
MP DS n08 :Corrigé 25-26

La correction de l’exercice est au début de la correction du DS8∗.

Problème : séries trigonométriques

CCP2017 - MP1
Corrigé (d’après le corrigé de M. Devulder)

Partie 1 : exemples

4. On utilise d’I.T.L. entre 0 et x avec la fonction vectorielle f : x 7−→ eix de R dans C qui est de
classe C∞ par T.G. :

∀x ∈ R et ∀N ∈ N :
∣∣∣eix − N∑

n=0

inxn

n!

∣∣∣ 6 |x− 0|N+1MN+1

(N + 1)!
.

Comme fk(x) = ikeix, MN+1 = sup
t∈[0,x]

|fN+1(x)| = 1.

On conclut avec les croissances comparées : ∀x ∈ R : eix =
+∞∑
n=0

inxn

n!
.

5. On a

∀x ∈ R,
∣∣∣∣ 1

2n
cos(nx) +

1

3n
sin(nx)

∣∣∣∣ 6 1

2n
+

1

3n

Le majorant est indépendant de x et est le terme général d’une série convergente.

Cl: La série de fonctions est donc normalement convergente sur R .

Pour le calcul, on remarque que pour p > 2, eix/p est de module < 1 et que donc (somme
géométrique)

∞∑
n=0

(
eix

p

)n
=

1

1− eix

p

=
p

p− eix

En passant aux parties réelle et imaginaire, on a donc

∞∑
n=0

cos(nx)

pn
=

p2 − p cos(x)

p2 − 2p cos(x) + 1
et

∞∑
n=0

cos(nx)

pn
=

p sin(x)

p2 − 2p cos(x) + 1

Il reste à combiner les résultats pour p = 2 et p = 3 :

+∞∑
n=0

(
1

2n
cos(nx) +

1

3n
sin(nx)

)
=

4− 2 cos(x)

5− 4 cos(x)
+

3 sin(x)

10− 6 cos(x)

6. En utilisant le DSE de l’exponentielle, on a

∀x ∈ R, exp(eix) =
∞∑
n=0

einx

n!

1

sin



Or, exp(eix) = exp(cos(x)) exp(i sin(x)) et la partie réelle de cette quantité est ϕ(x)

Cl: ∀x ∈ R, exp(cos(x)) cos(sin(x)) =
∞∑
n=0

cos(nx)

n!

7. Posons an =
1

n+ 1
et un(x) = an cos(nx). (an) est de limite nulle mais un(0) =

1

n+ 1
est le

terme général d’une série divergente.

Cl: (
∑

un) n’est donc pas simplement convergente sur R .

8. La norme infinie sur R de un : x 7−→ sin(nx)√
n

est immédiatement égale à
1√
n

(atteinte en
π

2n
)

qui est le terme général d’une série divergente. Donc la série (
∑
‖un‖∞,R) diverge.

Cl: La série de fonction proposée n’est donc pas normalement convergente sur R .

Partie 2 : propriétés

Une condition suffisante

9. Posons un(x) = an cos(nx) + bn sin(nx). On a

∀x ∈ R, |un(x)| = |an cos(nx) + bn sin(nx)| 6 |an|+ |bn| = αn

La série (
∑
αn) est convergente par hypothèse sur (

∑
an) et (

∑
bn).

Cl: La série de fonctions est donc normalement convergente sur R .

Une condition nécessaire

10. Première méthode :

La réponse est évidente si a = b = 0. Supposons maintenant que (a, b) 6= (0, 0).

∀x ∈ R, a cos(x) + b sin(x) =
√
a2 + b2

( a√
a2 + b2

cos(x) +
b√

a2 + b2
sin(x)

)

Or il existe θ ∈ R tel que


cos(θ) =

a√
a2 + b2

sin(θ) =
b√

a2 + b2

, on a donc

∀x ∈ R, |a cos(x) + b sin(x)| =
√
a2 + b2| cos(x) cos(θ) + sin(x) sin(θ)|

=
√
a2 + b2| cos(x− θ)| 6

√
a2 + b2 et majoration atteint en x = θ.

Cl: max
x∈R
|a cos(x) + b sin(x)| =

√
a2 + b2

Deuxième méthode : On a ((.|.) étant le produit scalaire canonique sur R2)

∀x ∈ R, |a cos(x)+b sin(x)| = |((a, b)|(cos(x), sin(x)))| 6 ‖(a, b)‖·‖(cos(x), sin(x))‖ =
√
a2 + b2

De plus, il y a un cas d’égalité :

- c’est immédiat si a = b = 0 (n’importe quel x convient) ;

- si (a, b) 6= (0, 0), (a/
√
a2 + b2, b/

√
a2 + b2) est un vecteur normé et il existe donc un x tel

que ce vecteur soit (cos(x), sin(x)).
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11. Posons un(x) = an cos(nx) + bn sin(nx). On suppose ici que
∑

(‖un‖∞,R) converge (c’est la
caractérisation de la convergence normale). On a (avec la question précédente et car nx varie
dans R quand c’est le cas pour x si n > 0)

∀n ∈ N∗, 0 6 |an| 6
√
a2n + b2n = ‖un‖∞,R et ∀n ∈ N∗, 0 6 |bn| 6

√
a2n + b2n = ‖un‖∞,R

Par théorème de comparaison des séries positives, on conclut :

Cl:
∑

(an) et
∑

(bn) convergent absolument et donc les suites (an) et (bn) tendent vers 0

Autres propriétés

12. La convergence normale sur R entrâıne la convergence uniforme sur R et cette dernière conserve
la continuité. Les fonctions de la séries étant continues sur R, il en est de même de f .
La convergence normale sur R entrâıne la convergence simple sur R. La convergence simple
conserva la 2π-périodicité (si Sn(x + 2π) = Sn(x), on peut passer à la limite pour obtenir la

2π-périodicité de la limite). Ici, f est donc 2π-périodique. Cl: f ∈ C2π

13. On effectue une linéarisation : cos2(nx) =
1

2
(cos(2nx) + 1). On a donc

∀n > 1,

∫ π

−π
cos2(nx) dx =

[
1

4n
sin(2nx) +

x

2

]π
−π

= π

De même, sin(kx) cos(nx) =
1

2
(sin(kx + nx) + sin(kx − nx)). sin(px) est d’intégrale nulle sur

[−π, π] (évident si p = 0, par primitivation en −cos(px)

p
sinon). On en déduit que

∀n, k,
∫ π

−π
sin(kx) cos(nx) dx = 0

14. Soit n ∈ N. On a∫ π

−π
f(x) cos(nx) dx =

∫ π

−π

∞∑
k=0

(ak cos(kx) cos(nx) + bk sin(kx) cos(nx)) dx

Posons encore uk(x) = ak cos(kx) + bk sin(kx). On a ∀x, |uk(x) cos(nx)| 6 |uk(x)| 6 ‖uk‖∞,R.
Le majorant est indépendant de x et est le terme général d’une série convergente (par l’hy-
pothèse de normale convergence). On a donc sous l’intégrale une série de fonctions continues
normalement convergente sur le SEGMENT [−π, π] et on est dans le cas où on peut intervertir :∫ π

−π
f(x) cos(nx) dx =

∞∑
k=0

(
ak

∫ π

−π
cos(kx) cos(nx) dx+ bk

∫ π

−π
sin(kx) cos(nx)) dx

)
Dans la somme, tous les termes sont nuls sauf celui d’indice k = n qui vaut anπ si n 6= 0
(question précédente et résultat admis) et 2πa0 si n = 0. Ainsi,

Cl: ∀n 6= 0, an = αn(f) et a0 =
1

2
α0(f)

15. Il s’agit d’utiliser la question précédente avec a0 = α0(f)/2, b0 = 0 et pour n > 1, an = αn(f)
et bn = βn(f). La somme est ici égale à g et on obtient donc
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Cl: ∀n ∈ N, αn(f) = αn(g) et βn(f) = βn(g)

16. h 7→ αn(h) et h 7→ βn(h) étant linéaire, on a ici αn(g − f) = βn(g − f) = 0 et, avec le résultat
admis g − f = 0.

Cl: ∀x ∈ R : f(x) = g(x)

17. Si f est paire, x 7→ f(x) sin(nx) est impaire et sa fonction est donc d’intégrale nulle sur un
intervalle centré sur 0 (ce que l’on voit par le changement de variable affine t = −x). En

particulier, ∀n ∈ N, βn(f) = 0

x 7→ f(x) cos(nx) est paire et ∀n ∈ N, αn(f) =
2

π

∫ π

0

f(x) cos(nx) dx

18. Utilisons un petit script Python. Pour calculer f(x), on cherche un entier k tel que x− 2kπ =
y ∈ [−π, π] et on renvoie y2.

from numpy import *
from matplotlib import pyplot as plt
def f(x):

k=floor((x+pi)/(2*pi))
return (x-2*k*pi)**2

a,b=-3*pi,3*pi
pas=(b-a)/1000
lx=[a+k*pas for k in range(1000)]
ly=[f(x) for x in lx]
plt.plot(lx,ly,’k’)
plt.axis(’scaled’)
plt.show()

La fonction f étant paire, les coeffcients βn(f) sont tous nuls. De plus

αn(f) =
2

π

∫ π

0

x2 cos(nx) dx
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Une double intégration par parties donne, pour n 6= 0,∫ π

0

x2 cos(nx) dx = − 2

n

∫ π

0

x sin(nx) dx = − 2

n

([
−x cos(nx)

n

]π
0

+
1

n

∫ π

0

cos(nx) dx

)
et ainsi

∀n 6= 0, αn(f) =
4(−1)n

n2

On a aussi : α0(f) =
2

π

∫ π

0

x2 dx =
2

3
π2

Comme
∑

(αn(f)) et
∑

(βn(f)) convergent absolument, on peut utiliser ce qui précède et
conclure

Cl: ∀x ∈ R, f(x) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx)

la série étant normalement convergente sur R.

19. Pour x = 0, on obtient

∞∑
n=1

(−1)n

n2
= −π

2

12

Pour x = π, on obtient

∞∑
n=1

1

n2
=
π2

6

On découpe la somme en isolant les termes d’indice pair et ceux d’indice impair (c’est licite car
la série est absolument convergente et donc les trois séries en présence convergent) :

∞∑
n=1

1

n2
=
∞∑
n=1

1

(2n)2
+
∞∑
n=0

1

(2n+ 1)2

On en déduit que

∞∑
n=0

1

(2n+ 1)2
=
π2

6
− 1

4

∞∑
n=0

1

n2
=
π2

8

20. x 7−→ ln(1 + x)

x
est continue sur ]0, 1] par théorèmes généraux.

En 0, la fonction est équivalente à
x

x
= 1 et est donc prolongeable par continuité. Notre fonction

est donc intégrable sur [0, 1].Utilisons le DSE de x 7−→ ln(1 + x) :

∀x ∈]0, 1[,
ln(1 + x)

x
=
∞∑
n=1

(−1)n−1
xn−1

n

5



On en déduit que ∫ 1

0

ln(1 + x)

x
dx =

∫ 1

0

∞∑
n=1

(−1)n−1
xn−1

n
dx

On veut intervertir somme et intégrale. Utilisons le théorème d’intégration terme à terme.

- gn : x 7−→ (−1)n−1
xn−1

n
est le terme général d’une série de fonctions continue qui converge

simplement sur ]0, 1[ vers g : x 7−→ ln(1 + x)

x
.

- gn et g sont continues sur ]0, 1[.

- gn est intégrable sur ]0, 1[ et

∫ 1

0

|gn(x)| dx =
1

n2
est le terme générale d’une série conver-

gente.

L’interversion est licite et donne∫ 1

0

ln(1 + x)

x
dx =

∞∑
n=1

∫ 1

0

(−1)n−1
xn−1

n
dx =

∞∑
n=1

(−1)n−1

n2
=
π2

12

21. Dans l’exemple de la question 18, on a obtenu une série normalement convergente sur R.
Cependant la somme f n’est pas dérivable. En effet, f est dérivable à droite et gauche en π
avec des nombres dérivés 2π (à gauche) et −2π (à droite).
Supposons que (

∑
nan) et (

∑
nbn) sont des séries absolument convergente. Montrons qu’alors

en posant un(x) = an cos(nx)+bn sin(nx), (
∑
un) converge normalement sur R vers une fonction

de classe C1 sur R. On utilise pour cela le théorème de dérivation des séries de fonctions :

- ∀n, un ∈ C1(R) et u′n(x) = −nan sin(nx) + nbn cos(nx).

- (
∑
un) converge simplement sur R.

- ‖u′n‖∞ 6 |nan| + |nbn| est le terme général d’une série convergente et (
∑
u′n) est donc

normalement convergente sur R.

Le théorème s’applique donc et indique non seulement que la somme est de classe C1 mais aussi
que sa dérivée est la somme de la série dérivée.

22. On a vu en question 5 que

∀x ∈ R,
∞∑
n=0

sin(nx)

3n
=

3 sin(x)

10− 6 cos(x)

On est dans le cadre de la condition précédente avec an = 0 et bn = 1/3n. On en déduit (en
dérivant) que

∀x ∈ R,
∞∑
n=0

n cos(nx)

3n
=

3

2

5 cos(x)− 3

(5− 3 cos(x))2

6



Mathématiques I MP & MPI Mines-Ponts 2024, corrigé

Concours Commun Mines-Ponts 2024
Épreuve de mathématiques I, MP & MPI, trois heures

(d’aprè le corrigé de M. Winckler (UPS))

Remarque. L’énoncé ne précise pas ce qu’est p. Nous supposons dans tout ce corrigé que c’est un
entier (pour que (cos(t))2p+1 soit bien défini y compris lorsque le cosinus est strictement négatif), et

plus précisément un entier naturel pour que t 7→ 1− (cos(t))2p+1

t2
soit continue sur ]0,+∞[, de sorte que

l’intégrale de Dirichlet généralisée ait bien un sens (on en aura aussi besoin pour appliquer la formule
du binôme de Newton à la question 17).

Partie I : Calcul d’une intégrale
1. Dans cette question et la suivante, on notera fθ la fonction de l’énoncé.

Soit θ ∈] − π, π[. Pour s’assurer que fθ est bien définie sur ]0,+∞[, il suffit de vérifier que le
dénominateur 1 + teiθ ne s’annule pas pour tout t ∈]0,+∞[. Or, si t > 0, alors l’égalité teiθ + 1 = 0
implique, en isolant 1 et en comparant les modules : t = 1. Ensuite :

eiθ + 1 = 0⇐⇒ eiθ = −1⇐⇒ θ ≡ π mod 2π,

ce qui est impossible par hypothèse sur θ. Ainsi fθ est bien définie sur ]0,+∞[ .
Justifions son intégrabilité sur ]0,+∞[. L’application fθ est continue sur cet intervalle en tant que
quotient de fonctions continues dans le dénominateur ne s’annule pas. On a de plus :

En 0 : |fθ(t)| ∼
t→0

tx−1 = 1
t1−x

> 0

et la fonction de Riemann t 7→ 1
t1−x

est d’exposant 1 − x < 1 donc intégrable sur ]0, 1]. Par le
théorème de comparaison des fonctions intégrables, l’application fθ est intégrable sur ]0, 1].
Enfin, comme eiθ 6= 0 on a :

En +∞ : |fθ(t)| ∼
t→+∞

tx−1

|teiθ| = tx−2 = 1
t2−x > 0,

et comme x ∈]0, 1[, on a : 2 − x ∈]1, 2[, donc en particulier la fonction de Riemann t 7→ 1
t2−x

est
d’exposant 2 − x > 1 donc intégrable sur [1,+∞[. Par le théorème de comparaison des fonctions
intégrables, l’application fθ est intégrable sur [1,+∞[ .
Étant intégrable sur ]0, 1] et [1,+∞[, l’application fθ est intégrable sur ]0,+∞[ : d’où le résultat.

2. Nous allons utiliser le théorème de dérivation des intégrales à paramètres. Posons :

∀(t, θ) ∈]0,+∞[×]− π, π[, k(t, θ) = fθ(t).

Alors :
— pour tout t ∈]0,+∞[, l’application θ 7→ k(t, θ) est de classe C1 sur ]− π, π[ et on a :

∀t ∈]0,+∞[, ∀θ ∈]− π, π[, ∂k

∂θ
(t, θ) = tx−1 ×

(
− iteiθ

(1 + teiθ)2

)
= −ieiθ tx

(1 + teiθ)2 ;

— pour tout θ ∈] − π, π[, l’application t 7→ k(t, θ) est intégrable sur ]0,+∞[ par la question
précédente ;

1
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— pour tout θ ∈]−π, π[, l’application t 7→ ∂k

∂θ
(t, θ) est continue (par morceaux) sur ]0,+∞[ par

un argument semblable à celui de la question précédente ;
— pour tout β ∈]0, π[, et tout (t, θ) ∈]0,+∞[×[−β, β] on a :∣∣∣1 + teiθ

∣∣∣2 = |1|2 + 2Re
(
teiθ

)
+
∣∣∣teiθ∣∣∣2 = 1 + 2t cos(θ) + t2, (1)

et la parité du cosinus, ainsi que sa décroissance sur [0, β], permettent d’écrire :∣∣∣1 + teiθ
∣∣∣2 > 1 + 2t cos(β) + t2 =

∣∣∣1 + teiβ
∣∣∣2 ;

on en déduit, toujours pour tout (t, θ) ∈]0,+∞[×[−β, β] :∣∣∣∣∣∂k∂θ (t, θ)
∣∣∣∣∣ = tx

|1 + teiθ|2
6

tx

|1 + teiβ|2
. (hypothèse de domination)

Justifions que l’application ϕ : t 7→ tx

|1 + teiβ|2
, qui est effectivement définie et continue sur ]0,+∞[

par les mêmes arguments que dans la question précédente (vu que β 6∈ {−π, π}), est intégrable
sur cet intervalle. Elle est positive et on a :

En 0 : ϕ(t) ∼
t→0

tx = 1
t−x

> 0, En ∞ : ϕ(t) ∼
t→+∞

tx−2 = 1
t2−x

> 0,

et comme x ∈]0, 1[ on a : −x < 0 < 1, ainsi que : 2 − x > 1. Les conditions d’intégrabilité des
fonctions de Riemann au voisinage de 0 et +∞ assurent donc, par comparaison, l’intégrabilité de
ϕ sur ]0,+∞[. L’hypothèse de domination est bien vérifiée.

Par le théorème de dérivation des intégrales à paramètres, d’une part l’application t 7→ ∂k

∂θ
(t, θ)

est intégrable sur ]0,+∞[ pour tout θ ∈] − π, π[, et d’autre part r est de classe C1 sur ] − π, π[.
De plus :

∀θ ∈]− π, π[, r′(θ) =
∫ +∞

0

∂k

∂θ
(t, θ)dt = −ieiθ

∫ +∞

0

tx

(1 + teiθ)2 dt.

3. Pour tout θ ∈] − π, π[ on a : g(θ) = eixθr(θ). Ainsi g est de classe C1 sur ] − π, π[ en tant que
produit de fonctions de classe C1, et on a :

∀θ ∈]− π, π[, g′(θ) = ixeixθr(θ) + eixθr′(θ) = ieixθ
(
xr(θ) + 1

i
r′(θ)

)
.

Or, pour tout θ ∈]− π, π[, on a par la question précédente :

xr(θ) + 1
i
r′(θ) =

∫ +∞

0

(
xtx−1 · 1

1 + teiθ
+ tx ·

(
− eiθ

(1 + teiθ)2

))
dt =

∫ +∞

0
h′(t)dt,

donc : ∀θ ∈]− π, π[, g′(θ) = ieixθ
∫ +∞

0
h′(t)dt , ce qu’il fallait démontrer.

Le fait que l’intégrale ci-dessus converge (en tant que somme d’intégrales convergentes) assure a
priori que h admet une limite finie en 0 et +∞. Calculons-les. Comme x > 0, on a : lim

t→0
tx = 0, et

de plus : lim
t→0

(1 + teiθ) = 1, donc :

limt→0 h(t) = 0.

2
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(Remarque : l’énoncé demande de calculer h(0) alors que h a été définie sur ]0,+∞[...)
Ensuite, comme x− 1 < 0 :

|h(t)| ∼
t→+∞

tx−1 −→
t→+∞

0,

donc : lim
t→+∞

h(t) = lim
t→+∞

|h(t)| = 0. On en déduit :

g′(θ) = ieixθ
∫ +∞

0
h′(t)dt = ieixθ [h(t)]+∞0 = 0,

donc g est de dérivée nulle sur l’intervalle ]−π, π[ : on en déduit que c’est une fonction constante ,
d’où le résultat.

4. Soit θ ∈]0, π[. Comme g est constante sur ] − π, π[, on a : g(θ) = g(−θ), donc par la formule
d’Euler :

g(θ) sin(xθ) = 1
2i
(
g(θ)eixθ − g(θ)e−ixθ

)
= 1

2i
(
g(−θ)eixθ − g(θ)e−ixθ

)
.

Or par définition de g on a :

g(−θ)eixθ − g(θ)e−ixθ =
∫ +∞

0

(
tx−1

1 + te−iθ
− tx−1

1 + teiθ

)
dt =

∫ +∞

0

tx
(
eiθ − e−iθ

)
|1 + teiθ|2

dt.

Toujours par la formule d’Euler, on a : eiθ − e−iθ = 2i sin(θ). Par l’identité remarquable (1)
démontrée à la question 2, on a donc :

g(−θ)eixθ − g(θ)e−ixθ = 2i sin(θ)
∫ +∞

0

tx

t2 + 2t cos(θ) + 1dt,

d’où le résultat :

g(θ) sin(xθ) = sin(θ)
∫ +∞

0

tx

t2 + 2t cos(θ) + 1dt.

5. Soit θ ∈]0, π[. On a :

∀t ∈]0,+∞[, t2 + 2t cos(θ) + 1 = (t+ cos(θ))2 + 1− (cos(θ))2 = (t+ cos(θ))2 + (sin(θ))2

(expression que l’on pouvait aussi déduire de :
∣∣∣1 + teiθ

∣∣∣2 =
∣∣∣e−iθ + t

∣∣∣2), et comme sin(θ) 6= 0 on
peut écrire, par la question précédente :

g(θ) sin(xθ) = 1
sin(θ)

∫ +∞

0

tx(
t+cos(θ)

sin(θ)

)2
+ 1

dt.

Faisons alors le changement de variable affine C1-bijectif u = t+ cos(θ)
sin(θ) . Il en résulte le résultat

voulu :

g(θ) sin(xθ) = 1
sin(θ)

∫ +∞

cos(θ)
sin(θ)

(u sin(θ)− cos(θ))x

u2 + 1 sin(θ)du =
∫ +∞

cotan(θ)

(u sin(θ)− cos(θ))x

1 + u2 du.

6. Suivons l’énoncé et utilisons l’extension du théorème de convergence dominée à paramètre continu
(ou bien le critère séquentiel et le théorème de convergence dominée !). Posons :

∀(θ, u) ∈]0, π[×R, γ(u, θ) =
{ (u sin(θ)−cos(θ))x

1+u2 si u > cotan(θ),
0 sinon.

La distinction de cas est faite pour se ramener à un intervalle fixe, puisqu’on a :

g(θ) sin(xθ) =
∫ +∞

−∞
γ(u, θ)du.

Vérifions les hypothèses de l’extension du théorème de convergence dominée à paramètre continu :

3



Mathématiques I MP & MPI Mines-Ponts 2024, corrigé

— pour tout θ ∈]0, π[, l’application u 7→ γ(u, θ) est continue (par morceaux) sur R ;
— pour tout u ∈ R et pour tout θ ∈]0, π[ au voisinage de π on a cotan(θ) 6 u (puisque cotan(θ)

tend vers −∞ quand θ tend vers π par valeurs inférieures), donc γ(u, θ) = (u sin(θ)− cos(θ))x

1 + u2
pour θ au voisinage de π, ce qui permet de déduire :

∀u ∈ R, lim
θ→π−

γ(u, θ) = 1
1 + u2 ,

et l’application u 7→ 1
1 + u2 est continue (par morceaux) sur R ;

— montrons l’hypothèse de domination ; si (θ, u) ∈]0, π[×R vérifie u > cotan(θ), alors :

u sin(θ)− cos(θ) > cos(θ)
sin(θ) sin(θ)− cos(θ) > 0,

donc : |u sin(θ)− cos(θ)| = u sin(θ)− cos(θ), puis :

|γ(u, θ)| = (u sin(θ)− cos(θ))x
1 + u2 = (

√
1 + u2)x
1 + u2

(
u√

1 + u2
sin(θ)− 1√

1 + u2
cos(θ)

)x
;

comme :
(

u√
1 + u2

)2

+
(

1√
1 + u2

)2

= 1, il existe α ∈ R tel que :

u√
1 + u2

= cos(α), 1√
1 + u2

= sin(α),

ce qui permet enfin d’écrire :

|γ(u, θ)| = 1
(1 + u2)1−x2

(cos(α) sin(θ)− sin(α) cos(θ))x = 1
(1 + u2)1−x2

(sin(θ − α))x

6
1

(1 + u2)1−x2

tandis que si u 6 cotan(θ) alors γ(u, θ) = 0 donc l’inégalité reste trivialement vérifiée ; ainsi :

∀(θ, u) ∈]0, π[×R, |γ(u, θ)| 6 1
(1 + u2)1−x2

. (hypothèse de domination)

Justifions que ϕ : u 7→ 1
(1 + u2)1−x2

est intégrable sur R : elle est continue sur cet intervalle, et au
voisinage de +∞ :

ϕ(u) ∼
u→+∞

1
u2−x > 0.

Comme x ∈]0, 1(, on a : 2 − x > 1, donc la fonction de Riemann u 7→ 1
u2−x est intégrable au

voisinage de +∞. Par comparaison, il en est de même de ϕ, et par parité ϕ est intégrable au
voisinage de −∞ également, donc sur R tout entier : l’hypothèse de domination est vérifiée.
Par le théorème de convergence dominée à paramètre continu, on a :

lim
θ→π−

g(θ) sin(xθ) =
∫ +∞

−∞
lim
θ→π−

γ(u, θ) =
∫ +∞

−∞

du
1 + u2 ,

4
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d’où le résultat.
Remarque. L’inégalité décisive |u sin(θ) − cos(θ)| 6

√
1 + u2 peut s’obtenir plus rapidement en

appliquant l’inégalité de Cauchy-Schwarz au produit scalaire usuel de R2, avec les vecteurs (u,−1)
et (sin(θ), cos(θ)).

7. Une primitive de u 7→ 1
1 + u2 étant l’arc tangente, la question précédente implique :

lim
θ→π−

g(θ) sin(xθ) = [arctan(u)]+∞−∞ = π.

Mais on a aussi, comme le sinus est continu sur R et la fonction g constante sur ] − π, π[ par la
question 3 :

lim
θ→π−

g(θ) sin(xθ) = g(0) sin(xπ) = sin(xπ)
∫ +∞

0

tx−1

1 + t
dt.

Par unicité de la limite, on conclut :∫ +∞

0

tx−1

1 + t
dt = π

sin(πx) .

Notons que πx ∈]0, π[, donc le sinus est bien non nul.

Partie II : Une expression (utile) de la fonction sinus
8. Par la relation de Chasles : ∫ +∞

0

tx−1

1 + t
dt =

∫ 1

0

tx−1

1 + t
dt+

∫ +∞

1

tx−1

1 + t
dt

Effectuons le changement de variable u = 1
t
dans la seconde intégrale. Il est licite puisque la

fonction inverse est de classe C1 et strictement décroissante sur [1,+∞[ (donc C1-bijectif). Alors :∫ +∞

1

tx−1

1 + t
dt = −

∫ 0

1

u1−x

1 + 1
u

du
u2 =

∫ 1

0

u1−x

u(1 + u)du =
∫ 1

0

u−x

1 + u
du.

On en déduit : ∫ +∞

0

tx−1

1 + t
dt =

∫ 1

0

tx−1

1 + t
dt+

∫ 1

0

u−x

1 + u
du =

∫ 1

0

(
tx−1

1 + t
+ t−x

1 + t

)
dt,

d’où le résultat.

9. Pour tout t ∈]0, 1[, comme |− t| < 1, on a : 1
1 + t

=
+∞∑
k=0

(−t)k. On aimerait alors écrire, sous réserve

de validité : ∫ 1

0

tx−1

1 + t
dt =

∫ 1

0
tx−1

+∞∑
k=0

(−1)ktkdt (∗)=
+∞∑
k=0

∫ 1

0
(−1)ktx+k−1dt =

+∞∑
k=0

(−1)k
x+ k

.

Pour avoir le résultat voulu, il suffit donc de justifier (∗). Ici, on n’est pas sur un segment donc le
théorème d’intégration terme à terme avec la convergence uniforme ne s’applique pas. D’autre part,
on ne peut utiliser le théorème d’intégration terme à terme de Lebesgue car la série (

∑ 1
x+ k

)
n’est pas convergente. Nous allons utiliser le théorème de convergence dominée avec la suite des
sommes partielles. . Posons :

∀k ∈ N, ∀t ∈]0, 1[, fk(t) = (−1)ktx+k−1.

Alors :

5
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— pour tout k ∈ N, l’application fk est continue (par morceaux) sur ]0, 1[ ;
— par convergence des séries géométriques de raison strictement entre −1 et 1, la série de

fonctions
∑
k>0

fk converge simplement sur ]0, 1[, et sa somme t 7→ tx−1

1 + t
est bien sûr continue

(par morceaux) sur ]0, 1[ ;
— pour tout N ∈ N et tout t ∈]0, 1[, on a :∣∣∣∣∣

N∑
k=0

fk(t)
∣∣∣∣∣ =

∣∣∣∣∣tx−1
N∑
k=0

(−t)k
∣∣∣∣∣ = tx−1 1− (−t)N+1

1 + t
6

tx−1

1 + t
, (hypothèse de domination)

et l’application ϕ : t 7→ tx−1

1 + t
est continue (par morceaux) sur ]0, 1], intégrable en vertu de

l’équivalent : ϕ(t) ∼
t→0

tx−1 = 1
t1−x

> 0, et de l’inégalité 1−x < 1. Elle est donc aussi intégrable
sur ]0, 1[.

Par le théorème de convergence dominée :

lim
N→+∞

∫ 1

0

N∑
k=0

fk =
∫ 1

0

+∞∑
k=0

fk =
∫ 1

0

tx−1

1 + t
dt,

et la linéarité de l’intégrale permet d’écrire :

lim
N→+∞

∫ 1

0

N∑
k=0

fk = lim
N→+∞

N∑
k=0

∫ 1

0
fk =

+∞∑
k=0

(−1)k
x+ k

,

d’où le résultat :

∫ 1

0

tx−1

1 + t
dt =

+∞∑
k=0

(−1)k
k + x

.

10. Par la question précédente, appliqué à 1− x ∈]0, 1[, on a :
∫ 1

0

t−x

1 + t
dt =

+∞∑
k=0

(−1)k
k + 1− x.

La question 8 donne donc le résultat voulu :

∫ +∞

0

tx−1

1 + t
dt =

∫ 1

0

tx−1

1 + t
dt+

∫ 1

0

t−x

1 + t
dt =

+∞∑
k=0

(−1)k
k + x

+
+∞∑
k=0

(−1)k
k + 1− x.

Pour s’accorder aux notations de l’énoncé, on nomme l’indice de sommation n dans ce qui suit.
11. En effectuant le changement d’indice n 7→ n+ 1 dans la seconde somme ci-dessus, on a :

∫ +∞

0

tx−1

1 + t
dt =

+∞∑
n=0

(−1)n
n+ x

−
+∞∑
n=1

(−1)n
n− x

= 1
x

+
+∞∑
n=1

(−1)n
( 1
n+ x

− 1
n− x

)
= 1
x

+
+∞∑
n=1

(−1)n 2x
n+ x

,

donc par la question 7 on a le résultat :

π

sin(πx) = 1
x
−

+∞∑
n=1

2(−1)nx
n2 − x2 .

6
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12. Soit y ∈]0, π[. Posons : x = y

π
∈]0, 1[. Par la question précédente :

π

sin(y) = π

sin(πx) = 1
x
−

+∞∑
n=1

2(−1)nx
n2 − x2 = π

y
−

+∞∑
n=1

2(−1)ny
π
(
n2 − y2

π2

) .
Il suffit alors de multiplier cette relation par sin(y)

π
pour avoir :

1 = sin(y)
y
−

+∞∑
n=1

2(−1)ny sin(y)
π2
(
n2 − y2

π2

) = sin(y)
y

+
+∞∑
n=1

2(−1)ny sin(y)
−n2π2 + y2 ,

d’où le résultat en réarrangeant les termes :

+∞∑
n=1

2(−1)ny sin(y)
y2 − n2π2 = 1− sin(y)

y
.

Partie III : Calcul d’une intégrale de Dirichlet généralisée
13. Comme on le disait en début de corrigé, on suppose que p est un entier naturel pour traiter

cette question et les suivantes.

L’application t 7→ 1− (cos(t))2p+1

t2
est continue sur ]0,+∞[. De plus, pour tout t ∈ [1,+∞[ on a :

0 6
1− (cos(t))2p+1

t2
6

2
t2
,

et l’intégrabilité sur [1,+∞[ de la fonction de Riemann t 7→ 1
t2

(car l’exposant est 2 > 1) assure, par

comparaison d’intégrales de fonctions positives, que l’intégrale
∫ +∞

1

1− (cos(t))2p+1

t2
dt converge.

Pour t au voisinage de 0, on écrit :

1− (cos(t))2p+1

t2
=

1−
(

1 + O
t→0

(t2)
)2p+1

t2
=

1−
(

1 + (2p+ 1)× O
t→0

(t2)
)

t2
= O

t→0
(1),

et t 7→ 1 est continue sur le segment [0, 1], donc intégrable sur [0, 1] et en particulier sur ]0, 1]. Par

comparaison, l’intégrale
∫ 1

0

1− (cos(t))2p+1

t2
dt converge.

Ceci achève de démontrer que l’intégrale
∫ +∞

0

1− (cos(t))2p+1

t2
dt converge .

Passons à la deuxième partie de la question. Nous allons intégrer par parties, en intégrant t 7→ 1
t2

et en dérivant t 7→ 1 − (cos(t))2p+1, dont la dérivée est t 7→ (2p + 1)(cos(t))2p sin(t). Comme, par
le théorème d’encadrement :

lim
t→+∞

−1− (cos(t))2p+1

t
= 0,

et par la relation de comparaison plus haut :

1− (cos(t))2p+1

t
= t · 1− (cos(t))2p+1

t2
= O

t→0
(t),

7
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on a : lim
t→0
−1− (cos(t))2p+1

t
= 0, la formule de l’intégration par parties assure que les intégrales :

∫ +∞

0

1− (cos(t))2p+1

t2
dt et

∫ +∞

0
−(2p+ 1)(cos(t))2p sin(t)

t
dt

sont de même nature, donc la seconde intégrale converge aussi et on a de plus :

∫ +∞

0

1− (cos(t))2p+1

t2
dt =

[
1− (cos(t))2p+1

t

]+∞

0
−
∫ +∞

0
−(2p+ 1)(cos(t))2p sin(t)

t
dt

= (2p+ 1)
∫ +∞

0
(cos(t))2p sin(t)

t
dt,

et donc ∫ +∞

0

1− (cos(t))2p+1

t2
dt = (2p+ 1)

∫ +∞

0
(cos(t))2p sin(t)

t
dt.

d’où le résultat.
14. Soit n ∈ N \ {0}. On effectue le changement de variable affine C1-bijectif u = t− nπ. On a :∫ π

2 +nπ

π
2 +(n−1)π

(cos(t))2p sin(t)
t

dt =
∫ π

2

−π2
(cos (u))2p (−1)n sin (u)

u− nπ
du.

Par la relation de Chasles et le changement de variable u 7→ −u, comme le sinus est impair, on
obtient :∫ π

2

−π2
(cos (u))2p (−1)n sin (u)

u− nπ
du =

∫ π
2

0
(cos (u))2p (−1)n sin (u)

u− nπ
du+

∫ 0

−π2
(cos (u))2p (−1)n sin (u)

u− nπ
du

=
∫ π

2

0
(cos (u))2p (−1)n sin (u)

u− nπ
du−

∫ π
2

0
(cos (u))2p (−1)n sin (u)

−u− nπ
du

=
∫ π

2

0
(cos (u))2p (−1)n sin(u)

( 1
u− nπ

+ 1
u+ nπ

)
du

=
∫ π

2

0
(cos (u))2p (−1)n sin(u) 2u

u2 − n2π2 du,

d’où le résultat, quitte à renommer u en t :

∫ π
2 +nπ

π
2 +(n−1)π

(cos(t))2p sin(t)
t

dt =
∫ π

2

0
(cos(t))2p2(−1)nt sin(t)

t2 − n2π2 dt.

15. On utilise d’abord la relation de Chasles. Comme l’intégrale
∫ +∞

π
2

(cos(t))2p sin(t)
t

dt converge par

la question 13, on a :∫ +∞

π
2

(cos(t))2p sin(t)
t

dt =
+∞∑
n=1

∫ π
2 +nπ

π
2 +(n−1)π

(cos(t))2p sin(t)
t

dt (q. 14)=
+∞∑
n=1

∫ π
2

0
(cos(t))2p2(−1)nt sin(t)

t2 − n2π2 dt.

Justifions qu’il est possible d’intervertir somme et intégrale, par le théorème d’intégration
terme à terme sur un segment. Posons :

∀n ∈ N \ {0}, ∀t ∈
[
0, π2

]
, un(t) = (cos(t))2p2(−1)nt sin(t)

t2 − n2π2 .

Alors :

8
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— l’application un est continue sur
[
0, π2

]
en tant que quotient de fonctions continues dont le

dénominateur ne s’annule pas (on a ±nπ 6∈
[
0, π2

]
car n > 1) ;

— pour tout entier n > 1 et tout t ∈
[
0, π2

]
on a :

|un(t)| = (cos(t))2p 2t| sin(t)|
|t2 − n2π2|

6
π

n2π2 − t2
6

π

n2π2 − π2

4
= 1
π

1
n2 − 1

4
,

et donc :
+∞∑
n=1
‖un‖∞ 6

1
π

+∞∑
n=1

1
n2 − 1

4
< +∞,

où la finitude de la dernière somme découle du théorème de comparaison des séries à termes
positifs, appliqué à l’équivalent 1

n2 − 1
4
∼

n→+∞

1
n2 > 0, et de la convergence des séries de

Riemann d’exposant strictement supérieur à 1 ; on en déduit que la série de fonctions
∑
n>1

un

converge normalement donc uniformément sur le segment
[
0, π2

]
.

Par le théorème d’intégration terme à terme sur un segment, d’une part la série
∑
n>1

∫ π
2

0
un converge,

et d’autre part :
+∞∑
n=1

∫ π
2

0
un =

∫ π
2

0

+∞∑
n=1

un.

C’est-à-dire, en reprenant le calcul amorcé en début de question :

∫ +∞

π
2

(cos(t))2p sin(t)
t

dt =
∫ π

2

0
(cos(t))2p

(+∞∑
n=1

2(−1)nt sin(t)
t2 − n2π2

)
dt,

d’où le résultat.
16. Par la question précédente et la question 12, qu’on applique avec y = t ∈

[
0, π2

]
, on a :

∫ +∞

π
2

(cos(t))2p sin(t)
t

dt =
∫ π

2

0
(cos(t))2p

(
1− sin(t)

t

)
dt =

∫ π
2

0
(cos(t))2pdt−

∫ π
2

0
(cos(t))2p sin(t)

t
dt,

d’où le résultat par la relation de Chasles :

∫ +∞

0
(cos(t))2p sin(t)

t
dt =

∫ π
2

0
(cos(t))2pdt.

17. Soit t ∈ R (l’énoncé ne précise pas ce qu’est t). Par la formule d’Euler et la formule du binôme de
Newton, on a :

(cos(t))2p =
(
eit + e−it

2

)2p

= 1
22p

2p∑
k=0

(
2p
k

)(
eit
)2p−k (

e−it
)k

= 1
22p

2p∑
k=0

(
2p
k

)
e2it(p−k), (2)

et donc :
(cos(t))2p = 1

22p

p−1∑
k=0

(
2p
k

)
e2it(p−k) + 1

22p

(
2p
p

)
+ 1

22p

2p∑
k=p+1

(
2p
k

)
e2it(p−k).

9
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Or, par le changement d’indice k 7→ 2p− k, on a :

2p∑
k=p+1

(
2p
k

)
e2it(p−k) =

p−1∑
k=0

(
2p

2p− k

)
e2it(k−p) =

p−1∑
k=0

(
2p
k

)
e−2it(p−k)

donc :
(cos(t))2p = 1

22p

p−1∑
k=0

(
2p
k

)(
e2it(p−k) + e−2it(p−k)

)
+ 1

22p

(
2p
p

)
.

Par la formule d’Euler, cela donne le résultat voulu :

(cos(t))2p = 1
22p

(2p
p

)
+ 2

p−1∑
k=0

(
2p
k

)
cos(2(p− k)t)

 .
18. On a, par les questions 13, 16 et la précédente :

∫ +∞

0

1− (cos(t))2p+1

t2
dt = (2p+ 1)

∫ +∞

0
(cos(t))2p sin(t)

t
dt

= 2p+ 1
22p

π
2

(
2p
p

)
+ 2

p−1∑
k=0

(
2p
k

)∫ π
2

0
cos(2(p− k)t)dt

 .
Or, si k ∈ J0, p− 1K, alors :

∫ π
2

0
cos(2(p− k)t)dt =

[
sin(2(p− k)t)

2(p− k)

]π
2

0
= sin((p− k)π)

2(p− k) = 0,

donc :
∫ +∞

0

1− (cos(t))2p+1

t2
dt = 2p+ 1

22p · π2

(
2p
p

)
= π

2
(2p+ 1)(2p)!

22p(p!)2 = π

2
(2p+ 1)!
22p(p!)2 .

d’où le résultat.

Partie IV : Calcul de E(|Sn|)
19. Soit n ∈ N \ {0}. Il est clair que l’on a :

∀k ∈ N \ {0}, E(Xk) = 0, V(Xk) = E(X2
k)− E(Xk)2 = E(1) = 1.

Par linéarité de l’espérance :

E(Sn) =
n∑
k=1

E(Xk) = 0,

et par indépendance des variables Xk :

V(Sn) =
n∑
k=1

V(Xk) = n.

D’où le résultat.

10
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20. On a :
cos(S + T ) = cos(S) cos(T )− sin(S) sin(T ).

Par linéarité de l’espérance :

E(cos(S + T )) = E(cos(S) cos(T ))− E(sin(S) sin(T )).

Or S et T sont indépendantes, donc par le lemme des coalitions il en est de même de cos(S) et
cos(T ), puis de sin(S) et sin(T ). On en déduit :

E(cos(S + T )) = E(cos(S))E(cos(T ))− E(sin(S))E(sin(T )).

Or T et −T ont même loi, donc sin(T ) et sin(−T ) = − sin(T ) également. Deux variables ayant
même loi ont aussi même espérance, d’où :

E(sin(T )) = E(− sin(T )) = −E(sin(T )).

On en déduit : E(sin(T )) = 0, d’où le résultat :

E(cos(S + T )) = E(cos(S))E(cos(T )).

21. Soient n ∈ N \ {0} et t ∈ R. Au vu de la définition des Xk, il est clair que tXk et −tXk ont même
loi pour tout k ∈ N \ {0}. De plus, par le lemme des coalitions, T = tXn+1 et S = t

n∑
k=1

Xk = tSn

sont indépendantes. Cela permet d’écrire, par la question précédente :

E(cos(tSn+1)) = E(cos(S + T )) = E(cos(tSn))E(cos(tXn+1)).

Comme tXn+1 a même loi que tX1, on a donc :

E(cos(tSn+1)) = E(cos(tSn))E(cos(tX1)).

Par le théorème de transfert :

E(cos(tX1)) = cos(t)
2 + cos(−t)

2 = cos(t).

On a donc montré :

∀n ∈ N \ {0}, E(cos(tSn+1)) = cos(t)E(cos(tSn)).

Autrement dit : la suite (E(cos(tSn)))n>1 est géométrique et de raison cos(t). On conclut :

∀n ∈ N \ {0}, E(cos(tSn)) = (cos(t))n−1E(cos(tS1)) = (cos(t))n−1E(cos(tX1)) = (cos(t))n.

22. On a :

|a+ b|2 = (a+ b)2 = a2 + 2ab+ b2 = |a|2 + 2signe(a)|a|b+ b2 = |a|2 + 2signe(a)|a|b+ (signe(a)b)2,

c’est-à-dire :
|a+ b|2 = (|a|+ signe(a)b)2.

On en déduit que les réels |a + b| et |a| + signe(a)b sont égaux ou opposés. L’hypothèse |a| > |b|
assure que |a|+ signe(a)b est positif. Or |a+ b| l’est aussi, donc :

|a+ b| = |a|+ signe(a)b.
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Appliqué à a = S2n−1(ω) et b = X2n(ω) pour tout ω ∈ Ω (dont il faut normalement s’assurer
qu’elles vérifient les hypothèses sur a et b : voir plus bas), cela donne :

|S2n| = |S2n−1 +X2n| = |S2n−1|+ signe(S2n−1)X2n, (3)

donc par linéarité de l’espérance :

∀n ∈ N \ {0}, E(|S2n|) = E(|S2n−1|) + E (signe(S2n−1)X2n) .

Or X1, . . . , X2n sont indépendantes, donc par le lemme des coalitions il en est de même de X2n et
signe(S2n−1). On en déduit :

E (signe(S2n−1)X2n) = E (signe(S2n−1)) E (X2n) (q. 19)= 0,

d’où le résultat :

E (|S2n|) = E (|S2n−1|) .

Il reste à justifier que les choix a = S2n−1(ω) et b = X2n(ω) sont licites. C’est-à-dire : justifions
que S2n−1(ω) est non nul et que : |S2n−1(ω)| > |X2n(ω)|. On a : S2n−1(ω) =

2n−1∑
k=1

Xk(ω), et comme
les Xk(ω) sont dans {−1, 1}, on a :

S2n−1(ω) ≡
2n−1∑
k=1

1 mod 2 ≡ 2n− 1 mod 2 ≡ 1 mod 2,

donc S2n−1(ω) ne peut pas être nul (c’est une façon comme une autre de justifier que, pour qu’une
somme de 1 et de −1 soit nulle, il faut autant de 1 que de −1, ce qui est impossible si on somme
un nombre impair de termes). Comme S2n−1(ω) est à valeurs entières, ceci impose :

|S2n−1(ω)| > 1 = |X2n(ω)|,

d’où le résultat : la relation (3) est vraie.
23. Soit s ∈ R. Comme chaque membre de l’égalité à démontrer est une fonction paire de s, il suffit

de la démontrer pour s > 0.

Si s = 0, on a immédiatement :
∫ +∞

0

1− cos(st)
t2

dt =
∫ +∞

0
0dt = 0 = π

2 |0|. Supposons donc s > 0.
Le changement de variable affine C1-bijectif u = st donne :∫ +∞

0

1− cos(st)
t2

dt =
∫ +∞

0

1− cos(u)
(u/s)2

du
s

= s
∫ +∞

0

1− cos(u)
u2 du.

Par la question 18 avec p = 0, on a :∫ +∞

0

1− cos(u)
u2 du = π

2 ,

et donc :
∫ +∞

0

1− cos(st)
t2

dt = π

2 s = π

2 |s|.

D’où le résultat pour s > 0, et donc pour s ∈ R par parité.
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24. Soit n ∈ N \ {0}. Par le théorème de transfert et parce que Sn(Ω) est de cardinal fini, on a :

E
(∫ +∞

0

1− cos(tSn)
t2

dt
)

=
∑

s∈Sn(Ω)

(∫ +∞

0

1− (cos(st))
t2

dt
)

P(Sn = s) =
∑

s∈Sn(Ω)

π

2 |s| · P(Sn = s),

et donc, encore par le théorème de transfert :

E
(∫ +∞

0

1− cos(tSn)
t2

dt
)

= π

2 E (|Sn|) .

Mais on a aussi, par le théorème d’intégration terme à terme positif, dont les hypothèses découlent
aisément des questions précédentes (intégrabilité du terme général, etc.) :

E
(∫ +∞

0

1− cos(tSn)
t2

dt
)

=
∫ +∞

0

 ∑
s∈Sn(Ω)

1− cos(st)
t2

P(Sn = s)
 dt.

Par le théorème de transfert, cela donne aussi :

E
(∫ +∞

0

1− cos(tSn)
t2

dt
)

=
∫ +∞

0
E
(

1− cos(tSn)
t2

)
dt.

En comparant les deux expressions de E
(∫ +∞

0

1− cos(tSn)
t2

dt
)

obtenues, on a donc :

E(|Sn|) = 2
π

∫ +∞

0
E
(

1− cos(tSn)
t2

)
dt.

Par linéarité de l’espérance et la question 21, on conclut :

E(|Sn|) = 2
π

∫ +∞

0

1− E (cos(tSn))
t2

dt = 2
π

∫ +∞

0

1− (cos(t))n
t2

dt.

25. Soit n ∈ N \ {0}. En combinant les questions 18 (avec p = n − 1), 22 et la précédente, on a
immédiatement le résultat voulu :

E (|S2n|) = E (|S2n−1|) = 2
π

∫ +∞

0

1− (cos(t))2n−1

t2
dt = (2n− 1)!

22n−2 ((n− 1)!)2 .
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