Concours blanc 23-24 : corrigé d’apres CCP PC 2016'

l.a) On a immédiatement :

conclusion: |poo(t) = (1 —)? | p12(t) = 2t(1 —t) , paa(t) = *

1.b) A(t)=(1—-1t)-(0,1)+¢t-(1,1) = (t,1) on fait de méme pour B(t).
Enfin, C(t) = (1 —¢)- (t,1)+t- (1,1 —¢) = (2t — 3,1 — t?).

conclusion: | A(t) = (t,1) , B(t) = (1,1 —t) et C(¢t) = (1 —¢) - (t,1) +t- (1,1 —t) = (2t — 3,1 — t?)

Le) > pra(t)Ap = (1—1)*(0,1) +2t(1 — £)(1,1) + £3(1,0) = (2t — 2,1 — £*) = C(t).

k=0

2
conclusion: Zpk-’Q(t)Ak = C(t)
k=0

1.d)

def p(k,n,t):
q=1
for i in range(k):
q=q*t*(n-1)/(i+1)
for i in range(n-k):
q=g*(1-t)
return q

2.)

V(Mix,y),'N(:Uf‘ y')) E 2, Vi e [0,1] : tM + (1 —t)N = (2”,y") avec 2" = (1 — t)z + ta’ et
Y = (1—t)y +ty.

Onadonca”+y" = (1-t)z+t'+(1—t)y+ty = (1—t)(x+y)+t(z’+y) > (1—t)-14+t-1=1
Donc tM + (1 —t)N € T et T est un convexe de IR .

D’autre part 7 = f~Y([1,+oo]) N [0,1]2, f~Y([1, +oo]) est un fermé de IR* comme image
réciproque du fermé de IR, [1, +oo[ par la fonction f, continue (par T.G.) sur IR?, f : (z,y) — v +y.

0,1]? est un compact (produit de 2 compacts) donc fermé. Par intersection de deux fermés, on
p p p

conclut :  conclusion: "T est un convexe et un fermé de IR ‘

3.aa) Vte[0,1]:2t—t*+1—t*—1=-=22+2t=2t(1—1¢) >0

conclusion: |Vt € [0,1] : C(t) € T
3.b) f est de classe C! sur IR et I'on a Vt € [0,1] :f/(t) = (2 — 2t, —2t) = 2(1 — t, —t).
Enfin f'(t) = (0,0) = 1 —t =t =0 : impossible et donc V¢ € [0,1] , f'(t) # f

conclusion: | (1 — ¢, —t) est un vecteur directeur de D; a C en C(t)

1



. r—(2t—1t) 1—t
3.c) Vte[0,1], équation de la tangente D; a C en C(t) est : =0,
y—(1-¢) —t
donc Dy —tx+ (t—1)y+t*—t+1=0

On vérifie que les coordonnées de A(t) et B(t) vérifient I’équation ci-dessus.

Donc (A(t), B(t)) € D? et comme la droite D; est convexe, on conclut

conclusion: |[A(t), B(t)] est inclus dans D,

3.d) Posons z(t) =2t —t? et y(t) =1—t*, onax'(t) =2 —2t et y/(t) = —2t

d’ou le tableau de variation :

9 d V —_ - 0.8

h 7 A
o / 06|

02

0 Y e~ 1

La courbe rouge, c’est le support de l'arc C, le trait bleu c’est la fgonti\ere de T et les 3 traits
verts ce sont les 3 segments [A(t), B(t)].

4.a) Y(P,Q) € Ry[X] et VA € R, 0,(AP+Q)(X) = nX(AP+Q)(X)+X(1-X)(AP+Q)'(X) =
ARXP(X) + X(1 = X)P/(X)) + nXQ(X) + X(1 = X)Q'(X) = Apu(P)(X) + pu(@)(X)

De méme , B,(AP + Q)(X) = AB,(P)(X) + B,(Q)(X)

D’autre part d°(B,(P)) < n, donc B,(P) € IR, [X].

Enfin, si P = @, X"+ - +ag, ou(P)(X) =nX(a, X"+ +ao) + X (1= X)(na, X" 1+ +ay),
d’ott le terme en X" s’annule et donc d°(¢,(P)(X)) < n, donc ¢, (P) € R, [X].

conclusion: | p, et B, sont des endomorphismes de IR, [X]
4.b) Pour k =0, ©,(pon)(X) =nX(1 - X)" = X(1 - X)n(1l — X)" 1 = 0= 0py,(X).

Pour k = n, 0, (pnn)(X) = nX X"+ X (1-X)n X" ! = p X" 4p X" —n X" = nX" = np, ,(X).
Pour k € [1,n — 1],
nlon)00) = (]

L D L P S I o
— (Z)Xk(l — X)) [nX +k(1—-X)—(n— k:)X} =Kk prn(X).

conclusion: |Vk € [0,n], ©n(prn)(X) =k prn

>X’“(1—X)”’“+X(1—X) (Z) [kX’“’l(l—X)””“—X’“(n—k)(l—X)"”“*l]




4.c) Par le théoreme fondamental de liberté des vecteurs propres associés a des valeurs propres
deux a deux distinctes (ici 0,1,...,n), les vecteurs (po,(X),...pnn(X)) = F est une famille libre.
Comme cette famille a n + 1 =dimIR,,[X], on peut conclure que cette famille est une base de IR,,[X]

et que ¢, admet une base de vecteurs propres donc il est diagonalisable.

conclusion: | F est une base de IR,,[X] et ¢, est diagonalisable

4.d) Comme 0 est valeur propre de ¢, celui-ci n’est donc pas bijectif.

Soit P € R,,[X] tel que B,(P)(X) = 0, comme (pg,(X),...pnn(X)) est libre , on doit avoir :
k

Vk € [0,n] , P(=) = 0. P devrait avoir au moins n + 1 racines or d°P < n donc P = 0 et comme
n

on est en dimension finie, B,, est un endomorphisme bijectif.

conclusion: ’ v, Nest pas bijectif et B, est bijectif

5.a) (Question de cours) Le tirage avec remise de r boules dans une urne qui contient une
proportion de ¢ boules blanches (succes) et de 1 — ¢ boules noires (échec). Si on s’intéresse a X le

nombre de boules blanches obtenues, on a X ~ B(r, )

def bino(r,t):
nb_succes=0
for i in range(r):
tirage=random()
if tirage<t:
nb_succes+=1
return nb_succes

r
5.b) T.(2) =[0,7] et si k € [0,7], ( k> est le choix des k succes dans le tirage avec remise des
r boules , t¥ est le produit (indépendance car on fait un tirage avec remise) des probabilités des k
succes et (1 — )" est le produit (indépendance car on fait un tirage avec remise) des probabilités

des n — k échecs.

conclusion: |Vk € [0,7], P (T, = k) = pi,(t)

5.c) (Question de cours)|E(T,) =rt|,| V(T,) = rt(1 — t) |, puis par linéarité de I'espérance et la

formule V(aX +b) = a®*V(X), on en déduit

B(T,) —t)|v(T,) = 1=Y

r
Par la formule de Konig-Huygens, on a enfin E(X?) = V(X) + E(X)?, donc

E(T2) = rt(1— 1) + (r1)*| et E(T) = ri(l - ’;:)2* (rt)* _ ; n g(r _1)

5.d) > pee(t) =) P(T,=k)=P(Q) =1

- k - k ormule e transler =
S o) = -P (T, = k) Ormie devransert gy — ¢
k=0 r k=0 r

Z (§>2pk7r(t) _ Z <§>2P (Tr _ k’) formule détransfert E(Ti) _ E + ﬁ(’l“ _ 1) _ (1 N %)tZ + %t

r
k=0 k=0



- —~ k k2 1 1
conclusion: A(t)=1, — e (t) = <_> ()= (1= + =
nclusion Zp;ﬁ (t)=1 Z Pk, (t)=t, Z - ) P, ) =(1 r)t + Tt
k=0 k=0 k=0
5.e) Dans les trois cas le membre de gauche et le membre de droite sont des polynémes en ¢ et

les égalités sont valables sur le segment [0, 1] qui est un ensemble infini.

conclusion: ’Les trois égalités sont valables pour tout ¢t € IR

6.) D’apres le 5.e)

B,(1)(X) =) pea(X) =1 € Ry[X],

B, (X)(X) =) %pkm(X) = X € Ry[X],
k=0
B.(X3)(X) = (%)me(t) —(1- %)XQ + %X € R, [X],

et par combinaison linéaire (IRo[X] =vect(1, X, X?)) on peut conclure :

conclusion: | Ry[X] est stable par B,

10 0
~ 1
7.) D’aprés le 6.) An = M17X7X2(Bn> =10 1 —
n
1
00 1--
n

Analyse : A,, = al3+bH, donc avec le coefficient (2, 1), on doit avoir b = — puis avec le coefficient
EEE— n

1
(I,1),a+b=1soita=1——

n
10 0
N ]- 1 ]_
Syntheése : (1——)l3+-H=|0 1 — =A,
— n n oy
00 1--—
n
10 0
. 1 1 1
conclusion: |4, =0 1 — =(1—-—-)s+—-H
ny n n
00 1--—
n

8.a) Les valeurs propres de H sont sur la diagonale car H est triangulaire supérieure , donc
xm(x) = (r —1)?z et comme rg(H — I3) = 1, dimF; = 2. On conclut par la 2eme caractérisation que

H est diagonalisable.

conclusion: ’H est diagonalisable‘

8.b) detQ =1+#0 d’on

conclusion: ’Q est inversible‘

1 0
8.c) Effectuons la réduction de la matrice H On a facilement E; :vect< ol.]1 )
0 0



x x =0
Cherchons Ey : Soit X = | 4 | tel que HX = 0 on a donc le systeme : y+2z=0 donc
z 0=0
z=0 0
y = —z donc Ey zvect< -1

z2=2z 1
10 0

Posons donc @ = [0 1 —1 |, par formule de changement de base , on a conclut
00 1

1 0 O
conclusion: | H = QDQ ' avecQ =10 1 -1

00 1

9.a) Par théoremes généraux, on a immédiatement : conclusion: | lim A, = I3
n——+oo

9.b) On a Y(AM + M') = Mp(M) + ¢(M') pour toutes matrices M et M’ et tout réel .

conclusion: ’w est linéaire‘

9.c) 1) étant linéaire en dimension finie, elle est continue sur M3(IR), donc par critére séquentiel,

on conclut

conclusion: | lim Ay =M = lim ¢(A,) = (M)

{—+00 {—+o00

1 1 1 B 1 _ 1 1 _
0.d) A, =(1-)l+~H=(1--)QQ" +-QDQ 1:Q<(1—5)13+ED>Q !

10 0
donc 4, =Q |0 1 0 Q™ '=QD,Q!
1
0 0 1—-—
n
conclusion: |4, = QD,Q~!
1 00
1 1
9.e) par T.G., lim DfL: 010 car 0 <1 —— < 1et donc lim (1——)420.
f—s+00 n l—+00 n
0 00
1 00
Avec le 9.d) on a donc Elim AY=Qlo 1 0|Q!
—+00
000

Calcul de Q7! : Si on voit QQ comme la matrice canoniquement associée & un endomorphisme f
de IR? et si I'on note (ey, 5, €3) la base canonique de IR® comme on a f(e;) = e; et f(ey) = ey , on

alors f~1(e1) = e et f7(ez) = ey et comme f(e3) = aey + bey + e3 = —ey + €3, en composant par



1 00
flonaes=—ey+ [ (e3) dott fl(e3) = ez + e3. On en déduit que Q' = [0 1 1

0 01
100

On effectue le produit Q |0 1 0| Q! et on conclut que

0 0 O
1 00
conclusion: | lim A‘] =10 11
{—+o00
000
1 0 0
1 1 1
9.f) par T.G., lim D=0 1 0 car In(1 — =)" =nln(l — =) ~n(——) ~ =1, donc
n—s-+oo ] n n n
00 -
‘ 1.1
lim In(1—-—-)"=—1et ite ¢ tiel 1i 1—)"=-
dim n( n) et par critere séquentiel H113{100( n) .
100 10 0
1
Avec le 9.€) on a donc lirf Al=Qfo 10 |Q@'=]01 1--
n—-+o0o €
1
00 - 00 1
e e
10 0
1
conclusion: | lim A’ =10 1 1-—-
n—-4o00 e
1
0 0 —
e

10.a) Le cours et la formule de Konig-Huygens assure que si Y admet une variance finie, on a

V(YY) = E((Y—E(Y))z)) > 0et donc V(Y) = E(Y?)—E(Y)? > 0. On en déduit que E(Y)? < E(Y?)
d'on E(Y) < E(Y?)

conclusion: Y) E(Y?2)

10.b) Par la formule de transfert et le 5.d)

E((t _—Tn)z) _ Z(t . k/n)2p1m(t) — 2 _9¢t. t+ (1 _ %)tQ 4 %t — t(ln—t)
k=0

Avecle 10.a) , E(jt— T,|) <A/E(t — T.]?) <

conclusion: | E(|t — T,]|) < \/
n

11.a) VY(a,b) € [0,11*: [f(a)— f(b)] = |(a—b) f'(c)| < M/|a—b]|, par la formule des accroissements

finis avec My = sup |f'(t)| (qui existe car f étant de classe C', f’ est continue sur le segment [0, 1]).
te(0,1]

conclusion: | V(a,b) € [0,1]% : |f(a) — f(b)| < M{|a — b




11.b) Par la formule de transfert, Par la formule de transfert et le 5.d) ,

E((f(t)— f(T,) = Z(f(t) — f(k/n))pea(t) , donc avec les deux questions précédentes,

k=0
E((f(t) — f(Ta) <E(f(t) - Z [£(8) = F(K/m)lprn(t) Z Myt = k/nlpia()
1—
[0
n
. - t(1—1)
conclusion: |E(|f(t) — f( T,)|) < My
n
11.c) Posons p(t) = t(1 — 1), p est de classe CT sur IR et ¢/(t) = 1 — 2t, donc ¢ est croissante
1 1 1 1
sur [0, 5] et décroissante sur [5, 1]. On en déduit que V¢ € [0,1] : 0 < () < g0(§) =1

Comme E((f(t) — f(T,)) = f(t) — B,(f)(t), on peut conclure :

My

lusion: |Vt € [0,1] : |f(t) — B, ) < —=

conclusion 0.1 = 17(8) = Bal 1) (] < 57
M

11.d) On déduit de la question précédente que 0 < ||f — Bp(f)|loo,0,1] < — et comme

S 2yn

M
lim —L = 0, on peut conclure :
n—+o0o 24/

conclusion: | (B,(f)), N+ converge uniformément vers f sur [0,1]

12.) Comme (B,(f)), N+ converge uniformément vers f sur [0, 1] et que B, (f) est continue sur

[0, 1], par théoreme d’intégration, on peut conclure :

1 1
conclusion: | lim B.(f)(x) da::/ f(z)de
0

n—-4o00 0

13.a) On effectue une L.P.P. avec u = 2% et v/ = (1 — )’ d’on

conclusion: / “(1—2)dr = — / z)" da

13.b) Posons J;, = / Pr.n(x) dz. Pour tout k € [1,n] , avec la question précédente, on a
0

T — n n /lxk—1(1_x)n—k+1d$: n! /lxk—l(l_x)n—k—i—ldx
k) n—k+1 ), (k—Dln—k+ 1) J,

1

n n k-1 n—k+1
= - 1— =J. 1.
()i o -

1
On en déduit que Vk € [0,n] , Jk:Joz/ (1—2z)"de = [—
0

(1_x)n+1}1_ 1
n+1 o n+1

1
1
conclusion: /pkn(a:) dr =
0

n+1
1 n k 1 n k
13.c) On a S,( Zf / Pea(z)dz ) f(-) = / D FC)prala)de =
n—i—l —n 0o = n
1
/ B,,(f)(z) dz. On peut conclure avec le 12.)
0
conclusion: hrf Si( / f(z

14.) Soit f continue sur [0, 1]. L’idée est d’approximer uniformément f par une fonction de classe



O, justement avec les polynomes de Bernstein.

Soit ¢ > 0 il existe g de classe C* sur sur [0, 1] tel que || f — go,p01] < €/3 (il suffit de prendre un

B, (f) pour n assez grand). pour tout entier n, on a :
1
- [ 1@ ] <[5 = s + 3,000 [ toraa] +| [o@rar [ s
Comme [ ~ gllcion < /3. [Su() ~ Sulo)] < nil(nH)Hf Ol < /3 et de méme
x)de — | f(z dx <e/3.
JRCESY T | |
5.0~ [ 1@ as] <2e/3+ [5,00) = [ gta) ]

1
Avec le 13.c) il existe Ny € IN" tel que Vn > Ny @ |S,(g) — / g(x) dx‘ <e/3
0

S, /fd:c\/\

conclusion: | Pour toute fonction continue sur [0,1], lim S,(f) = / f(z)dx

On a donc pour tout entier n :

On en déduit que Vn > Ny

n—+o00
a1 b
15.a) Posons f:ur— % et I = [0,4o0[. Par T.G. , f est continue sur I (les puissances
u c
sont entieres et 1 + u ne s’annule pas sur 7).
En +oo:
1
Siz=0al
x Six = aorsf()+oouca

1
est intégrable sur [1,00[ et par T.C. f est intégrable sur
uC*(Z

Orc—a>b+22>2doncu+—
[0, 00 et I'intégrale de f converge.

*Slx#Oalorsf() :

xz

ucab

Orc—a—>b2> 2 donc u — - est intégrable sur [1,00[ et par T.C. f est intégrable sur
u

[0, 00 et I'intégrale de f converge.

+o0 ua<1 + LUU)b

du converge
(1 + ) &

conclusion: |Vz € [0, 1] , 'intégrale /
0

u®(1 + zu)®
(14 u)e
Montrons que f vérifie les hypotheses de dérivation des intégrales sous le signe somme.

15.b) Posons f : (x,u) — , I =10,4o00[ et A=1]0,1].

0
x Par T.G. , pour tout u € I, f(e,u) est de classe C' sur A | donc f(e,u) et a—f(o,u) sont
x
of u®(1 + zu)*!
Ox (1+u)e
«x Par T.G. |, pour tout x € A, f(x,e) est continue et intégrable (question précédente) sur I et

(r,u) = ub

continues sur A et pour tout x € A :

a—f(x, e) est continue sur /.
x

5, u®(1 + zu)’~t u®(1 +u)b!
veeaewuer: |2 )= [wl0Em g, w00
* Vo et Vu e (z,u) u At a)r < |u 1t o(u)
 est continue et intégrable pour les méme raisons qu’au 15.a) : ¢(u) o ~etc—a—b
00 uC*(l

On peut donc conclure :



conclusion: | F' est de classe C* sur [0, 1]

15.c) Par T.G. h est de classe C! sur [0, 1], pour tout ¢ € [0,1] : A/(t) = e > 0. Donc h
est continue strictement croissante de [0, 1] vers h([0, 1) = [h(0), lim A(t)[= [0, +ool.
t1-
On conclut par le théoreme de la bijection :
conclusion: | h est strictement croissante et bijective de [0, 1] sur [0, +oo[
15.d) Le C.D.V. est donc bien C! | bijectif et d’ott
—+o00 ua 1 (ﬁ)a 1 1 )
x F(0) = / du = / - dt = / (1 —t) = dt
o (4w o (I415)(1—1) 0
1 1
-1 1
= L/ (1)t dt = ¢ 2 X o X X / Tl — )R At
c—a—1), c—a—1 c—a c—2 0
a a—1 1
= X X e X X
c—a—-1 c—a c—2 c—1
al(c—a—2)!

(c—1)!

400 a
x F(1) = / % du et donc on obtient F(1) en remplagant ¢ par ¢ — b dans le calcul de
0

1+ u)e
F(0).
¢ —a—2)! We—b—a—2)!
conclusion: | F'(0) = % et F(1)= a.(c( bb al)'2).
c—1)! c—b—-1)!
n\ nn-1)---(n—k+1) n(n)---(n) nk
16.) (k) = I ol o ol (car le nombre de termes k est

indépendant de n (la variable)).

Soit t €]0, 1] et k € IN* fixés. Pour tout entier n > k ,

ful) = (Ve -t~ Tt~
" k +oo k! +oo (1 —t)*k!
tk
conclusion: | Pour tout t €]0, 1], f,(t) ~ m[nk(l —)"]

17.) * Soit t €]0,1] et k € IN* fixés. Comme f,(t) = O(n*q") avec ¢ = 1 —t €]0,1[ , par
. , 1 1 1
croissances comparées f,(t) = O(ﬁ) avec — >0 et (Z ﬁ) converge. Donc par T.C. (Z fn(t)>
converge.
% Sit =0, pour tout entier n > k , f,(t) =0, donc (Z fn(0)> converge.
% Sit =1, pour tout entier n # k , f,(t) =0, donc (an(1)> converge.

(Z fn> converge simplement sur [0, 1]
18.) *Sit =0, pour tout entier n € IN | f,(¢) = 0, donc S(0) = 0.

conclusion:

% Sit =1, pour tout entier n # k , f,(t) =0 et fr(1) =1, donc S(1) = 1.

conclusion: | S(0) =0et S(1) =1

+oo
= Z u™ (et le rayon de convergence est 1)
n=0

19.b) Le théoreme de dérivation des séries entieres permet de dériver termes a termes la série

1
1—u

19.a) conclusion: |\Vu €] —1,1]:




+oo

entiere Z u™ de rayon de convergence 1 sur I'intervalle ouvert | — 1, 1[.
n=0
C tout entier k, Vu €] 11[-(1)(k)— M (se démont
omme on a pour tout entier k, Vu A (7, = Ao up se démontre par
récurrence immédiate)
O déduit Vu el —1,1] : < ! >(k)_ £ _f ( - (n—k+1Du*
n en déduit que Vu Al —(1_u)k+1—n:knn n u
conclusion: |Vu € [0,1] ;Cn(n — 1) (n—k+Du"r = m
1
19.c) On a déja vuaque S(1)=1= T
+oo +oo
nn—1)--(n—k+1), .t k! 1
vt €]o,1] : S(t) = () = (-t F = — ==
1
conclusion: | V¢ €]0,1] : S(t) = 7
19.d) Si la série (Z fn) convergeait normalement sur [0, 1], alors on pourrait utiliser le
+oo
théoreme de la double limite : lim S(¢ 1 n 1 n(t) = 0=0.
éoreme de la double limite : tg(% ti%izf Ztlr(gf Z

n=0
1
Or lim S(t) = lim — = 400 : absurde!

t—0+ t—0+

conclusion: | la série ( 5 fn> ne converge pas normalement (ni uniformément) sur [0, 1]

19.e) Posons g(t) = tk(1 —t)"* | g est de classe C! sur [0, 1].

vt € [0,1] , ¢'(t) = t* 11 — )" *L(k(1 —t) — (n — k)t), qui s'annule en t = 0, ¢t = 1 et

3|0

k
] et décroissante sur [—, 1]. On a

donc Hg”oo [0,1] = g(ﬁ) = (n) (E)k(l — E)”*k ~ n_k_<1 _ E)n(l . E)—k - k*e~ .

k) 'n n n—+oo k! nk n n’ no+oo k!
On peut donc conclure :

t =— € [0,1] car n > k on en déduit que g est croissante sur [0,

kke=F
+oo k!

On en déduit que la série (Z I fn||oo,[071]> diverge grossierement et donc que la série (Z fn>

conclusion: |Pour n < k : || fal|oo,0,1] = 0 et pour n > k : || fu|oo, 0, o

ne converge pas normalement sur [0, 1].

19.f) Avec Stirling, on conclut :

1
conclusion: ||| fu|lc, 0] ~ ——

] —+oo\/ 27k

10



