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MP - Un corrigé de |'exercice 3 (d'aprés le corrigé de Omar SADIK (UPS)) - 25-26

Q2.

Q3.

|EXERCICE 3]

Soit t €] —1,1], alors Vn € IN, |p,t"| < pp, or la série an converge de somme 1, donc, par théoréme

de comparaison (TC), la série ant” converge absolument donc convergente. alors ¢ € Dg,, donc

\]—1,1[c Da \

Premiére méthode :

Soit t €] — 1,1[, alors Gg(t) = E(tX17X2) = E(tX1t%X2) = E(tX)E(tX?) car les variables X; et X5 sont
indépendantes, donc les variables f(X1) = tX1 et g(Xs) = tX2 sont indépendantes aussi. On en déduit
donc Gg(t) = Gx, (t)Gx,(t).

Deuxiéme méthode :

Les séries entiéres Z P(X1 =n)t" et Z P(X2 = n)t" ont un rayon de convergence au mois égal a 1,
n>0 n>0
par application du théoréme produit de cauchy de deux séries entiéres, il en résulte :

Gx, (t)Gx,(t) ZP thPXQ—TL chtn aveccn—ZPXl—k (X2 =n—k).
Comme X7 et X2 5ont 1ndependanteb,

en= P(Xi=k)P(Xo=n—k)e, = ZP([X1 — k] N[Xs=n— k]).
k=0 k=0
D’autre part U (X1 =k]N[X2 =n—k] = (X1 + X2 = n) (réunion disjointe), on en déduit donc que

k=
o = P(S =n). Do Gx, () Gx, (1) = Gs(t)

Conclusion: ‘Gs(t) = Gx, (t)Gx,(1). ‘

On peut écrire ici S, = X1 + Xo + --- + X, o chaque X; représente la variable aléatoire égal au
numéro tirée pendant le i-éme tirage. Ces variables sont indépendantes car le tirage est avec remise, et
les variables sont tous & valeurs dans {0, 1,2},

Soit i € {1,...,n} et t € — 1,1], alors G, (t) = t°po + t'p; + t*po

1 . TN
- P11 = et pg = par application de ce qui précéde :

PR Tatm=g
A 1 21 (2m)
s ) = (Gx 0" = [ 1+ 5+ 5] = e E_:O@Q)’f-

Mais G, (t) = Y _ P(Sn = k)t* et avec S,(Q) = {0,1,...,(2n)}.

On apy =

conclusion:

Vk€{0,1,...,2n}, P(Sh=Fk) = — (2:) ainsi S, ~ B(2n, %) donc E(S,) =n et V(Sy,) = %




Q4. from random import *
from math import *

def bino(n,k): # fonction non demandée pour vérifier avec la valeur théorique
return factorial(n)//factorial(n-k)//factorial(k)

def tirage(n):
sac=[0,1,1,2] # le sac des 4 boules
somme=0
for i in range(n):
choix=randint (0,3)
somme=somme+sac [choix]
return somme

def proba(n,k,N):
c=0 # compteur
for i in range(N): # on effectue N simulations de "tirage"
if tirage(n)==k: # la somme S_n est égale & k...
c=c+1 # on incrémente le compteur c
return c/N
def probaVerif(n,k,N): # fonction identique & "proba" avec en plus la valeur théorique
c=0
for i in range(N):
if tirage(n)==k:
c=c+1
return [c/N,bino(2*n,k)/2**(2*n)]

# 3 exécutions ------——-———--——-—- >:

>>> probaVerif (10,4,100001)
[0.004839951600483995, 0.004620552062988281]
>>> probaVerif (12,12,100001)
[0.16121838781612183, 0.1611802577972412]

>>> probaVerif (12,23,1000001)
[3.999996000004e-06, 1.430511474609375e-06]

Le théoréme qui permet de justifier que l'on tend probablement vers la valeur de P(S, = k) est

‘la loi faible des grands nombres |.

En effet si on note (X},) une suite de variable de Bernoulli qui suivent toute la méme loi : X ~ 1¢g, _p),

Xi+- -+ Xy
N

On a donc|Ve >0 lim P(‘proba(n, k,N)— P(S, = k)‘ > €> =0.
N—+o00

alors E(X%) = P(S, = k) = m et pour tout € >0, lim P<‘

N—+oc0

ﬂ@‘;ié) =0.




