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Corrigé
pour I’'UPS, Francois Calio, MP Marceau Chartres

Exercice 1

. La bilinéarité, la symétrie et la positivité ne posent pas de probléme.
1
Pour la non dégénérescence : Soit P € E tel que <P|P> =0.0na / P?(t)dt = 0. P? est une fonction
0

continue positive sur [0, 1] dont I'intégrale sur cet intervalle est nulle, ainsi P? est la fonction nulle sur
[0, 1]. Ainsi P s’annule une infinité de fois sur [0, 1], donc, comme il s’agit d’un polynéme, P = 0g. Ainsi

(. ’ .) est bien un produit scalaire sur £ = R,[X]|.

. Si F est un sev de E de dimension p, F* est un sous espace de F supplémentaire a F.
Donc dim (F*) 4+ dim(F) = dim(E) i.e. |dim (F") =n+1—p

. Sin=2. Comme R;[X] est de dimension p = 2, R;[X]" est de dimension 1. On cherche donc les
polynomes @ = aX? +bX + c orthogonaux & tous les polynémes de R;[X]. Il faut et il suffit que de tels
polynomes soient orthogonaux a 1 et & X. Ainsi :

R i (aX?+bX +¢|1) =0 $+24c=0 a = 6c
Q = aX"+bX + c € Ry[X] (:}{<aX2+bX+c|X>:O — a1 by = 10— _6e
Ainsi , comme R;[X]" est de dimension 1, | (6X* — 6X + 1) constitue une base de R;[X]"|.

(a) L eR,1[X]"\ {Or,x} donc deg(L) < n.
Par I'absurde, si deg(L) < n. Alors L € R,_;[X] et L € R,_;[X]* donc, comme ces sous-espaces

sont supplémentaires, L est nul ce qui est impossible car on a pris L non nul. Ainsi ‘ L est de degré n
(b) .

i. On écrit L = Z ap X" et on a a, # 0. Soit € R. La fonction ¢t — L(t)t” est donc la fonction
k=0

n
t— Z apt™™ qui est continue sur ]0, 1] et intégrable si x > —1.

k=0
n

1 1
ag
De plus x:/Ltt”Cdt: /atk”: —_—
plus o(z) O() ;01@ Sy
Ainsi ‘ ¢ est une fonction rationnelle ‘ On identifiera dans la suite la fonction rationnelle et la
fraction rationnelle

il. Les poles de ¢ sont parmi les —(k + 1) pour k& € [0,n], et ils sont au plus d’ordre 1 car

(H(X + k+1) | ¢ est polynomiale.

k=0
L étant orthogonal & R,,_1[X], les éléments de [0,n — 1] sont au moins des zéros de ¢ d’ordre

au moins 1.

P
En écrivant ¢ sous forme irréductible ¢ = 0 alors on a deg(P) > n et deg(Q) < n+ 1. Donc

v est de degré supérieur ou égal & —1 avec égalité si et seulement si P est de degré n et () de

degré n + 1
. Qg .
Or ¢ est la somme de fractions de la forme —————— qui sont de degré —1 ou —oo, corres-
14 X+k+1 E & “
pondent & des poles différents et dans laquelle au moins un des termes est non nul ﬁ,
n

donc la somme est de degré —1 . Ainsi P est degré n et () de degré n + 1



(c)

et donc |les poles de ¢ sont les —(k + 1) pour k € [[0,n] et ils sont d’ordre 1| et

les zéros de ¢ sont les k pour k € [0,n — 1] et ils sont d’ordre 1

n—1 n
ili. Plus précisément, on écrit P sous la forme P = X H(X —k)et Q=23 H(X +k+1)
k=0 k=0
n—1
[[x -5
k=0

avec A et B non nuls. Ainsi il existe a # 0 tel que |p = a—;

k=0
On décompose en éléments simples la fraction :
n—1 n—1 n—1
[[x-# [Tec=n— [T=F-1-7)
k=0 . k=0 _ k _ J=0
n .On a: Py —kz_omaVerk—kl -
[[(xX+k+1) [[(x+E+1) *= [T(~k+i [ (=k+7)
k=0 k=0 j=0 j=k+1
en convenant que le produit sur une partie vide vaut 1.
o, o (nAK)!
Ainsi bk = (—1) m
Donc par unicité de la décomposition en éléments simples de ¢, on a :
B B np  (mAk)!
Vk € [[O,n]],ak —Oébk —Oé(—l) m
= (=1)"*(n+k)!
Donc le polynome L vaut : L = akX; ( k!)k:! (n(Ti—lt;)‘) X*. Ainsi, comme on sait que R,,_; [X]* est

de dimension 1, on a :

1 (D) R R
R, —1[X]™ = Vect (k:O ( (k'>)2 (n(— k:)') X )




Dm 11 : Corrigé I
Corrigé exercice 2 I

1°) A est trigonalisable dans M,,(C) car x4 est scindé dans €, d’ou IP € GL,(C) ,
)\1 * )\711 *

3()\1’...’)\1))6(319\ A=P P! donc A" = P p-1

0 Ap 0 Ay
Conclusion: |Tr(A") = A} 4+ --- + )\Z et sp(A) ={\,, N}

(valeurs propres répétées selon les ordres de multiplicité)

2°)

Premier cas : |p(A) =0/

On a alors A = (0) , donc Tr(A™) = 0 pour tout n > 1 d’ou .

Second cas : |p(A) > 0|

1
Vz € C tel que |2]| < (A) on a donc Vi € [1,p] : |\iz| < L.

o0 p P o0
D’ou S(z) = E g At = 5 E (Aiz)™.
n=0 i=1 i=1 n=0
C’est la linéarité des séries (somme finies de séries convergentes).

1 - o
On en déduit que |Vz € C 2l < ——=, S(z2) = Tr(A™)z" = *).
V< SO = T =Y

1 1
Ceci prouve que R > ——. Supposons que R > ——, I'idée est "d’aller voir" du coté
p(A) p(A)

1

1
de 3, avec p(A) =

7 i




"SNALG", on peut supposer que |A| = , notons k 'ordre de multiplicité de A\; dans

L
p(A)

+o0 p
k 1
X4, on a donc S(z) = ; Tr(A")z" = s —|—i§rl s (éventuellement le sigma est nul
si k=p).
Ry . . 1 1 .
Comme cette égalité est vrai sur le disque D, (0, ) et que R > —— on fait tendre z
, , p(A) p(A)
vers — avec z € D,(0, ——=).
A1 ( P(A))
+oo +oo 1
On a alors lim Tr(A™)z" = Tr(A")(—)" =/, € C.
g ST = TG =
zZ—r )\1
k L 1 a 1
D’autre part lini ‘1 s =400 et lini Z s = Z — = ly e C.
ey — ey — i=k+1 i=k+1 1 — )\z_
M A A
Avec la relation (x), on devrait avoir [{; — l5| = 400 : absurde.
1
Conclusion: | R = ——
p(A)

P
3°) On rappelle que (f1><---xfp)':Zflx---><fi’><---><fp, d’ott l'on a :
i=1

S IIE -

a0 _ 7 Sy Loy ]
X) P X - L
XA( ) H(X o )\]) =1 =1 X(l - )\Z})
j=1
1
1 Xa(z)
Conclusion: |Vz € € / |z] < —= , S(2) = 2% =
p(A) 1,7 2
xa(2)
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CCP 2016 - Filiere MP
Corrigé de I’épreuve Mathématiques I : exercice 2 et probéme

D’apres le corrigé de Nicolas Basbois & Damien Broizat (UPS)

EXERCICE 4

On utilisera dans cet exercice les relations :

1 +oo 1 d “+oo “+o0 )
v E] , [7 l1-z n=0m ’ (1 - x)z dz n:O:L. n_;.l " ,

la seconde étant obtenue par dérivation de la somme d’une série entiére sur son intervalle ouvert de convergence.
L 1
De ces relations, on déduit (en évaluant en z = =) :

+oo +oo

o0 +o00
1 —~ 7 l-—< n 1 n 1 1
=2 2=l T g X 1, "%
n=0 n=0 n=0 n=1 (1- 5)

1
1. Notons u; ; = % pour tout couple (4,) € N2,

On a:

e u;; =u;; > 0 pour tout (i,5) € N2;

e pour tout ¢ € N, la série E u;,; converge. En effet, on a (sous réserve de convergence de chacune des séries utilisées) :

j=0
+oo +co 3 +oo 3 . +oo “+oo .
Dus=) gt Y g w5t )
Ui = 2 95k 9iti 21 295 | 91 L4 9
j=0 3=0 j=0 7=0 j=0
+oo 3
i AR 5 . . 141
et on reconnait 1& des séries convergentes. Au passage, on obtient Z Uj 5 = i1 = du;q
=0
(en utilisant les calculs du préambule) ;
+oco +o0
o la série Z Zui,j converge, car pour tout ¢ € N, > u;; = 4u; 1 par ce qui précede et parce que Y. u;1 converge
i>0 \ j=0 5=0 20
+oo [ +oo +oo +o00
(et elle a méme somme que Y uj; par symétrie). On obtient concrétement : Z Zui,j = Z4ui71 — 4Zu1,i =
120 i=0 \ j=0 i=0 i=0
4x4x Ui,1 = 16’(1,1’1.

On en déduit, par le théoréme de sommation par paquets pour les familles & termes positifs, que

K[ 16 x 2
la famille (u; ;)¢ jyen> est sommable, et sa somme vaut : Z g = Z Zu” =16Xxu 1= gz = 8
(i,5)EN? i=0 \ j=0
11.2.

2.a. Les relations données définissent bien une loi de probabilité sur 'univers dénombrable N2, puisque :

o V(i,5) e N2, T _ Ui 5,

9i+j5+3 8
i+j 1 B
> ST =g D Us=1l
(i.5)eN (i,5)eN?
=8

’ On a donc bien une loi conjointe ‘

2.b. Pour tout ¢ € N, on a la décomposition d’événement :

+o00
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et cette réunion est disjointe, donc par la formule des probablités totale et avec le S.C.E. ci-dessus :

+o00 +oo
; : : Ui, j
P(X =i)=Y P((X =9)N(Y =) :Z?ﬂ.
§=0 j=0
De méme, on a
+o0 +o0 W s
PY =i)=Y P((X =j)n(Y =1)) :Z%ﬁ = P(X =),
3=0 3=0
puisque u;,; = u;,;. Les variables aléatoires X et Y suivent donc la méme loi, donnée par
+o00
Ut Adugy 1 k+1
P = — Y = = —_— = = — == 4
Vk € N, (X =k)=P(Y =k) ; g - SUk1 = prs
2.c. On a d’aprés ’énoncé :
040

0+1_ 0+1 1

Pourtant P(X = 0) x P(Y =0) = o7z X 5077 — 16 7 P((X =0)N (Y =0)), donc

les variables X et Y ne sont pas indépendantes |
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