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Exercice 1 : Mesure de l’épaisseur d’une lame par interférométrie
Frits Zernike, qui a obtenu le prix Nobel en 1953 pour son microscope à contraste de phase, a dans un
premier temps utilisé un montage interférentiel à trois fentes, pour contrôler ou mesurer l’épaisseur d’une
fine lame transparente à faces parallèles. On suppose que tous les rayons lumineux sont très peu inclinés par
rapport à l’axe horizontal. L’indice de l’air sera pris égal à 1.

I – Système interférentiel à deux fentes
On considère d’abord un système de deux fentes F1 et F2 très fines. Elles sont distantes de 2a et de grande
longueur. L’ensemble est éclairé par une source S ponctuelle et monochromatique de longueur d’onde λ
placée au foyer objet d’une lentille convergente. L’observation de la figure d’interférences se fait sur un écran
placé dans le plan focal image d’une lentille convergente de distance focale image f ′. On s’intéresse aux
ondes reçues au point M d’ordonnée z sur l’écran et on suppose z et a très petits devant f ′.
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On adopte le modèle scalaire de la lumière et on note s0 l’amplitude associée au rayon fictif (en tirets sur
la figure) provenant du milieu des deux fentes. Les amplitudes complexes des deux rayons issus de F1 et
F2 et déphasés d’un angle 2φ sont alors : s1 = s0e

jφ et s2 = s0e
−jφ . On note E0 = s1 · s∗

1 = s2 · s∗
2 = s2

0
l’éclairement (ou intensité lumineuse) émis par chacune des deux fentes.

Q.1 Après avoir cité les théorèmes que vous jugez utiles, exprimer φ en fonction de a, f ′, λ et z.

Q.2 Exprimer l’éclairement E résultant de l’interférence des deux ondes en fonction de E0 et φ. Tracer
l’allure de la courbe E en fonction de φ.

II – Système interférentiel à trois fentes
On ajoute une troisième fente F0 au milieu des deux autres et identique à celles-ci et on place les fentes dans
le plan focal objet de la seconde lentille.

Q.3 Montrer que le nouvel éclairement peut se mettre sous la forme : E = E0 [1 + 2 cos(φ)]2.

Q.4 Tracer l’allure de la courbe E/E0 en fonction de φ.

À partir du montage à trois fentes, on ajoute devant la fente centrale F0 et parallèlement au plan des fentes,
une lame de verre à faces parallèles d’épaisseur e et d’indice n = 1, 5. e étant très faible, on considèrera que
le rayon lumineux qui traverse la lame, parcourt une distance e dans le verre, sans être dévié.

Q.5 Montrer que si l’épaisseur de la lame est telle qu’elle induit un retard de phase de π/2 pour le
rayon central, on retrouve une alternance régulière de franges brillantes et de franges sombres (pas
nécessairement noires), contrairement à la question précédente.
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Q.6 Si on veut contrôler par cette méthode que la lame a bien l’épaisseur souhaitée e = 0,3 µm, quelle
valeur faut-il choisir pour λ ?

Si on veut mesurer l’épaisseur e, il faut adopter une autre méthode. On peut déplacer l’écran d’une distance
x = OO′, de façon à retrouver la même intensité lumineuse au centre de la figure que celle qu’on avait en
l’absence de lame. Le point O′ de la figure suivante est alors tel que les trois rayons issus des trois fentes
sont à nouveau en phase (comme en O sans la lame).
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Q.7 Exprimer x en fonction de n, e et de l’angle α ≈ a/f ′.

Q.8 Application numérique : on donne a = 0,1 mm, f ′ = 10 cm et n = 1,5 et on mesure à l’aide d’un
microscope viseur : x = −1 cm. Déterminer la valeur de e.

Exercice 2 : Ressort avec ou sans frottements
Une particule ponctuelle M de masse m peut glisser sur un rail horizontal ∆ fixe dans le référentiel terrestre
R. Le point M est fixé à l’extrémité d’un ressort de raideur k dont l’autre extrémité est attachée en O,
fixe dans R. On repère le point M par son abscisse x et on suppose que la position x = 0 correspond à
l’allongement au repos ℓ0 du ressort.
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I – Sans frottements
Le glissement s’effectue dans un premier temps sans frottements.

Q.1 Faire un bilan des forces qui s’appliquent sur le point M et les représenter sur un schéma pour x > 0.

Q.2 Exprimer l’énergie mécanique du système en fonction de x, ẋ et des constantes du problème. Que
peut-on dire de cette énergie mécanique ? En déduire l’équation différentielle régissant le mouvement
du point M .

Q.3 Déterminer alors l’expression de x en fonction du temps et des constantes du problème en notant x0
et v⃗0 = ẋ0u⃗x respectivement les position et vitesse initiales.
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II – Avec frottements

Le point M est maintenant soumis à une force de frottement f⃗ de la part du rail. Cette force de frottement
est de norme constante f quand le point M est en mouvement et comprise entre 0 et f lorsque le point M
est immobile.

Q.4 Représenter les forces qui s’appliquent sur le point M lorsqu’il est en mouvement, en précisant le sens
du mouvement choisi. On fera figurer l’angle φ entre la réaction du rail sur le point M et la verticale.
Donner l’expression de φ en fonction des constantes du problème.

Q.5 On place le point M à la position x0 (de signe quelconque) sans vitesse initiale. À quelle(s) condition(s)
sur x0 le point M se déplace-t-il ?

Q.6 On suppose la condition de la question précédente vérifiée : le point M se déplace alors jusqu’à une
position d’équilibre x1. Donner, en fonction de f et k, un encadrement de la valeur x1.

Q.7 Montrer que la force de frottement peut s’écrire : f⃗ = −εfu⃗x avec ε un coefficient tel que :

ε =
{

+1 si ẋ > 0
−1 si ẋ < 0

Q.8 Écrire alors l’équation différentielle vérifiée par x(t) sans chercher à la résoudre.

Dans toute la suite du problème, on choisit x0 positif et très supérieur à la limite de démarrage du point
M trouvée à la Q.5 afin de supposer qu’il effectue plusieurs oscillations. On note x1 la position du point M
lorsqu’il s’arrête pour la première fois, x2 sa position lorsqu’il s’arrête pour la deuxième fois, etc. Le point
M est laché sans vitesse initiale (ẋ0 = 0).

Q.9 Écrire et résoudre l’équation différentielle du mouvement avec frottement sur l’intervalle {x0, x1}.

Q.10 Déterminer le temps t1 que dure le trajet entre x0 et x1. Exprimer alors x1 en fonction de x0, f et k.

Q.11 Exprimer le travail de la force de frottement sur le trajet entre x1 et x2 et en déduire la position x2
lorsque le point M s’arrête pour la deuxième fois, à exprimer en fonction de x0, f et k.

Q.12 De l’étude qui précède, déduire la nature de la décroissance de l’amplitude du mouvement au cours
du temps. Déterminer alors l’équation xmax(t) de la courbe reliant les maxima de x(t).

Exercice 3 : Expérience de Fresnel et Arago (bonus)
On rappelle qu’un filtre polarisant (polariseur) de direction de polarisation ∆ éclairé en incidence normale
ne laisse passer que la composante suivant ∆ du champ E⃗ incident, cette composante étant multipliée à la
traversée du filtre par un coefficient de transmission t tenant compte du déphasage et de l’absorption par le
polariseur. Pour simplifier, on prendra t = 1 ici. L’expérience de Fresnel et Arago est destinée à mettre en
évidence le rôle des états de polarisation dans une expérience d’interférences.

Pour ce faire, on interpose un polariseur devant chacune des fentes d’un dispositif de fentes d’Young, en
prenant soin de croiser les directions passantes des polariseurs, comme indiqué sur le schéma ci-dessous (les
directions de polarisation sont indiquées par des flèches).
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La fente source est éclairée avec une lumière monochromatique. On admettra qu’après la fente source, les
composantes sur les axes (Ox) et (Oy) du champ électrique sont les suivantes :

Ei
x = E0 cos(kz0 − ωt + φx) ; Ei

y = E0 cos(kz0 − ωt + φy)

où φx − φy varie aléatoirement au cours du temps (il s’agit de lumière naturelle, non polarisée).

Q.1 Quelles sont les composantes (Ea
x, Ea

y ) et (Eb
x, Eb

y) du champ électrique pour les rayons ayant traversé
les fentes (a) et (b) respectivement ?

Q.2 Peut-on observer des interférences entre ces rayons ?

On intercale un nouveau polariseur entre le plan des fentes et l’écran. La direction passante de ce polariseur
fait un angle β par rapport à l’axe (Ox).

Q.3 Déterminer les nouvelles composantes (Ea′
x , Ea′

y ) et (Eb′
x , Eb′

y ) du champ électrique de chacun des
rayons en sortie de ce polariseur. Peut-on observer des interférences entre eux ?

Finalement, on intercalle un autre polariseur entre le plan de la fente source et le plan des fentes d’Young.
Sa direction passante fait un angle α avec l’axe (Ox). On garde le polariseur après les fentes d’Young, dont
la direction passante fait toujours l’angle β par raport à (Ox).

Q.4 En procédant de proche en proche, donner les expressions des composantes (Ea′′
x , Ea′′

y ) et (Eb′′
x , Eb′′

y )
du champ électrique en sortie du système pour chacun des rayons.

Q.5 Simplifier ces composantes pour les valeurs suivantes de α et β :
a) configuration (1) : α = π

4 et β = π
4

b) configuration (2) : α = π
4 et β = −π

4

Q.6 Montrer que l’on peut ainsi obtenir des interférences entre les rayons issus des deux fentes dans
les deux configurations ci-dessus. Que peut-on dire des systèmes de franges obtenus dans ces deux
configurations ?
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