES-PONTS 2024
Epreuve de mathématiques I, MP & MPI, trois heures
(d’apré le corrigé de M. Winckler (UPS))

Remarque. L’énoncé ne précise pas ce qu’est p. Nous supposons dans tout ce corrigé que c¢’est un
entier (pour que (cos(t))?’*! soit bien défini y compris lorsque le cosinus est strictement négatif), et
1 — (cos(t))?*!

t2
I'intégrale de Dirichlet généralisée ait bien un sens (on en aura aussi besoin pour appliquer la formule
du bindme de Newton a la question 17).

plus précisément un entier naturel pour que t — soit continue sur |0, +ool, de sorte que

Partie I : Calcul d’une intégrale

1. Dans cette question et la suivante, on notera fy la fonction de 1’énoncé.

Soit 0 €] — m,7[. Pour s’assurer que fy est bien définie sur ]0,4o0|, il suffit de vérifier que le
dénominateur 1+ te? ne s’annule pas pour tout ¢ €]0, +-o00|. Or, si t > 0, alors 'égalité te?? +1 =0
implique, en isolant 1 et en comparant les modules : ¢ = 1. Ensuite :

€’ +1=0«= e = -1 <= 0 =7 mod 2,

ce qui est impossible par hypothese sur 6. Ainsi | fp est bien définie sur |0, +oof |

Justifions son intégrabilité sur |0, +o00[. L’application fy est continue sur cet intervalle en tant que
quotient de fonctions continues dans le dénominateur ne s’annule pas. On a de plus :

1
EnO0: |f(t)] ~t"1=—"->0

t—0 A

1
et la fonction de Riemann ¢ — pr est d’exposant 1 — x < 1 donc intégrable sur ]0,1]. Par le

théoreme de comparaison des fonctions intégrables, 'application fy est intégrable sur |0, 1].
Enfin, comme ¢ # 0 on a :

vl ap—2 1
] = U= > 0,

t2—=x

En +oo : |fy(t)]

Y
t—+00

1
et comme x €]0,1[, on a : 2 — x €]1,2], donc en particulier la fonction de Riemann ¢ — yEa est

d’exposant 2 — z > 1 donc intégrable sur [1,4+00[. Par le théoréme de comparaison des fonctions

intégrables, | ’application fy est intégrable sur [1,4+o00]]|.

Etant intégrable sur ]0, 1] et [1, 400, Papplication fs est intégrable sur ]0, +-00[ : d’ott le résultat.
2. Nous allons utiliser le théoréme de dérivation des intégrales a parametres. Posons :
V(t,0) €]0, +oo[x| — m, 7|, k(t,0) = fo(t).
Alors :

— pour tout ¢ €]0, +o00[, Papplication 6 + k(t,6) est de classe C!' sur | — 7, 7[ et on a :

ok o1 ite' ) t* :
Vt G]O, +OO[7 \V/Q G] — 7T,7T[7 %(t, 0) =t X <_(1_{_t619)2> = —1l€e m,

— pour tout 6 €] — 7, [, Papplication ¢ — k(t,8) est intégrable sur |0, 4+oo[ par la question
précédente ;
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ok
— pour tout 0 €] — m, 7[, application t — —Q(t, 0) est continue (par morceaux) sur |0, +oo[ par
un argument semblable a celui de la question précédente ;
— pour tout 8 €0, [, et tout (¢,6) €]0,+o00[x[—/, ] on a :

12 , 12
’1 +te|” = |1]* + 2Re (te’e) + )tew =1+ 2tcos(f) + 2, (1)

et la parité du cosinus, ainsi que sa décroissance sur [0, 5], permettent d’écrire :

2

)

12 .
’1+te’9 >1+2tcos(6)—|—t2:’1+tew

on en déduit, toujours pour tout (¢,6) €]0, +oo[x [0, 5] :

Ok (t,0) = r < r (HYPOTHESE DE DOMINATION)
00" 7 |1+ te?]2 T |14 tetf|2
Justifions que I'application ¢ : t m, qui est effectivement définie et continue sur |0, +oo[
el

par les mémes arguments que dans la question précédente (vu que & {—m,7}), est intégrable
sur cet intervalle. Elle est positive et on a :

1
EnQ :p(t) ~t"=-—"—>0, Enoco : o) ~ t"?=—-—

t—0 t—z t—s-+o00 t2—=x

et comme x €]0,1[ on a : —x < 0 < 1, ainsi que : 2 — z > 1. Les conditions d’intégrabilité des
fonctions de Riemann au voisinage de 0 et 400 assurent donc, par comparaison, l'intégrabilité de
¢ sur |0, +o00[. L’hypotheése de domination est bien vérifiée.

0
Par le théoreme de dérivation des intégrales a parametres, d’'une part I'application ¢t — — (¢, )

a0
est intégrable sur |0, +oo[ pour tout 6 €] — 7, 7[, et d’autre part r est de classe C! sur | — 7, 7].
De plus :
+oo Ok 0 [T° t*
voel—mrl, FO) = [ S ——ic? [Tt
J=mml () 0 89( ) oy (1 + te?f)?
3. Pour tout § €] — m,7[ on a : g(f) = ¢“r(f). Ainsi g est de classe C! sur | — 7, 7| en tant que

produit de fonctions de classe C!, et on a :
, . . 1
veq—megﬂm:amwmm+awmmzwwﬂ@mm+imm)

Or, pour tout # €] — m, 7r[, on a par la question précédente :

xr(0) + 17"/(9) = /+OO zt" ! +t° —L dt = /+OO ' (t)dt
i o 1+ tei (1 + teif)2 —Jo ’

. +oo
donc : |VO €] — 7w, 7], ¢ (0) = ie”a/ h'(t)dt|, ce qu’il fallait démontrer.
0

Le fait que 'intégrale ci-dessus converge (en tant que somme d’intégrales convergentes) assure a
priori que h admet une limite finie en 0 et +o0o. Calculons-les. Comme x > 0, on a : lin% t* =0, et
—

de plus : lim(1 + te”?) = 1, donc :
t—0

limy_,o h(t) = 0.

2
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(Remarque : I’énoncé demande de calculer h(0) alors que h a été définie sur |0, +o00]...)

Ensuite, comme x — 1 < 0 :
()] ~ 71— 0,

t——+o0 t—-+o0

donc : lim A(t) = lim |h(t)] = 0. On en déduit :
t——4o00 t—+o0

. +o0 .
J(6) = iei /0 R(#)dt = ie'™ [h(8)]F™ = 0,

donc g est de dérivée nulle sur Uintervalle | — 7, 7[ : on en déduit que |c’est une fonction constante
d’ou le résultat.

Y

4. Soit 6 €]0,7[. Comme g est constante sur | — m,7[, on a : g(f) = g(—#), donc par la formule
d’Euler : 1 ]
. _ 0 —iz0\ __ 0 —1x0
9(0)sin(20) = o (9(0)e™” — g(O)e ™) = - (9(=0)e™ — g(0)e™*’) .

Or par définition de g on a :

. . +oco z—1 z—1 +oo 1% ei@ o e—ie
g(—@)em’ — g(@)e_”e = / (1 t t ) dt = / th
0 0

+te® 1+ tei |1+ tei)?

Toujours par la formule d’Euler, on a : ¢ — e = 2isin(f). Par l'identité remarquable (1)

démontrée a la question 2, on a donc :
. . “+o0o 17
g(—80)e ™ — g(@)e= = 2 sin(A) /
0

t2 + 2t cos(0) + 1

dt,

d’ou le résultat :

. . 400 t*
9(0) sin(z6) = 51n(9)/0 t2 + 2t cos(0) + 1dt'

5. Soit 6 €]0,7[. On a :
Vt €]0, 400, t*+2tcos(d) +1 = (t+cos(d))’ +1— (cos(h))* = (t + cos(f))* + (sin(9))?

2 . 2
= ‘6_10 —|—t‘ ), et comme sin(#) # 0 on

(expression que I'on pouvait aussi déduire de : ’1 + te'
peut écrire, par la question précédente :

g(0) sin(x0) = 16) /O+OO ( r

SiIl( t+cos(0) 2 dt
sin(0) ) +1
Faisons alors le changement de variable affine C'-bijectif v = W. Il en résulte le résultat
sin
voulu :
_ 1 +oo (ysin() — cos(6))” . _ /+°° (usin(6) — cos(0))”
g(0) sin(z0) = 5n(0) /OHEZ; 1 sin(f)du = o) T du.

6. Suivons I’énoncé et utilisons 'extension du théoréme de convergence dominée a parametre continu
(ou bien le critére séquentiel et le théoréme de convergence dominée!). Posons :

(usin(f)—cos(0))” D> tan(Q)
V(6,u) €]0, 7[xR, 0) = T+u? SLu = co ’
(6, ) €]0,7] V(. 9) { 0 sinon.
La distinction de cas est faite pour se ramener a un intervalle fixe, puisqu’on a :
+oo
g(0) sin(z6) :/ ~(u, 0)du.

— 00

Vérifions les hypotheses de I'extension du théoreme de convergence dominée a parametre continu :

3
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— pour tout 6 €]0, [, Papplication u +— y(u, ) est continue (par morceaux) sur R ;

— pour tout u € R et pour tout 6 €]0, 7[ au voisinage de 7 on a cotan(#) < u (puisque cotan(f
(usin(f) — cos(6))”
1+ u?

tend vers —oo quand 6 tend vers 7 par valeurs inférieures), donc y(u, 0) =

pour € au voisinage de 7, ce qui permet de déduire :

1

vueR, |l y(w8) =175

et 'application u 1 est continue (par morceaux) sur R;

+ u?
— montrons I'hypothese de domination; si (6, u) €]0, 7[xR vérifie u > cotan(#), alors :
cos(0)
sin(6)

usin(f) — cos(6) > sin(f) — cos(f) > 0,

donc : |usin() — cos(6)| = usin(d) — cos(0), puis :

in(0) — 0))* 1 2)z 1 v
()] = OO WIHUIT (0 ) L cos(o))
1+u 1+u V14 u? V14 u?
U 2 1 2
comme : <m> + (\/ﬁ) =1, il existe a € R tel que :
u u
U B 1 .
Jiga s s = sinle)
ce qui permet enfin d’écrire :
7 (w,0) L (cos(a) sin(9) — sin(a) cos(8))° L (sin(0— )
u, = — 3 (COS({ ) S1n — S1n(« ) COS = —— % (S1n —
! (1+u2) "% (1123
1
(1+u?)'"2

tandis que si u < cotan(f) alors y(u,#) = 0 donc I'inégalité reste trivialement vérifiée ; ainsi :

1

(HYPOTHESE DE DOMINATION)

Justifions que ¢ : u — est intégrable sur R : elle est continue sur cet intervalle, et au

(14 u2)t=32
voisinage de +o0 :
1

~ > 0.
u—4oo 2=

p(u)

Comme z €]0,1(, on a : 2 —x > 1, donc la fonction de Riemann u est intégrable au

u27:13
voisinage de +o0o. Par comparaison, il en est de méme de ¢, et par parité ¢ est intégrable au

voisinage de —oo également, donc sur R tout entier : I’hypothese de domination est vérifiée.
Par le théoreme de convergence dominée a parametre continu, on a :

lim g(@)sin(z0) = /+OO lim ~(u,6) = /+°° du

0—m— —oc0 O—m— —00 1 —+ uz’
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d’ou le résultat.
Remarque. L’inégalité décisive |usin(f) — cos(f)| < V1 + u? peut s’obtenir plus rapidement en
appliquant I'inégalité de Cauchy-Schwarz au produit scalaire usuel de R?, avec les vecteurs (u, —1)

et (sin(0), cos(6)).

7. Une primitive de u ] 5 etant l'arc tangente, la question précédente implique :

u

lim g(6)sin(zf) = [arctan(u)]™> = 7.

0—m— &
Mais on a aussi, comme le sinus est continu sur R et la fonction g constante sur | — 7, 7| par la
question 3 :
+00 tx—l
lim ¢(0)sin(xzf) = ¢g(0) sin(zm) = sin(:mr)/ dt.
O0—m— 0 1 +1

Par unicité de la limite, on conclut :

+oo tﬂ?*l T
/ dt = —
o 14t sin(mx)

Notons que 7wz €]0, 7[, donc le sinus est bien non nul.

Partie II : Une expression (utile) de la fonction sinus

8. Par la relation de Chasles :
+00 ta:—l d 1= 1 +oo T 1

0=, J
/0 1+ o 1+1¢ &+ 1+ t

1
Effectuons le changement de variable u = n dans la seconde intégrale. Il est licite puisque la

fonction inverse est de classe C! et strictement décroissante sur [1, +oo[ (donc C'-bijectif). Alors :

+oo T 1 1 T d’LL 1 ul—m 1 g%
e L T S
1 - u? 0o u(l+u) o 1+u

+00 ta:fl 1 txfl 1 —x 1 t:cfl =
/ dt = / dt+ [ L du= / + dt,
o 1+t o 1+t 0o 14+u o \1+¢ 14+t

d’ou le résultat.

On en déduit :

9. Pour tout ¢ €]0, 1], comme |—t| < 1,ona : i > (—t)*. On aimerait alors écrire, sous réserve

de validité :
+o00 (_1)k

g dt = tx ! 1)kekqr & S [yt —
Z = kZ (=) —kZ T h
=0 =0

Pour avoir le résultat voulu, il suffit donc de justifier (x). Ici, on n’est pas sur un segment donc le
théoreme d’intégration terme a terme avec la convergence uniforme ne s’applique pas. D’autre part,

Ny - - z + )
n’est pas convergente. Nous allons utiliser le théoreme de convergence dominée avec la suite des

sommes partielles. . Posons :

Vk € N, Vt €]0,1[, fi(t) = (=11

on ne peut utiliser le théoreme d’intégration terme a terme de Lebesgue car la série (Z

Alors :
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— pour tout k € N, Iapplication f; est continue (par morceaux) sur |0, 1[;

— par convergence des séries géométriques de raison strictement entre —1 et 1, la série de
z—1

est bien siir continue

fonctions »  f converge simplement sur |0, 1[, et sa somme ¢ —
k>0
(par morceaux) sur |0, 1[;

— pour tout N € N et tout ¢ €]0, 1], on a :

|-

1— (_t)N+1 txfl
_ 4z—1 N
=t T < et (HYPOTHESE DE DOMINATION)

tzfl I; (_t)k

z—1
et 'application ¢ : t — 171 est continue (par morceaux) sur ]0, 1], intégrable en vertu de
I'équivalent : p(t) trvotm_l el 0, et de 'inégalité 1 —z < 1. Elle est donc aussi intégrable
ﬁ

sur ]0, 1].

Par le théoreme de convergence dominée :

| 1+ 1 g— 1
i = dt
G /0 ka / ka . T

k=0

et la linéarité de l'intégrale permet d’écrire :

_1)k
x4k’

N
im [ g = lim > [ =

N—+00 /0 prt N—>+ook:0 0

d’ou le résultat :

1 ¢4z 1 +oo -1 k
/ dt =Y (=1) .
o 1+t okt
10. Par la question précédente, appliqué a 1 — z €]0,1[, on a :
1 ¢z +oo -1 k

/ dt = Z #

o 1+t = k+1—=x

La question 8 donne donc le résultat voulu :

oo & 1 1 oga—1 1 4= 400 (_1)kz ~+00 (_1)k
a:/ dt + dt = + .
/0 1+1¢ o 1+t o 1+t kz:%k—l—x kz:%k:—l—l—x

Pour s’accorder aux notations de ’énoncé, on nomme l'indice de sommation n dans ce qui suit.

11. En effectuant le changement d’indice n +— n + 1 dans la seconde somme ci-dessus, on a :

/O+ootx1dt +Z°°(— )" g"o )" ;Jr:goj(_l)n( 11 >=1++ZOO(—1)" 9

1+¢ —ontw n+xr n—=x

donc par la question 7 on a le résultat :

T 1 =X2(-1)"z

sin(rz) xS n?—a?
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12. Soit y €]0, 7r[. Posons : x = J €]0, 1[. Par la question précédente :
m

T 7 1 Jrzo:o 2(-D"x w JFXO:O 2(—=1)"y
sin(y)  sin(rz) 2« ‘nP-22 oy ‘S (n2 _ 7%) '
11 suffit alors de multiplier cette relation par sin(y) pour avoir :
™
sin 2 2(—1)"ysin sin 2 2(—1)"ysin
{— (y)_z( )"y 2(3/): (y)+z ( 2)2/ (23/)7
R () y o nimiy

d’ou le résultat en réarrangeant les termes :

*Z(” 2(=1)"ysin(y) _ | sin(y)
= y2 _ 77,27r2 Y '

Partie III : Calcul d’une intégrale de Dirichlet généralisée

13. Comme on le disait en début de corrigé, on suppose que p est un entier naturel pour traiter
cette question et les suivantes.
1 — (cos(t))?*!
t2

est continue sur |0, +o0o[. De plus, pour tout ¢ € [1,4+o00[ on a :

L’application t —

_ 2p+1
o Lol 2

27

~

et l'intégrabilité sur [1, +00[ de la fonction de Riemann ¢ — e} (car 'exposant est 2 > 1) assure, par
+oo 1 — (cos(t))?+!
12

comparaison d’intégrales de fonctions positives, que 'intégrale / dt converge.
1

Pour ¢ au voisinage de 0, on écrit :
2p+1
|- (o) 1- (1 L0 (t2)> - (1 L2+ 1) x O (t2)>

t—0 o t—0 _
12 a t2 B 12 - tQO ( 1) )

et t — 1 est continue sur le segment [0, 1], donc intégrable sur [0, 1] et en particulier sur ]0, 1]. Par

1 1— t 2p+1
comparaison, l'intégrale / (COtSQ( )
0

dt converge.

+o0 1 — (cos(t))?P ™!
12

dt converge |.

Ceci acheve de démontrer que |l'intégrale /
0

1
Passons a la deuxieme partie de la question. Nous allons intégrer par parties, en intégrant ¢ — 2

et en dérivant ¢ — 1 — (cos(t))?**!, dont la dérivée est t — (2p + 1)(cos(t))? sin(¢). Comme, par
le théoréme d’encadrement :
1 — (cos(t))?*!

t—+o0 t

et par la relation de comparaison plus haut :

1 — (cos(t))?*! 1 — (cos(t))?*!
t 12 t—0
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1 — (cos(t))?*!

on a : %ir% — ; = 0, la formule de l'intégration par parties assure que les intégrales :
—
+oo 1 — £))2p+1 +o00 2 1 )2 sin(t
[y G Do) i),
0 0

sont de méme nature, donc la seconde intégrale converge aussi et on a de plus :

/0+°° 1— (CotsQ(t))Qp“ dt — [1 — (coi(t))%’“] e B /0+°° _(2p+ 1)(00j(t))2p sin(t)dt

0
opSIN ()
t

= ep+1) [ ™ (cos(t)) dr,

et donc

/ Tl (COtSZ(t»szdt = ep+1) [ +oo(cos(t))2p{mt(t)dt.

d’ou le résultat.
14. Soit n € N\ {0}. On effectue le changement de variable affine C'-bijectif u =t —nr. On a :

/ T os(t))? Smt()dt /_ (cos (u))? =D (W) g

S+(n—-1)m U —nm

(VB

Par la relation de Chasles et le changement de variable u — —u, comme le sinus est impair, on

obtient :
/72; (cos (u))* (—i)is;r;(u) du = /’5 (cos (u))™ (=1 » _S;I; du + . (cos ( i)is;r;(u) du
_/ cos ( i)—s;fr( )du— /0g (cos (u))* Wdu

= /0 (cos (u)) 2 (—1)" sin(u) <u _1 + : ) du

nmw U+ nm

- /0g (cos (u))* (1) Sin(u)Qiudu’

U2 — n2m2

d’ou le résultat, quitte a renommer u en ¢ :

2(—1)"tsin(t)
2 _ p2n2

/ o (cos(t))szint(t)dt -/ ? (cos(1))? dr.

SH(n-1)m

+o00
15. On utilise d’abord la relation de Chasles. Comme l'intégrale / (cos(t))?P P2l r;( )dt converge par
la question 13, on a : i

/+oo(c (1) ,sin(t dt Z/ 5nm (1) ,sin(t dt (¢.14) Z/Q (cos(t tlz”tsin(t)dt.

z (n— 1)7T n2m?

2 n=1727F

Justifions qu’il est possible d’intervertir somme et intégrale, par le théoréme d’intégration
terme a terme sur un segment. Posons :

2(—1)"t sin(t)
t2 _ n27r2 :

Vn e N\ {0}, Vt € {0, ;r] , un(t) = (cos(t))™

Alors :
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T
— l'application u,, est continue sur {O, 2] en tant que quotient de fonctions continues dont le

T
dénominateur ne s’annule pas (on a +n7w ¢ {O, 2] carn > 1);

T
— pour tout entier n > 1 et tout ¢ € {O, 2} on a :

2t| sin(t)| T T 1 1
2p < — I
[t2 — n2m2| T n2m2 — 12 T p2g2 — %2 Tn? —

|un ()] = (cos(t))

et donc :

+oo 1

Y 1 < oo,
n=1 1

1
. 2
T n i

+oo
Z [unlloo <
n=1

ou la finitude de la derniere somme découle du théoreme de comparaison des séries a termes

1 1

— > 0, et de la convergence des séries de

ositifs, appliqué a 'équivalent ~
p , appliq q p

Riemann d’exposant strictement supérieur a 1; on en déduit que la série de fonctions Z Up,
n=1

converge normalement donc uniformément sur le segment

T
0,—|.
"2

Wl

Par le théoreme d’intégration terme a terme sur un segment, d’une part la série Z / U, converge,
n=>1 0
et d’autre part :
T 400

= /3 3
S /0 Uy = /0 Sty
n=1 n=1

C’est-a-dire, en reprenant le calcul amorcé en début de question :

/*m(COS(t))szin(t)dt = /0§<Cos(t>)2p (io 2(—1)”tsm(t)> dt,

2 _ 22
z t = tt—ncm

d’ou le résultat.

T
16. Par la question précédente et la question 12, qu'on applique avec y =t € {O, 2}, on a :

/ m(COS(t))Zpsmt@dt = /Og(COS(t))Qp (1 = Sm(t)) dt = /0 * (cos())dt — /  (eos(t)) 20 g,

T t 0 t

2

d’ou le résultat par la relation de Chasles :

sin(t) 3

/0+°°<Cos(t))2ptdt _ /02 (cos(t))det,

17. Soit t € R (I’énoncé ne précise pas ce qu'est t). Par la formule d’Euler et la formule du binéme de
Newton, on a :

it —it\ 2p 2p 2p
9 e +e 1 2p A\2P—k Nk 1 2D\ s9it(o—k
sty = (C5) = mE () ) e i (M) @

et donc :

1 221 (2p\ o, 1 (2p 1 2 (2 .
2p __ 2it(p—k) 2it(p—k)
(cos(t))P = > > (k)e + 5T ( + 57T ) e :

k=0 p k=p+1
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Or, par le changement d’indice k +— 2p — k, on a :

% (2]9) 2it(p—k) z_: < ) 2it(k—p) _ pz—:l <2p> 672it(pfk)
g \ P im0 \2p — K imo \k
donc :

1 p—! 2p . . ]_ 2p
2p 2it(p—k) —2it(p—k) -
st = g 3 () (00 20 (),

p

Par la formule d’Euler, cela donne le résultat voulu :

(cos(t))2" = ;p (<2p> +2Z < )cos (p— k:)t)) |

18. On a, par les questions 13, 16 et la précédente :

/O+oo 1-— (cos(t))2p+1dt (1) /+oo(cos(t))2psmt(t)dt

2
_ 21’2;;1 (2@9) +22 (2;9)/0 cos(2(p — k)t )dt)

Or, si k € [0,p — 1], alors :

3 sin(2(p — k)t)1%  sin((p — k)7)
/0 cos(2(p — k)t)dt = [2(17_@]0 = =k =0,

done :

+00 1 — (cos(t))?*! 2p+1 7 (2p T(2p+1)(2p)! 7 (2p+1)!
/ dt = S e =z .
0 t2 227 2\ p 2 2%(p!)? 2 2%p(p!)?

d’ou le résultat.

Partie IV : Calcul de E(|S,])
19. Soit n € N\ {0}. Il est clair que l'on a :
Vk e N\ {0}, E(X;) =0, V(Xp)=EX}) —EX)?=E(1)=1.

Par linéarité de I'espérance :

D’ou le résultat.

10
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20.

21.

22.

On a:
cos(S + T) = cos(S) cos(T) — sin(S) sin(T).

Par linéarité de ’espérance :
E(cos(S +T)) = E(cos(S) cos(T')) — E(sin(S) sin(7)).

Or S et T sont indépendantes, donc par le lemme des coalitions il en est de méme de cos(S) et
cos(T"), puis de sin(.S) et sin(7"). On en déduit :

E(cos(S 4+ T')) = E(cos(S5))E(cos(T")) — E(sin(5))E(sin(7)).

Or T et —T ont méme loi, donc sin(7T') et sin(—7") = —sin(7T") également. Deux variables ayant
méme loi ont aussi méme espérance, d’ou :

E(sin(7")) = E(—sin(T)) = —E(sin(7)).

On en déduit : E(sin(7)) = 0, d’ou le résultat :

E(cos(S 4+ T)) = E(cos(S))E(cos(T)).

Soient n € N\ {0} et t € R. Au vu de la définition des Xy, il est clair que t X} et —t X} ont méme
loi pour tout & € N\ {0}. De plus, par le lemme des coalitions, ' =t X, 1 et S =t Y X =tS,
k=1

sont indépendantes. Cela permet d’écrire, par la question précédente :
E(cos(tSy41)) = E(cos(S + T')) = E(cos(tS,,))E(cos(tX,11)).
Comme tX,,;1 a méme loi que tX7, on a donc :
E(cos(tS,41)) = E(cos(tS,))E(cos(tX1)).

Par le théoréeme de transfert :

cos(t)  cos(—t)
5 +

E(cos(tXy)) = = cos(t).

On a donc montré :
Vn e N\ {0}, E(cos(tSni1)) = cos(t)E(cos(tS,)).

Autrement dit : la suite (E(cos(tSy))),s, est géométrique et de raison cos(t). On conclut :

Vn € N\ {0}, E(cos(tS,)) = (cos(t))" 'E(cos(tS;)) = (cos(t))" 'E(cos(tX1)) = (cos(t))™.

On a:
la+b]* = (a +b)* = a* + 2ab + b* = |a|* + 2signe(a)|a|b + b* = |a|* + 2signe(a)|alb + (signe(a)b)?,

c’est-a-dire :

|a+b]* = (la| + signe(a)b)”.
On en déduit que les réels |a + b| et |a| + signe(a)b sont égaux ou opposés. L’hypothese |a| > |b|
assure que |a| 4 signe(a)b est positif. Or |a + b| I'est aussi, donc :

la + b| = |a| + signe(a)b.

11
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23.

Appliqué a a = So,_1(w) et b = Xo,(w) pour tout w € Q (dont il faut normalement s’assurer
qu’elles vérifient les hypotheses sur a et b : voir plus bas), cela donne :

|Son| = [Son—1 + Xon| = [Son—1| + signe(San—1)Xon, (3)
donc par linéarité de I’espérance :
Vn € N\ {0}, E(|S2.]) = E(|S2n_1]) + E (signe(Ss,, 1) Xan) -

Or Xy,..., Xy, sont indépendantes, donc par le lemme des coalitions il en est de méme de X5, et
signe(Sap—1). On en déduit :

(g-19)
) =

E (signe(Sgn_l)Xgn) =FE (signe(Sgn_l)) E (Xgn 0,

d’ou le résultat :

E (52n]) = E ([S2n-1]) -

Il reste a justifier que les choix a = Sy, 1(w) et b = Xy, (w) sont licites. C’est-a-dire : justifions
2n—1

que Ss,—1(w) est non nul et que : |Sy,—1(w)| = | Xop(w)|. On a : Sy,—1(w) = ¥ Xi(w), et comme
k=1

les Xj(w) sont dans {—1,1}, on a :

2n—1

Son—1(w Zlmon—Zn—1m0d2—1m0d2
k=1

donc Sy, _1(w) ne peut pas étre nul (c’est une fagon comme une autre de justifier que, pour qu’'une
somme de 1 et de —1 soit nulle, il faut autant de 1 que de —1, ce qui est impossible si on somme
un nombre impair de termes). Comme Ss,_;(w) est a valeurs entieres, ceci impose :

[Son-1 (W) = 1 = [Xan(w)],

d’ou le résultat : la relation (3) est vraie.

Soit s € R. Comme chaque membre de 1’égalité a démontrer est une fonction paire de s, il suffit
de la démontrer pour s > 0.
oo 1 — cos(st +o0
t?()dt / 0dt =0 = —|0\ Supposons donc s > 0.
0

Le changement de variable affine C'*-bijectif u = st donne :

Si s = 0, on a immédiatement : /

oo 1 — oo 1 — too 1 —
/ 1 — cos(st) g = / 1 —cos(u)du s/ 1 — cos(u) du
0 0 0

12 (u/s)2 s u?

Par la question 18 avec p =0, on a :

+oo 1 — cos(u) s
SO e = &
/0 u? T

et donc :

/+oo 1-— cos(st)dt _ T E|s|
0 t2 2 207

D’ou le résultat pour s > 0, et donc pour s € R par parité.

12
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24. Soit n € N\ {0}. Par le théoreme de transfert et parce que S, (2) est de cardinal fini, on a :
oo ]l — tSh oo ]l — t
E</ COQS()dt> ~ ¥ </ (CZS(S))dt> P(Si=s)= 3 ls|-P(S, = s).
0 t s€5, () \70 ¢ $€Sn () 2

et donc, encore par le théoreme de transfert :

B (/Om HDSWdt) = TE(S.).

t2

Mais on a aussi, par le théoreme d’intégration terme a terme positif, dont les hypotheses découlent
aisément des questions précédentes (intégrabilité du terme général, etc.) :

+oo 1 — cos(tS,) ek 1 — cos(st) B
E ( /0 t2dt> - /0 (Seszn:(m T P(S, = 9) | dt.

Par le théoreme de transfert, cela donne aussi :

+oo 1 — cos(tSy) oo (1 —cos(tSy)
([ 1m0y [ p (1),

+oo 1 — cos(tS,)
12

Bs.) =2 [T (1 - COS(tS“) .

T 12

En comparant les deux expressions de E < / dt) obtenues, on a donc :
0

Par linéarité de I'espérance et la question 21, on conclut :

B(1S,)) 2 /0+°° 1-E (COS(tSn))dt _ 2 /04'00 1-— (cos(t))”dt‘

T 12 p 12

25. Soit n € N\ {0}. En combinant les questions 18 (avec p = n — 1), 22 et la précédente, on a
immédiatement le résultat voulu :

B (15a) = B (S = 2 [ - B

13



