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Dm 10 (PROBLÈME) : CCP 2016 - Filière MP
Corrigé de l’épreuve Mathématiques I : exercice 2 et probème

D’après le corrigé de Nicolas Basbois & Damien Broizat (UPS)

PROBLÈME : Fonction Digamma.

Partie préliminaire

III.1.

a. Soit x > 0. La fonction hx : t 7−→ e−ttx−1 est continue sur ]0,+∞[ par produit de fonctions continues, les fonctions
exponentielle et puissances étant bien continues sur ]0,+∞[.

On a hx(t) ∼
t→0+

tx−1 =
1

t1−x
avec 1 − x < 1 et t2 e−ttx−1 = tx+1e−t −→

t→+∞
0 par croissance comparée, d’où hx(t) =

o
t→+∞

(
1

t2

)
.

Ainsi, par comparaison de fonctions positives et critère de Riemann en 0 et en +∞,

hx : t 7−→ e−ttx−1 est intégrable sur ]0,+∞[ .

On peut ainsi définir la fameuse fonction Gamma d’Euler Γ : x 7−→
∫ +∞

0

e−ttx−1dt, sur ]0,+∞[.

b. Soit x > 0. La fonction hx définie dans la question précédente est continue et strictement positive sur ]0,+∞[. La positivité

de l’intégrale nous donne
∫ +∞
0

hx(t)dt > 0 et la continuité de hx implique qu’on ne pourrait avoir
∫ +∞
0

hx(t)dt = 0 que si
hx était identiquement nulle sur ]0,+∞[, ce qui n’est pas le cas.

Ainsi Γ(x) =
∫ +∞
0

hx(t)dt > 0, et ce pour tout x > 0 .

c. On définit h :

{
R∗+ × R∗+ −→ R

(x, t) 7−→ hx(t) = e−ttx−1
.

— Pour tout t > 0, x 7−→ h(x, t) est de classe C1 (et même C∞ en fait) sur R∗+. On a donc l’existence de
∂h

∂x
sur tout

(R∗+)2 et, pour tout t > 0, la continuité de x 7−→ ∂h

∂x
(x, t) sur R∗+.

Notons d’ailleurs qu’on a, pour tout (x, t) ∈ (R∗+)2,
∂h

∂x
(x, t) = ln(t)e−ttx−1.

— Pour tout x > 0, t 7−→ ∂h

∂x
(x, t) est continue (donc continue par morceaux) sur R∗+.

— Soit [a, b] un segment de R∗+. On a donc 0 < a 6 b.

∀(x, t) ∈ [a, b]× R∗+,
∣∣∣∣∂h∂x (x, t)

∣∣∣∣ 6 { | ln(t)|e−tta−1 si t 6 1
ln(t)e−ttb−1 si t > 1

.

Notons donc ϕ la fonction définie sur R∗+ par ϕ(t) =

{
| ln(t)|e−tta−1 si t 6 1
ln(t)e−ttb−1 si t > 1

. Cette fonction est continue par morceaux

(et même continue en fait).

De plus, pour t > 1, on a t2ϕ(t) = t1+b ln(t)e−t, donc t2ϕ(t) −→
t→+∞

0 par croissance comparée, d’où ϕ(t) = o
t→+∞

(
1

t2

)
.

Et, pour t ∈]0, 1], on a t
1−
a

2ϕ(t) = t

a

2 | ln(t)|e−t −→
t→0+

0 (toujours par croissance comparée, car a > 0), donc ϕ(t) =

o
t→0+

 1

t
1−
a

2

, avec 1− a

2
< 1.

Donc ϕ est intégrable sur ]0,+∞[.
On en déduit l’hypothèse de domination sur tous les segments de ]0,+∞[.

Cela prouve finalement que

Γ est de classe C1 sur ]0,+∞[, donc dérivable, avec : ∀x > 0, Γ′(x) =

∫ +∞

0

∂h

∂x
(x, t)dt =

∫ +∞

0

ln(t)e−ttx−1dt.

III.2. Pour tout entier n > 2, on pose un =

∫ n

n−1

1

t
dt− 1

n
.
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a. un = ln(n)− ln(n− 1)− 1

n
= ln(n)− ln(n(1− 1

n
))− 1

n
= − ln(1− 1

n
)− 1

n
= (

1

n
+

1

2n2
)− 1

n
+ o(

1

n2
)

Donc un =
1

2n2
+ o(

1

n2
) ∼
+∞

1

2n2
d’où un ∼

+∞

1

2n2
.

b. Pour n > 2, on a
n∑
k=2

uk =

∫ n

1

dt

t
−

n∑
k=2

1

k
par relation de Chasles, d’où

n∑
k=2

uk = ln(n) + 1−
n∑
k=1

1

k
= 1−Hn.

Comme un ∼
+∞

1

2n2
> 0 , par T.C. , la série (

∑
un) converge et donc la suite

(
n∑
k=2

uk

)
n>2

converge , il s’ensuit que

la suite (Hn)n>1 converge .

On note dans la suite γ = lim
n→+∞

Hn, et on définit la fonction Digamma ψ, pour x ∈]0,+∞[, par ψ(x) =
Γ′(x)

Γ(x)
.

Expression de la fonction Digamma à l’aide d’une série

III.3. Pour x ∈]0,+∞[ et pour tout entier n > 1, on définit la fonction fn sur ]0,+∞[ par :

fn : t 7−→


(

1− t

n

)n
tx−1 si t ∈]0, n]

0 si t > n
.

a. On peut établir l’inégalité souhaitée par simple étude de la fonction x 7−→ ln(1−x)+x sur ]−∞, 1[, ou bien par un argument

de convexité : en effet la fonction ln est notoirement concave sur R∗+ (ln′′(x) = − 1

x2
6 0), donc son graphe est au-dessous

de chacune de ses tangentes. Comme la tangente en x = 1 a pour équation y = x− 1, on en déduit : ∀x ∈ R∗+, ln(x) 6 x− 1.

Il vient ensuite, via deux changements de variable successifs : ∀x > −1, ln(1 + x) 6 x, puis ∀x < 1, ln(1− x) 6 −x .

Ensuite, soit n > 1 (et, normalement, x > 0 est déjà fixé aussi dès l’énoncé de la question III.3.). La fonction fn est positive
par définition.

De plus, pour tout t ∈]0, n[, fn(t) = e
n ln

(
1−
t

n

)
tx−1, avec ln

(
1− t

n

)
6 − t

n
par la question précédente, vu qu’on a

bien
t

n
< 1 pour t ∈]0, n[. On en déduit, par croissance de l’exponentielle et produit par une quantité positive : fn(t) 6

e
n×
(
−
t

n

)
tx−1 = e−ttx−1. Enfin fn est nulle sur [n,+∞[, tandis que la fonction t 7−→ e−ttx−1 y est positive, d’où finalement

l’encadrement : ∀t > 0, 0 6 fn(t) 6 e−ttx−1.

b. Comme demandé, on applique le théorème de convergence dominée :

— Pour tout n > 1, fn est continue par morceaux sur R∗+ par TG.
— Soit t > 0. Il existe N ∈ N tel que N > t, par exemple N = btc + 1. Alors, pour tout n > N , t ∈]0, n], et donc

fn(t) =

(
1− t

n

)n
tx−1. Or,

(
1− t

n

)n
= e

n ln

(
1−
t

n

)
, et ln

(
1− t

n

)
= − t

n
+ o

(
1

n

)
, donc

(
1− t

n

)n
= e

n

(
−
t

n
+o

(
1

n

))
= e−t+o(1) −→

n→+∞
e−t par continuité de l’exponentielle.

Donc fn(t) −→
n→+∞

e−ttx−1.

On a ainsi prouvé que (fn)n>1 converge simplement sur R∗+ vers la fonction f : t 7−→ e−ttx−1 qui est continue sur R∗+
par TG.

— De plus, pour tout n > 1 et pour tout t > 0, |fn(t)| 6 e−ttx−1 par la question précédente, et on a prouvé dans la
première question du problème que la fonction t 7−→ e−ttx−1 est (continue bien sûr et) intégrable sur R∗+.

Donc, par le théorème de convergence dominée,

∫ +∞

0

fn(t)dt −→
n→+∞

∫ +∞

0

e−ttx−1dt.

Comme fn est nulle sur [n,+∞[, cela donne finalement :

∫ n

0

(
1− t

n

)n
tx−1dt −→

n→+∞
Γ(x), et ce raisonnement a bien été

mené pour tout x > 0.
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III.4. Pour tout entier naturel n et tout x > 0, on pose In(x) =

∫ 1

0

(1− u)nux−1du.

a. Soient n ∈ N∗ et x > 0.
La fonction α : u 7−→ (1− u)nux−1 est bien définie et continue sur ]0, 1] par TG.

De plus, α(u) ∼
u→0+

ux−1 =
1

u1−x
, avec 1 − x < 1, donc α est intégrable sur ]0, 1] par comparaison (TC) de fonctions

positives et critère de Riemann.

Cela assure la bonne définition de In(x) .

On définit maintenant sur ]0, 1] les fonctions α1 : u 7−→ (1− u)n et α2 : u 7−→ ux

x
. Ces fonctions sont de classe C1, et on a

α1(u)α2(u) qui admet une limite finie pour u −→ 0+, en l’occurrence 0. On en déduit, par intégration par parties :

In(x) =

∫ 1

0

α1(u)α′2(u)du = α1(1)α2(1)− lim
u→0+

α1(u)α2(u)−
∫ 1

0

α′1(u)α2(u)du = 0− 0 +
n

x

∫ 1

0

(1− u)n−1uxdu

D’où In(x) =
n

x
In−1(x+ 1) .

b. Soit x > 0.

On a I0(x) =

∫ 1

0

ux−1du =

[
ux

x

]1
0

=
1

x
.

Soit n > 1. On a, par une récurrence immédiate,

In(x) =
n

x
In−1(x+ 1) =

n

x
× n− 1

x+ 1
In−2(x+ 2) =

n!

x(x+ 1) · · · (x+ n− 1)
I0(x+ n) =

n!

x(x+ 1) · · · (x+ n)
.

On a donc : In(x) =
n!

x(x+ 1) · · · (x+ n)

c. La fonction t 7−→ t

n
réalise une bijection strictement croissante et de classe C1 de ]0, n] sur ]0, 1]. Via le changement de

variable u =
t

n
, on obtient donc :∫ n

0

(
1− t

n

)n
tx−1dt =

∫ 1

0

(1− u)n(nu)x−1ndu = nx
∫ 1

0

(1− u)nux−1du = nxIn(x).

Le résultat de la question 3.b. se réécrit ainsi : Γ(x) = lim
n→+∞

nxIn(x). Et le calcul de la question précédente permet de

conclure : Γ(x) = lim
n→+∞

nx × n!

x(x+ 1) · · · (x+ n)
= lim
n→+∞

n!nx

n∏
k=0

(x+ k)
.

Cette relation est appelée formule de Gauss (selon l’énoncé, mais n’est-ce pas plutôt la formule dite d’Euler dans la
littérature ?).

III.5. Soient n ∈ N∗ et x > 0.
L’indication donnée (fallait-il la prouver ?) est immédiate en remarquant qu’on a

exHn = e
x

n∑
k=1

1

k e−x ln(n) =

(
n∏
k=1

e

x

k

)
× 1

nx
.

Ensuite, d’après la formule de Gauss établie à la question précédente, on a :

1

Γ(x)
= lim
n→+∞

n∏
k=0

(x+ k)

n!nx
= lim
n→+∞

x

nx
×

n∏
k=1

(k + x)

n∏
k=1

k
= lim
n→+∞

x

nx

n∏
k=1

(
1 +

x

k

)
.

Grâce à l’indication fournie, on réécrit :

1

Γ(x)
= lim
n→+∞

xexHn

n∏
k=1

[(
1 +

x

k

)
e
−
x

k

]
.

Or Hn −→
n→+∞

γ donc, par continuité de l’exponentielle, exHn −→
n→+∞

exγ et, finalement, par produit de limites,

1

Γ(x)
= xeγx lim

n→+∞

n∏
k=1

[(
1 +

x

k

)
e
−
x

k

]
.

III.6.
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a. Il y a 2 méthodes pour cette question :

• On effectue un DL d’ordre 2 : ln(1 +
x

k
− x

k
=

k→+∞
− x2

2k2
+ o(

1

k2
) ∼
k→+∞

− x2

2k2
6 0 et on conclut avec T.C.

• Si l’on veut rester dans les clous du sujet, on commence par réécrire la formule précédente :

n∏
k=1

[(
1 +

x

k

)
e
−
x

k

]
−→

n→+∞

1

Γ(x)xeγx
.

Par continuité de ln, on en déduit :

ln

(
n∏
k=1

[(
1 +

x

k

)
e
−
x

k

])
−→

n→+∞
ln

(
1

Γ(x)xeγx

)
, i. e.

n∑
k=1

[
ln
(

1 +
x

k

)
− x

k

]
−→

n→+∞
− ln

(
Γ(x)xeγx

)
.

En particulier, on a prouvé que la série
∑
k>1

[
ln
(

1 +
x

k

)
− x

k

]
converge. Ceci ayant été démontré pour tout x > 0, on a établi

la convergence simple de la série de fonctions
∑
k>1

gk sur ]0,+∞[, où l’on pose gk : x 7−→ ln
(

1 +
x

k

)
− x

k
.

b. On note g =
+∞∑
k=1

gk sur ]0,+∞[.

Outre la convergence simple sur ]0,+∞[ de
∑
k>1

gk vers g établie à la question précédente, on a :

— Les fonctions gk sont toutes de classe C1 sur ]0,+∞[.

— Pour tout k > 1, pour tout x > 0, g′k(x) =
1

k + x
− 1

k
= − x

k(k + x)
.

Soit [a, b] un segment de R∗+. On a donc 0 < a 6 b. Alors pour tout k > 1 et tout x ∈ [a, b], |g′k(x)| 6 b

k2
et, comme∑

k>1

b

k2
converge, on a établi la convergence normale, donc uniforme, de

∑
k>1

g′k sur [a, b].

On en déduit que g est de classe C1 sur ]0,+∞[ , avec : ∀x > 0, g′(x) =
+∞∑
k=1

g′k(x) =
+∞∑
k=1

(
1

k + x
− 1

k

)
.

c. Par la question 6.a., on a, pour tout x > 0,

g(x) = − ln
(
Γ(x)xeγx

)
= − ln

(
Γ(x)

)
− ln(x)− γx.

Dérivant cette relation sur R∗+, on obtient :

g′(x) = −Γ′(x)

Γ(x)
− 1

x
− γ,

c’est-à-dire, vu que ψ =
Γ′

Γ
, ψ(x) = −g′(x)− 1

x
− γ.

Comme −g′(x) = −
+∞∑
k=1

(
1

k + x
− 1

k

)
=

+∞∑
k=1

(
− 1

k + x
+

1

k

)
, on a finalement établi :

∀x > 0, ψ(x) = − 1

x
− γ +

+∞∑
k=1

(
1

k
− 1

k + x

)
.

III.7.

a. Posant x = 1 dans la formule précédente, on trouve : ψ(1) = −1 − γ +
+∞∑
k=1

(
1

k
− 1

k + 1

)
, d’où, par télescopage, ψ(1) =

−1− γ + 1 = −γ.

De plus Γ(1) =

∫ +∞

0

e−tdt = lim
X→+∞

[−e−t]X0 = lim
X→+∞

1− e−X = 1 donc, vu que ψ(1) =
Γ′(1)

Γ(1)
, on obtient Γ′(1) = −γ.

Mais en reprenant l’expression obtenue à la question 1.c., on constate que Γ′(1) =

∫ +∞

0

e−t ln(t)dt, d’où finalement :∫ +∞

0

e−t ln(t)dt = −γ.
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b. D’après la formule de la question 6.c., on a, pour tout x > 0,

ψ(x+ 1)− ψ(x) = − 1

x+ 1
+

1

x
+

+∞∑
k=1

(
1

k
− 1

k + x+ 1

)
−

+∞∑
k=1

(
1

k
− 1

k + x

)

=
1

x
− 1

x+ 1
+

+∞∑
k=1

(
1

k
− 1

k + x+ 1
− 1

k
+

1

k + x

)
par somme de séries convergentes. Et donc par télescopage :

ψ(x+ 1)− ψ(x) =
1

x
− 1

x+ 1
+

+∞∑
k=1

(
1

k + x
− 1

k + x+ 1

)
=

+∞∑
k=0

(
1

k + x
− 1

k + x+ 1

)
=

1

x
.

On conclut : ψ(x+ 1)− ψ(x) =
1

x

Remarque. On aurait aussi pu procéder ainsi :

ψ(x+ 1)− ψ(x) =
Γ′(x+ 1)

Γ(x+ 1)
− Γ′(x)

Γ(x)
=

d

dx

(
ln

(
Γ(x+ 1)

Γ(x)

))
.

Or, il est bien connu que Γ(x+ 1) = xΓ(x) (il suffit d’intégrer par parties), donc

ψ(x+ 1)− ψ(x) =
d

dx
(ln(x)) =

1

x
.

En particulier, pour tout k ∈ N∗, ψ(k + 1)− ψ(k) =
1

k
.

Il s’ensuit, pour tout entier n > 2, ψ(n) = ψ(1) +
n−1∑
k=1

(
ψ(k + 1)− ψ(k)

)
= −γ +

n−1∑
k=1

1

k
.

c. Soit x > 0 fixé. Pour tout k ∈ N, on définit jk :

 R∗+ −→ R

y 7−→ 1

k + y + 1
− 1

k + y + x

.

Cette notation est discutable : il aurait peut-être été préférable de noter jk,x, pour insister sur le fait que l’on travaille à
x > 0 fixé, et que la convergence uniforme étudiée ici ne porte que sur la variable y.

On peut réécrire jk(y) =
k + y + x− k − y − 1

(k + y + 1)(k + y + x)
=

x− 1

(k + y + 1)(k + y + x)
donc,

∀y > 0, |jk(y)| 6 |x− 1|
(k + 1)(k + x)

.

Comme
∑
k>0

|x− 1|
(k + 1)(k + x)

est une série convergente, vu que
|x− 1|

(k + 1)(k + x)
∼

k→+∞

|x− 1|
k2

, on a

la convergence normale, donc uniforme, de
∑
k>0

jk sur ]0,+∞[ .

Ensuite, reprenant la formule de 6.c., on a, pour tout n ∈ N∗,

ψ(x+ n)− ψ(1 + n) = − 1

x+ n
+

1

n
+

+∞∑
k=1

(
1

k
− 1

k + x+ n

)
−

+∞∑
k=1

(
1

k
− 1

k + 1 + n

)
,

et selon le même principe de calcul qu’à la question précédente, on aboutit à :

ψ(x+ n)− ψ(1 + n) =

+∞∑
k=0

(
1

k + 1 + n
− 1

k + x+ n

)
=

+∞∑
k=0

jk(n).

Or, pour tout k ∈ N, jk(n) −→
n→+∞

0 donc, par le théorème de la double limite (qui s’applique ici car la série de fonctions

étudiée converge uniformément sur un voisinage de +∞),

lim
n→+∞

(
ψ(x+ n)− ψ(1 + n)

)
=

+∞∑
k=0

lim
n→+∞

jk(n) = 0.

III.8. Par analyse-synthèse :
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— Analyse : Soit f solution. On va montrer que f vérifie la formule de ψ établie en 6.c., à savoir :

∀x > 0, f(x) = − 1

x
− γ +

+∞∑
k=1

(
1

k
− 1

k + x

)

Puisque
1

t
= f(t+ 1)− f(t) pour tout t > 0, on a

+∞∑
k=1

(
1

k
− 1

k + x

)
=

+∞∑
k=1

(
f(k + 1)− f(k)− f(k + x+ 1) + f(k + x)

)

= lim
n→+∞

(
n∑
k=1

(
f(k + 1)− f(k)

)
+

n∑
k=1

(
f(k + x)− f(k + x+ 1)

))

= lim
n→+∞

f(n+ 1)− f(1)︸︷︷︸
=−γ

+f(1 + x)− f(n+ x+ 1)


= f(x+ 1) + γ − lim

n→+∞

(
f(x+ 1 + n)− f(1 + n)

)
︸ ︷︷ ︸

=0

= f(x) +
1

x
+ γ,

ce qui montre bien la relation voulue, et donc f = ψ.
— Synthèse : La seule solution éventuelle au problème est donc ψ. Mais on a prouvé en 7.a., 7.b. et 7.c. que ψ satisfait les

trois conditions voulues, donc finalement ψ est solution, et c’est la seule .

Autour de la fonction Digamma

III.9. Soit n ∈ N∗.
a. On suppose les boules indiscernables, ce qui implique qu’à tout moment de l’expérience, chaque boule de l’urne a la même

probabilité d’être tirée, peu importe son numéro (cette hypothèse n’était pas faite par l’énoncé – est-ce un oubli ou un acte
volontaire de la part du concepteur du sujet ? – mais elle est éminemment raisonnable).
Avec cette hypothèse,

X suit la loi uniforme sur {1, . . . , n} et donc E(X) =
n+ 1

2
(et pour tout k ∈ {1, . . . , n}, P (X = k) =

1

n
) .

b. Vu l’expérience, Y prend ses valeurs dans {1, . . . , n}.
Soit k ∈ {1, . . . , n}.
On utilise la formule des probabilités totales, avec le système complet d’événements
{(X = 1), (X = 2), . . . , (X = n)} :

P (Y = k) =

n∑
j=1

P(X=j)(Y = k)× P (X = j) =
1

n

n∑
j=1

P(X=j)(Y = k).

On calcule cette somme en distinguant selon les valeurs de j (j = k ou j 6= k). En effet, pour j = k, le premier tirage
aura amené k boules numérotées k en plus dans l’urne, tandis que pour j 6= k, le premier tirage n’aura pas amené de boule
numérotée k supplémentaire dans l’urne. Ainsi :

P (Y = k) =
1

n

P(X=k)(Y = k) +
∑

16j6n, j 6=k

P(X=j)(Y = k)

 =
1

n

 k + 1

k + n
+

∑
16j6n, j 6=k

1

j + n

 ,

=
1

n

 k

k + n
+

n∑
j=1

1

j + n

 .

Or, par 7.b., ψ(2n+ 1)− ψ(n+ 1) =
2n∑
k=1

1

k
−

n∑
k=1

1

k
=

2n∑
k=n+1

1

k
=

n∑
j=1

1

j + n
, d’où finalement :

∀k ∈ {1, . . . , n}, P (Y = k) =
1

n

(
k

k + n
+ ψ(2n+ 1)− ψ(n+ 1)

)
. Et il faut corriger ce que demandait l’énoncé, c’est-

à-dire prouver cette relation pour tout k ∈ N∗, alors qu’elle n’est valable que pour k ∈ {1, . . . , n}.
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c. On a E(Y ) =
n∑
k=1

kP (X = k) =
n∑
k=1

k

n

(
k

k + n
+ ψ(2n+ 1)− ψ(n+ 1)

)
, donc :

E(Y ) =

n∑
k=1

k2

n(n+ k)
+
n+ 1

2

(
ψ(2n+ 1)− ψ(n+ 1)

)
.

Utilisant l’indication fournie, E(Y ) =
1− n

2
+ n

(
ψ(2n+ 1)− ψ(n+ 1)

)
+
n+ 1

2

(
ψ(2n+ 1)− ψ(n+ 1)

)
et donc

E(Y ) =
1− n

2
+

3n+ 1

2

(
ψ(2n+ 1)− ψ(n+ 1)

)
.

Et on est un peu perplexe devant ce résultat : était-ce ce à quoi l’énoncé voulait arriver ?

Remarque. Il n’était pas demandé de démontrer l’indication fournie, mais elle n’avait rien d’extraordinaire :
n∑
k=1

k2

n(n+ k)
=

n∑
k=1

(
k

n
− k

n+ k

)
=
n+ 1

2
−

n∑
k=1

n+ k − n
n+ k

=
n+ 1

2
−

n∑
k=1

(
1− n

n+ k

)

=
n+ 1

2
− n+ n

n∑
k=1

1

n+ k
=

1− n
2

+ n

2n∑
k=n+1

1

k
=

1− n
2

+ n
(
ψ(2n+ 1)− ψ(n+ 1)

)
.

Petite vérification avec Pyzo et Maple

def Y(n):

x=randint(1,n)

L=[i for i in range(1,n+1)]

L=L+[x for i in range(x)]

tirage=randint(0,len(L)-1)

return L[tirage]

def espY(n,nb):

s=0

for k in range(nb):

s=s+Y(n)

return s/nb

# et l’exécution : >>> espY(13,1000001) = 7.484631515368485

et la valeur exacte :

10020063511/1338557220 = 7.485719222.....
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Sujet 8* Exercice 3*





E(x) : partie entière de x













polynômiales (Stone Weierstrass)


