
Concours blanc 23-24 : corrigé d’après CCP PC 2016

1.a) On a immédiatement :

conclusion: p0,2(t) = (1− t)2 , p1,2(t) = 2t(1− t) , p2,2(t) = t2

1.b) A(t) = (1− t) · (0, 1) + t · (1, 1) = (t, 1) on fait de même pour B(t).

Enfin, C(t) = (1− t) · (t, 1) + t · (1, 1− t) = (2t− t2, 1− t2).

conclusion: A(t) = (t, 1) , B(t) = (1, 1− t) et C(t) = (1− t) · (t, 1) + t · (1, 1− t) = (2t− t2, 1− t2)

1.c)
2∑

k=0

pk,2(t)Ak = (1− t)2(0, 1) + 2t(1− t)(1, 1) + t2(1, 0) = (2t− t2, 1− t2) = C(t).

conclusion:
2∑

k=0

pk,2(t)Ak = C(t)

1.d)

def p(k,n,t):
q=1
for i in range(k):

q=q*t*(n-i)/(i+1)
for i in range(n-k):

q=q*(1-t)
return q

2.) T
•

∀(M(x, y), N(x′, y′)) ∈ T 2 , ∀t ∈ [0, 1] : tM + (1 − t)N = (x′′, y′′) avec x′′ = (1 − t)x + tx′ et

y′′ = (1− t)y + ty′.

On a donc x′′+y′′ = (1− t)x+ tx′+(1− t)y+ ty′ = (1− t)(x+y)+ t(x′+y′) > (1− t) ·1+ t ·1 = 1

Donc tM + (1− t)N ∈ T et T est un convexe de IR2 .

D’autre part T = f−1([1,+∞[) ∩ [0, 1]2 , f−1([1,+∞[) est un fermé de IR2 comme image

réciproque du fermé de IR, [1,+∞[ par la fonction f , continue (par T.G.) sur IR2, f : (x, y) 7−→ x+y.

[0, 1]2 est un compact (produit de 2 compacts) donc fermé. Par intersection de deux fermés, on

conclut : conclusion: T est un convexe et un fermé de IR2

3.a) ∀t ∈ [0, 1] : 2t− t2 + 1− t2 − 1 = −2t2 + 2t = 2t(1− t) > 0

conclusion: ∀t ∈ [0, 1] : C(t) ∈ T

3.b) f est de classe C1 sur IR et l’on a ∀t ∈ [0, 1] :f ′(t) = (2− 2t,−2t) = 2(1− t,−t).

Enfin f ′(t) = (0, 0) =⇒ 1− t = t = 0 : impossible et donc ∀t ∈ [0, 1] , f ′(t) 6= −→0 .

conclusion: (1− t,−t) est un vecteur directeur de Dt à C en C(t)
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3.c) ∀t ∈ [0, 1] , l’équation de la tangente Dt à C en C(t) est :
x− (2t− t2) 1− t

y − (1− t2) −t
= 0 ,

donc Dt/ −tx+ (t− 1)y + t2 − t+ 1 = 0

On vérifie que les coordonnées de A(t) et B(t) vérifient l’équation ci-dessus.

Donc (A(t), B(t)) ∈ D2
t et comme la droite Dt est convexe, on conclut

conclusion: [A(t), B(t)] est inclus dans Dt

3.d) Posons x(t) = 2t− t2 et y(t) = 1− t2, on a x′(t) = 2− 2t et y′(t) = −2t

d’où le tableau de variation :

La courbe rouge, c’est le support de l’arc C, le trait bleu c’est la frontière de T et les 3 traits

verts ce sont les 3 segments [A(t), B(t)].

4.a) ∀(P,Q) ∈ IRn[X] et ∀λ ∈ IR, ϕn(λP+Q)(X) = nX(λP+Q)(X)+X(1−X)(λP+Q)′(X) =

λ(nXP (X) +X(1−X)P ′(X)) + nXQ(X) +X(1−X)Q′(X) = λϕn(P )(X) + ϕn(Q)(X)

De même , Bn(λP +Q)(X) = λBn(P )(X) +Bn(Q)(X)

D’autre part do(Bn(P )) 6 n, donc Bn(P ) ∈ IRn[X].

Enfin, si P = anX
n + · · ·+a0, ϕn(P )(X) = nX(anX

n + · · ·+a0)+X(1−X)(nanX
n−1 + · · ·+a1),

d’où le terme en Xn+1 s’annule et donc do(ϕn(P )(X)) 6 n, donc ϕn(P ) ∈ IRn[X].

conclusion: ϕn et Bn sont des endomorphismes de IRn[X]

4.b) Pour k = 0, ϕn(p0,n)(X) = nX(1−X)n −X(1−X)n(1−X)n−1 = 0 = 0p0,n(X).

Pour k = n, ϕn(pn,n)(X) = nXXn+X(1−X)nXn−1 = nXn+1+nXn−nXn+1 = nXn = npn,n(X).

Pour k ∈ [[1, n− 1]],

ϕn(pk,n)(X) = nX

(
n

k

)
Xk(1−X)n−k+X(1−X)

(
n

k

)[
kXk−1(1−X)n−k−Xk(n−k)(1−X)n−k−1

]
= n

(
n

k

)
Xk+1(1−X)n−k +

(
n

k

)[
kXk(1−X)n−k+1 −Xk+1(n− k)(1−X)n−k

]
=

(
n

k

)
Xk(1−X)n−k

[
nX + k(1−X)− (n− k)X

]
= k pk,n(X).

conclusion: ∀k ∈ [[0, n]], ϕn(pk,n)(X) = k pk,n
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4.c) Par le théorème fondamental de liberté des vecteurs propres associés à des valeurs propres

deux à deux distinctes (ici 0, 1, . . . , n), les vecteurs (p0,n(X), . . . pn,n(X)) = F est une famille libre.

Comme cette famille a n+ 1 =dimIRn[X], on peut conclure que cette famille est une base de IRn[X]

et que ϕn admet une base de vecteurs propres donc il est diagonalisable.

conclusion: F est une base de IRn[X] et ϕn est diagonalisable

4.d) Comme 0 est valeur propre de ϕn celui-ci n’est donc pas bijectif.

Soit P ∈ IRn[X] tel que Bn(P )(X) = 0, comme (p0,n(X), . . . pn,n(X)) est libre , on doit avoir :

∀k ∈ [[0, n]] , P (
k

n
) = 0. P devrait avoir au moins n+ 1 racines or doP 6 n donc P = 0 et comme

on est en dimension finie, Bn est un endomorphisme bijectif.

conclusion: ϕn n’est pas bijectif et Bn est bijectif

5.a) (Question de cours) Le tirage avec remise de r boules dans une urne qui contient une

proportion de t boules blanches (succès) et de 1 − t boules noires (échec). Si on s’intéresse à X le

nombre de boules blanches obtenues, on a X ∼ B(r, t)

def bino(r,t):
nb_succes=0
for i in range(r):

tirage=random()
if tirage<t:

nb_succes+=1
return nb_succes

5.b) Tr(Ω) = [[0, r]] et si k ∈ [[0, r]],

(
r

k

)
est le choix des k succès dans le tirage avec remise des

r boules , tk est le produit (indépendance car on fait un tirage avec remise) des probabilités des k

succès et (1− t)n−k est le produit (indépendance car on fait un tirage avec remise) des probabilités

des n− k échecs.

conclusion: ∀k ∈ [[0, r]], P (Tr = k) = pk,r(t)

5.c) (Question de cours) E(Tr) = rt , V(Tr) = rt(1− t) , puis par linéarité de l’espérance et la

formule V (aX + b) = a2V (X), on en déduit

E( T r) = t , V( T r) =
t(1− t)

r
Par la formule de König-Huygens, on a enfin E(X2) = V(X) + E(X)2, donc

E(T 2
r ) = rt(1− t) + (rt)2 et E( T

2

r) =
rt(1− t) + (rt)2

r2
=
t

r
+
t2

r
(r − 1) ,

5.d)
r∑

k=0

pk,r(t) =
r∑

k=0

P (Tr = k) = P (Ω) = 1

r∑
k=0

k

r
pk,r(t) =

r∑
k=0

k

r
P (Tr = k)

formule de transfert
= E( T r) = t

r∑
k=0

(k
r

)2
pk,r(t) =

r∑
k=0

(k
r

)2
P (Tr = k)

formule de transfert
= E( T

2

r) =
t

r
+
t2

r
(r − 1) =

(
1− 1

r

)
t2 +

1

r
t
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conclusion:
r∑

k=0

pk,r(t) = 1 ,
r∑

k=0

k

r
pk,r(t) = t ,

r∑
k=0

(k
r

)2
pk,r(t) =

(
1− 1

r

)
t2 +

1

r
t

5.e) Dans les trois cas le membre de gauche et le membre de droite sont des polynômes en t et

les égalités sont valables sur le segment [0, 1] qui est un ensemble infini.

conclusion: Les trois égalités sont valables pour tout t ∈ IR

6.) D’après le 5.e) ,

Bn(1)(X) =
n∑

k=0

pk,n(X) = 1 ∈ IR2[X],

Bn(X)(X) =
n∑

k=0

k

n
pk,n(X) = X ∈ IR2[X],

Bn(X2)(X) =
n∑

k=0

(k
n

)2
pk,n(t) =

(
1− 1

n

)
X2 +

1

n
X ∈ IR2[X],

et par combinaison linéaire (IR2[X] =vect(1, X,X2)) on peut conclure :

conclusion: IR2[X] est stable par Bn

7.) D’après le 6.) An = M1,X,X2(B̃n) =


1 0 0

0 1
1

n

0 0 1− 1

n

.

Analyse : An = aI3+bH, donc avec le coefficient (2, 1), on doit avoir b =
1

n
puis avec le coefficient

(1, 1), a+ b = 1 soit a = 1− 1

n

Synthèse : (1− 1

n
)I3 +

1

n
H =


1 0 0

0 1
1

n

0 0 1− 1

n

 = An

conclusion: An =


1 0 0

0 1
1

n

0 0 1− 1

n

 = (1− 1

n
)I3 +

1

n
H

8.a) Les valeurs propres de H sont sur la diagonale car H est triangulaire supérieure , donc

χH(x) = (x− 1)2x et comme rg(H − I3) = 1, dimE1 = 2. On conclut par la 2ème caractérisation que

H est diagonalisable.

conclusion: H est diagonalisable

8.b) detQ = 1 6= 0 d’où

conclusion: Q est inversible

8.c) Effectuons la réduction de la matrice H On a facilement E1 =vect
(

1

0

0

 ,


0

1

0

).
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Cherchons E0 : Soit X =


x

y

z

 tel que HX = 0 on a donc le système :


x = 0

y + z = 0

0 = 0

donc


x = 0

y = −z

z = z

donc E0 =vect
(

0

−1

1



Posons donc Q =


1 0 0

0 1 −1

0 0 1

, par formule de changement de base , on a conclut

conclusion: H = QDQ−1 avec Q =


1 0 0

0 1 −1

0 0 1


9.a) Par théorèmes généraux, on a immédiatement : conclusion: lim

n→+∞
An = I3

9.b) On a ψ(λM +M ′) = λψ(M) + ψ(M ′) pour toutes matrices M et M ′ et tout réel λ.

conclusion: ψ est linéaire

9.c) ψ étant linéaire en dimension finie, elle est continue surM3(IR), donc par critère séquentiel,

on conclut

conclusion: lim
`→+∞

A` = M =⇒ lim
`→+∞

ψ(A`) = ψ(M)

9.d) An = (1− 1

n
)I3 +

1

n
H = (1− 1

n
)QQ−1 +

1

n
QDQ−1 = Q

(
(1− 1

n
)I3 +

1

n
D
)
Q−1

donc An = Q


1 0 0

0 1 0

0 0 1− 1

n

Q−1 = QDnQ
−1

conclusion: An = QDnQ
−1

9.e) par T.G. , lim
`→+∞

D`
n =


1 0 0

0 1 0

0 0 0

 car 0 < 1− 1

n
< 1 et donc lim

`→+∞
(1− 1

n
)` = 0.

Avec le 9.d) on a donc lim
`→+∞

A`
n = Q


1 0 0

0 1 0

0 0 0

Q−1

Calcul de Q−1 : Si on voit Q comme la matrice canoniquement associée à un endomorphisme f

de IR3 et si l’on note (e1, e2, e3) la base canonique de IR3 comme on a f(e1) = e1 et f(e2) = e2 , on

alors f−1(e1) = e1 et f−1(e2) = e2 et comme f(e3) = ae1 + be2 + e3 = −e2 + e3, en composant par
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f−1, on a e3 = −e2 + f−1(e3) d’où f−1(e3) = e2 + e3. On en déduit que Q−1 =


1 0 0

0 1 1

0 0 1

.

On effectue le produit Q


1 0 0

0 1 0

0 0 0

Q−1 et on conclut que

conclusion: lim
`→+∞

A`
n =


1 0 0

0 1 1

0 0 0



9.f) par T.G. , lim
n→+∞

Dn
n =


1 0 0

0 1 0

0 0
1

e

 car ln(1− 1

n
)n = n ln(1− 1

n
) ∼ n(− 1

n
) ∼ −1 , donc

lim
n→+∞

ln(1− 1

n
)n = −1 et par critère séquentiel lim

n→+∞
(1− 1

n
)n =

1

e

Avec le 9.e) on a donc lim
n→+∞

An
n = Q


1 0 0

0 1 0

0 0
1

e

Q−1 =


1 0 0

0 1 1− 1

e

0 0
1

e



conclusion: lim
n→+∞

An
n =


1 0 0

0 1 1− 1

e

0 0
1

e


10.a) Le cours et la formule de König-Huygens assure que si Y admet une variance finie, on a

V(Y ) = E((Y −E(Y ))2)) > 0 et donc V(Y ) = E(Y 2)−E(Y )2 > 0. On en déduit que E(Y )2 6 E(Y 2)

d’où E(Y ) 6 |E(Y )| 6
√

E(Y 2)

conclusion: E(Y ) 6
√

E(Y 2)

10.b) Par la formule de transfert et le 5.d) ,

E((t− T n)2) =
n∑

k=0

(t− k/n)2pk,n(t) = t2 − 2t · t+ (1− 1

n
)t2 +

1

n
t =

t(1− t)
n

Avec le 10.a) , E(|t− T n|) 6
√

E(|t− T n|2) 6
√
t(1− t)

n

conclusion: E(|t− T n|) 6
√
t(1− t)

n
11.a) ∀(a, b) ∈ [0, 1]2 : |f(a)−f(b)| = |(a−b)f ′(c)| 6Mf |a−b|, par la formule des accroissements

finis avec Mf = sup
t∈[0,1]

|f ′(t)| (qui existe car f étant de classe C1, f ′ est continue sur le segment [0, 1]).

conclusion: ∀(a, b) ∈ [0, 1]2 : |f(a)− f(b)| 6Mf |a− b|
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11.b) Par la formule de transfert, Par la formule de transfert et le 5.d) ,

E((f(t)− f( T n)) =
n∑

k=0

(f(t)− f(k/n))pk,n(t) , donc avec les deux questions précédentes,

E((f(t)− f( T n)) 6 E(|f(t)− f( T n)|) 6
n∑

k=0

|f(t)− f(k/n)|pk,n(t) 6
n∑

k=0

Mf |t− k/n|pk,n(t)

6Mf

√
t(1− t)

n

conclusion: E(|f(t)− f( T n)|) 6Mf

√
t(1− t)

n
11.c) Posons ϕ(t) = t(1 − t), ϕ est de classe C1 sur IR et ϕ′(t) = 1 − 2t, donc ϕ est croissante

sur [0,
1

2
] et décroissante sur [

1

2
, 1]. On en déduit que ∀t ∈ [0, 1] : 0 6 ϕ(t) 6 ϕ(

1

2
) =

1

4
Comme E((f(t)− f( T n)) = f(t)−Bn(f)(t), on peut conclure :

conclusion: ∀t ∈ [0, 1] : |f(t)−Bn(f)(t)| 6 Mf

2
√
n

11.d) On déduit de la question précédente que 0 6 ‖f − Bn(f)‖∞,[0,1] 6
Mf

2
√
n

et comme

lim
n→+∞

Mf

2
√
n

= 0, on peut conclure :

conclusion: (Bn(f))
n∈IN∗ converge uniformément vers f sur [0, 1]

12.) Comme (Bn(f))
n∈IN∗ converge uniformément vers f sur [0, 1] et que Bn(f) est continue sur

[0, 1], par théorème d’intégration, on peut conclure :

conclusion: lim
n→+∞

∫ 1

0

Bn(f)(x) dx =

∫ 1

0

f(x) dx

13.a) On effectue une I.P.P. avec u = xa et v′ = (1− x)b d’où

conclusion:

∫ 1

0

xa(1− x)b dx =
a

b+ 1

∫ 1

0

xa−1(1− x)b+1 dx

13.b) Posons Jk =

∫ 1

0

pk,n(x) dx. Pour tout k ∈ [[1, n]] , avec la question précédente, on a

Jk =

(
n

k

)
n

n− k + 1

∫ 1

0

xk−1(1− x)n−k+1 dx =
n!

(k − 1)!(n− k + 1)!

∫ 1

0

xk−1(1− x)n−k+1 dx

=

(
n

k − 1

)
n

n− k + 1

∫ 1

0

xk−1(1− x)n−k+1 dx = Jk−1.

On en déduit que ∀k ∈ [[0, n]] , Jk = J0 =

∫ 1

0

(1− x)n dx =
[
− (1− x)n+1

n+ 1

]1
0

=
1

n+ 1

conclusion:

∫ 1

0

pk,n(x) dx =
1

n+ 1

13.c) On a Sn(f) =
1

n+ 1

n∑
k=0

f(
k

n
) =

∫ 1

0

pk,n(x) dx
n∑

k=0

f(
k

n
) =

∫ 1

0

n∑
k=0

f(
k

n
)pk,n(x) dx =∫ 1

0

Bn(f)(x) dx. On peut conclure avec le 12.)

conclusion: lim
n→+∞

Sn(f) =

∫ 1

0

f(x) dx

14.) Soit f continue sur [0, 1]. L’idée est d’approximer uniformément f par une fonction de classe
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C1, justement avec les polynômes de Bernstein.

Soit ε > 0 il existe g de classe C1 sur sur [0, 1] tel que ‖f − g‖∞,[0,1] 6 ε/3 (il suffit de prendre un

Bn(f) pour n assez grand). pour tout entier n, on a :∣∣∣Sn(f)−
∫ 1

0

f(x) dx
∣∣∣ 6 ∣∣∣Sn(f)− Sn(g)

∣∣∣+
∣∣∣Sn(g)−

∫ 1

0

g(x) dx
∣∣∣+
∣∣∣ ∫ 1

0

g(x) dx−
∫ 1

0

f(x) dx
∣∣∣

Comme ‖f − g‖∞,[0,1] 6 ε/3 ,
∣∣∣Sn(f)− Sn(g)

∣∣∣ 6 1

n+ 1
(n+ 1)‖f − g‖∞,[0,1] 6 ε/3 et de même∣∣∣ ∫ 1

0

g(x) dx−
∫ 1

0

f(x) dx
∣∣∣ 6 ε/3.

On a donc pour tout entier n :
∣∣∣Sn(f)−

∫ 1

0

f(x) dx
∣∣∣ 6 2ε/3 +

∣∣∣Sn(g)−
∫ 1

0

g(x) dx
∣∣∣.

Avec le 13.c) il existe N0 ∈ IN∗ tel que ∀n > N0 :
∣∣∣Sn(g)−

∫ 1

0

g(x) dx
∣∣∣ 6 ε/3

On en déduit que ∀n > N0 :
∣∣∣Sn(f)−

∫ 1

0

f(x) dx
∣∣∣ 6 3ε/3 6 ε

conclusion: Pour toute fonction continue sur [0, 1], lim
n→+∞

Sn(f) =

∫ 1

0

f(x) dx

15.a) Posons f : u 7−→ ua(1 + xu)b

(1 + u)c
et I = [0,+∞[. Par T.G. , f est continue sur I (les puissances

sont entières et 1 + u ne s’annule pas sur I).

En +∞ :

∗ Si x = 0 alors f(u) ∼
+∞

1

uc−a

Or c − a > b + 2 > 2 donc u 7−→ 1

uc−a
est intégrable sur [1,∞[ et par T.C. f est intégrable sur

[0,∞[ et l’intégrale de f converge.

∗ Si x 6= 0 alors f(u) ∼
+∞

xb

uc−a−b

Or c − a − b > 2 donc u 7−→ 1

uc−a−b
est intégrable sur [1,∞[ et par T.C. f est intégrable sur

[0,∞[ et l’intégrale de f converge.

conclusion: ∀x ∈ [0, 1] , l’intégrale

∫ +∞

0

ua(1 + xu)b

(1 + u)c
du converge

15.b) Posons f : (x, u) 7−→ ua(1 + xu)b

(1 + u)c
, I = [0,+∞[ et A = [0, 1].

Montrons que f vérifie les hypothèses de dérivation des intégrales sous le signe somme.

∗ Par T.G. , pour tout u ∈ I, f(•, u) est de classe C1 sur A , donc f(•, u) et
∂f

∂x
(•, u) sont

continues sur A et pour tout x ∈ A :
∂f

∂x
(x, u) = ub

ua(1 + xu)b−1

(1 + u)c
.

∗ Par T.G. , pour tout x ∈ A, f(x, •) est continue et intégrable (question précédente) sur I et
∂f

∂x
(x, •) est continue sur I.

∗ ∀x ∈ A et ∀u ∈ I :
∣∣∣∂f
∂x

(x, u)
∣∣∣ =

∣∣∣ubua(1 + xu)b−1

(1 + u)c

∣∣∣ 6 ∣∣∣u · bua(1 + u)b−1

(1 + u)c

∣∣∣ = ϕ(u).

ϕ est continue et intégrable pour les même raisons qu’au 15.a) : ϕ(u) ∼
+∞

b

uc−a−b
et c−a−b > 2...

On peut donc conclure :
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conclusion: F est de classe C1 sur [0, 1]

15.c) Par T.G. h est de classe C1 sur [0, 1[, pour tout t ∈ [0, 1[ : h′(t) =
1

(1− t)2
> 0. Donc h

est continue strictement croissante de [0, 1[ vers h([0, 1[) = [h(0), lim
t→1−

h(t)[= [0,+∞[.

On conclut par le théorème de la bijection :

conclusion: h est strictement croissante et bijective de [0, 1[ sur [0,+∞[

15.d) Le C.D.V. est donc bien C1 , bijectif et d’où

∗ F (0) =

∫ +∞

0

ua

(1 + u)c
du =

∫ 1

0

( t
1−t)

a

(1 + t
1−t)

c

1

(1− t)2
dt =

∫ 1

0

ta(1− t)c−a−2 dt

=
a

c− a− 1

∫ 1

0

ta−1(1− t)c−a−1 dt =
a

c− a− 1
× a− 1

c− a
× · · · × 1

c− 2
×
∫ 1

0

ta−a(1− t)c−a+a−2 dt

=
a

c− a− 1
× a− 1

c− a
× · · · × 1

c− 2
× 1

c− 1

=
a!(c− a− 2)!

(c− 1)!

∗ F (1) =

∫ +∞

0

ua

(1 + u)c−b
du et donc on obtient F (1) en remplaçant c par c− b dans le calcul de

F (0).

conclusion: F (0) =
a!(c− a− 2)!

(c− 1)!
et F (1) =

a!(c− b− a− 2)!

(c− b− 1)!

16.)

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
∼
+∞

n(n) · · · (n)

k!
∼
+∞

nk

k!
(car le nombre de termes k est

indépendant de n (la variable)).

Soit t ∈]0, 1[ et k ∈ IN∗ fixés. Pour tout entier n > k ,

fn(t) =

(
n

k

)
tk(1− t)n−k ∼

+∞

nk

k!
tk(1− t)n−k ∼

+∞

tk

(1− t)kk!
[nk(1− t)n]

conclusion: Pour tout t ∈]0, 1[ , fn(t) ∼
+∞

tk

(1− t)kk!
[nk(1− t)n]

17.) ∗ Soit t ∈]0, 1[ et k ∈ IN∗ fixés. Comme fn(t) = O(nkqn) avec q = 1 − t ∈]0, 1[ , par

croissances comparées fn(t) = O(
1

n2
) avec

1

n2
> 0 et

(∑ 1

n2

)
converge. Donc par T.C.

(∑
fn(t)

)
converge.

∗ Si t = 0 , pour tout entier n > k , fn(t) = 0, donc
(∑

fn(0)
)

converge.

∗ Si t = 1 , pour tout entier n 6= k , fn(t) = 0, donc
(∑

fn(1)
)

converge.

conclusion:
(∑

fn

)
converge simplement sur [0, 1]

18.) ∗ Si t = 0 , pour tout entier n ∈ IN , fn(t) = 0, donc S(0) = 0.

∗ Si t = 1 , pour tout entier n 6= k , fn(t) = 0 et fk(1) = 1, donc S(1) = 1.

conclusion: S(0) = 0 et S(1) = 1

19.a) conclusion: ∀u ∈]− 1, 1[ :
1

1− u
=

+∞∑
n=0

un (et le rayon de convergence est 1)

19.b) Le théorème de dérivation des séries entières permet de dériver termes à termes la série
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entière
+∞∑
n=0

un de rayon de convergence 1 sur l’intervalle ouvert ]− 1, 1[.

Comme on a pour tout entier k, ∀u ∈] − 1, 1[ :
( 1

1− u

)(k)
=

k!

(1− u)k+1
(se démontre par

récurrence immédiate)

On en déduit que ∀u ∈]− 1, 1[ :
( 1

1− u

)(k)
=

k!

(1− u)k+1
=

+∞∑
n=k

n(n− 1) · · · (n− k + 1)un−k

conclusion: ∀u ∈ [0, 1[ :
+∞∑
n=k

n(n− 1) · · · (n− k + 1)un−k =
k!

(1− u)k+1

19.c) On a déjà vu que S(1) = 1 =
1

1
.

∀t ∈]0, 1[ : S(t) =
+∞∑
n=0

fn(t) =
+∞∑
n=k

n(n− 1) · · · (n− k + 1)

k!
tk(1−t)n−k =

tk

k!

k!

(1− (1− t))k+1
=

1

t

conclusion: ∀t ∈]0, 1] : S(t) =
1

t

19.d) Si la série
(∑

fn

)
convergeait normalement sur [0, 1], alors on pourrait utiliser le

théorème de la double limite : lim
t→0+

S(t) = lim
t→0+

+∞∑
n=0

fn(t) =
+∞∑
n=0

lim
t→0+

fn(t) =
+∞∑
n=0

0 = 0.

Or lim
t→0+

S(t) = lim
t→0+

1

t
= +∞ : absurde !

conclusion: la série
(∑

fn

)
ne converge pas normalement (ni uniformément) sur [0, 1]

19.e) Posons g(t) = tk(1− t)n−k , g est de classe C1 sur [0, 1].

∀t ∈ [0, 1] , g′(t) = tk−1(1 − t)n−k−1(k(1 − t) − (n − k)t), qui s’annule en t = 0, t = 1 et

t =
k

n
∈ [0, 1] car n > k on en déduit que g est croissante sur [0,

k

n
] et décroissante sur [

k

n
, 1]. On a

donc ‖g‖∞,[0,1] = g(
k

n
) =

(
n

k

)
(
k

n
)k(1− k

n
)n−k ∼

n→+∞

nk

k!

kk

nk
(1− k

n
)n(1− k

n
)−k ∼

n→+∞

kke−k

k!
.

On peut donc conclure :

conclusion: Pour n < k : ‖fn‖∞,[0,1] = 0 et pour n > k : ‖fn‖∞,[0,1] ∼
n→+∞

kke−k

k!

On en déduit que la série
(∑

‖fn‖∞,[0,1]

)
diverge grossièrement et donc que la série

(∑
fn

)
ne converge pas normalement sur [0, 1].

19.f) Avec Stirling, on conclut :

conclusion: ‖fn‖∞,[0,1] ∼
n→+∞

1√
2πk
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