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Exercice 1

1. La bilinéarité, la symétrie et la positivité ne posent pas de problème.

Pour la non dégénérescence : Soit P ∈ E tel que
〈
P
∣∣P〉 = 0. On a

∫ 1

0

P 2(t) dt = 0. P 2 est une fonction

continue positive sur [0, 1] dont l’intégrale sur cet intervalle est nulle, ainsi P 2 est la fonction nulle sur
[0, 1]. Ainsi P s’annule une infinité de fois sur [0, 1], donc, comme il s’agit d’un polynôme, P = 0E. Ainsi〈
.
∣∣ .〉 est bien un produit scalaire sur E = Rn[X] .

2. Si F est un sev de E de dimension p, F⊥ est un sous espace de E supplémentaire à F .
Donc dim

(
F⊥
)
+ dim(F ) = dim(E) i.e. dim

(
F⊥
)
= n+ 1− p

3. Si n = 2. Comme R1[X] est de dimension p = 2, R1[X]⊥ est de dimension 1. On cherche donc les
polynômes Q = aX2 + bX + c orthogonaux à tous les polynômes de R1[X]. Il faut et il suffit que de tels
polynômes soient orthogonaux à 1 et à X. Ainsi :

Q = aX2 + bX + c ∈ R1[X]⊥ ⇐⇒
{ 〈

aX2 + bX + c
∣∣1〉 = 0〈

aX2 + bX + c
∣∣X〉 = 0

⇐⇒
{

a
3
+ b

2
+ c = 0

a
4
+ b

3
+ c

2
= 0
⇐⇒

{
a = 6c
b = −6c

Ainsi , comme R1[X]⊥ est de dimension 1,
(
6X2 − 6X + 1

)
constitue une base de R1[X]⊥ .

4. .
(a) L ∈ Rn−1[X]⊥ \

{
ORn[X]

}
donc deg(L) 6 n.

Par l’absurde, si deg(L) < n. Alors L ∈ Rn−1[X] et L ∈ Rn−1[X]⊥ donc, comme ces sous-espaces
sont supplémentaires, L est nul ce qui est impossible car on a pris L non nul. Ainsi L est de degré n

(b) .

i. On écrit L =
n∑

k=0

akX
k et on a an 6= 0. Soit x ∈ R. La fonction t→ L(t)tx est donc la fonction

t→
n∑

k=0

akt
k+x qui est continue sur ]0, 1] et intégrable si x > −1.

De plus ϕ(x) =
∫ 1

0

L(t)tx dt =
n∑

k=0

∫ 1

0

akt
k+x =

n∑
k=0

ak
k + x+ 1

.

Ainsi ϕ est une fonction rationnelle . On identifiera dans la suite la fonction rationnelle et la
fraction rationnelle

ii. Les pôles de ϕ sont parmi les −(k + 1) pour k ∈ [[0, n]], et ils sont au plus d’ordre 1 car(
n∏

k=0

(X + k + 1)

)
ϕ est polynomiale.

L étant orthogonal à Rn−1[X], les éléments de [[0, n− 1]] sont au moins des zéros de ϕ d’ordre
au moins 1.
En écrivant ϕ sous forme irréductible ϕ =

P

Q
alors on a deg(P ) > n et deg(Q) 6 n+ 1. Donc

ϕ est de degré supérieur ou égal à −1 avec égalité si et seulement si P est de degré n et Q de
degré n+ 1

Or ϕ est la somme de fractions de la forme
ak

X + k + 1
qui sont de degré −1 ou −∞, corres-

pondent à des poles différents et dans laquelle au moins un des termes est non nul
an

X + n+ 1
,

donc la somme est de degré −1 . Ainsi P est degré n et Q de degré n+ 1
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et donc les poles de ϕ sont les −(k + 1) pour k ∈ [[0, n]] et ils sont d’ordre 1 et

les zéros de ϕ sont les k pour k ∈ [[0, n− 1]] et ils sont d’ordre 1

iii. Plus précisément, on écrit P sous la forme P = λ
n−1∏
k=0

(X − k) et Q = β

n∏
k=0

(X + k + 1)

avec λ et β non nuls. Ainsi il existe α 6= 0 tel que ϕ = α

n−1∏
k=0

(X − k)

n∏
k=0

(X + k + 1)

(c) On décompose en éléments simples la fraction :
n−1∏
k=0

(X − k)

n∏
k=0

(X + k + 1)

. On a :

n−1∏
k=0

(X − k)

n∏
k=0

(X + k + 1)

=
n∑

k=0

bk
X + k + 1

avec bk =

n−1∏
j=0

(−k − 1− j)

k−1∏
j=0

(−k + j)
n∏

j=k+1

(−k + j)

en convenant que le produit sur une partie vide vaut 1.

Ainsi bk = (−1)n−k (n+ k)!

k! k! (n− k)!
.

Donc par unicité de la décomposition en éléments simples de ϕ, on a :

∀k ∈ [[0, n]] , ak = αbk = α(−1)n−k (n+ k)!

k! k! (n− k)!
.

Donc le polynome L vaut : L = α
n∑

k=0

(−1)n−k(n+ k)!

k! k! (n− k)!
Xk. Ainsi, comme on sait que Rn−1[X]⊥ est

de dimension 1, on a :

Rn−1[X]⊥ = Vect

(
n∑

k=0

(−1)n−k(n+ k)!

(k!)2 (n− k)!
Xk

)
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Dm 11 : Corrigé 23-24

Corrigé exercice 1

1◦) A est trigonalisable dansMp( lC) car χA est scindé dans lC, d’où ∃P ∈ GLp( lC) ,

∃(λ1, · · · , λp) ∈ Cp\ A = P


λ1 ∗

. . .

0 λp

P−1 donc An = P


λn1 ∗

. . .

0 λnp

P−1.

Conclusion: Tr(An) = λn1 + · · ·+ λnp et sp(A) = {λ1, · · · , λp}

(valeurs propres répétées selon les ordres de multiplicité)

2◦)

Premier cas : ρ(A) = 0 .

On a alors A = (0) , donc Tr(An) = 0 pour tout n > 1 d’où R = +∞ .

Second cas : ρ(A) > 0 .

∀z ∈ lC tel que |z| < 1

ρ(A)
, on a donc ∀i ∈ [[1, p]] : |λiz| < 1.

D’où S(z) =
∞∑
n=0

p∑
i=1

λni z
n =

p∑
i=1

∞∑
n=0

(λiz)
n.

C’est la linéarité des séries (somme finies de séries convergentes).

On en déduit que ∀z ∈ lC / |z| < 1

ρ(A)
, S(z) =

+∞∑
n=0

Tr(An)zn =

p∑
i=1

1

1− λiz
(∗).

Ceci prouve que R >
1

ρ(A)
. Supposons que R >

1

ρ(A)
, l’idée est "d’aller voir" du côté

de
1

λi
avec ρ(A) =

∣∣∣ 1
λi

∣∣∣.
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"SNALG", on peut supposer que |λ1| =
1

ρ(A)
, notons k l’ordre de multiplicité de λ1 dans

χA, on a donc S(z) =
+∞∑
n=0

Tr(An)zn =
k

1− λ1z
+

p∑
i=k+1

1

1− λiz
(éventuellement le sigma est nul

si k = p).

Comme cette égalité est vrai sur le disque Do(0,
1

ρ(A)
) et que R >

1

ρ(A)
, on fait tendre z

vers
1

λ1
avec z ∈ Do(0,

1

ρ(A)
).

On a alors lim

z→
1

λ1

+∞∑
n=0

Tr(An)zn =
+∞∑
n=0

Tr(An)(
1

λ1
)n = `1 ∈ lC.

D’autre part lim

z→
1

λ1

∣∣∣ k

1− λ1z

∣∣∣ = +∞ et lim

z→
1

λ1

p∑
i=k+1

1

1− λiz
=

p∑
i=k+1

1

1− λi
1

λ1

= `2 ∈ lC.

Avec la relation (∗), on devrait avoir |`1 − `2| = +∞ : absurde.

Conclusion: R =
1

ρ(A)

3◦) On rappelle que (f1 × · · · × fp)′ =
p∑

i=1

f1 × · · · × f ′i × · · · × fp, d’où l’on a :

χ′A(X)

χA(X)
=

p∑
i=1

n∏
j=1
i 6=i

(X − λj)

p∏
j=1

(X − λj)
=

p∑
i=1

1

X − λi
=

p∑
i=1

1

X(1− λi
1

X
)
.

Conclusion: ∀z ∈ lC∗ / |z| < 1

ρ(A)
, S(z) =

χ′A(
1

z
)

χA(
1

z
)
× 1

z
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( P : +/- polynôme caractéristique)
A

o o

T 2
(ou avec Tr(CC)=||C||  = 0)
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et si p  r=0, sp={0}o
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Avec le cours ker f =( Im f )   =  ( Imf f )*
| |_ _

.


