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TD n°10
Ondes électromagnétiques dans le vide

Exercice 1 : OPPM électromagnétique * | 3 i

On étudie la propagation d'une onde électromagnétique dans le vide.
1. Rappeler l’équa’gion aux dérivées partielles a laquelle satisfont les champs électrique E (M, t)
et magnétique B(M,t).
On suppose que le champ électrique est de la forme : E = Ej cos(wt — kz)i,.

2. Déterminer une équation satisfaite par k pour que ce champ soit solution de 1’équation donnée
en Q.1.

3. Quels sont la direction, le sens et la vitesse de propagation de cette onde?
4. Quel est son état de polarisation ?

5. Indiquer la relation de structure de ce champ électromagnétique. En déduire le champ B (M, t)
de cette onde puis le vecteur de Poynting de 1'onde.

La puissance moyenne rayonnée par cette onde & travers une surface S = 4mm? orthogonale a sa
direction de propagation est P = 10 W.

6. Calculer les amplitudes Ej et By des champs électrique et magnétique.

Exercice 2 : OPPM électromagnétique de direction quelconque x | ¢ iz

On étudie une onde électromagnétique dans le vide, dont le champ électrique s’écrit :

. k
L =FE,u,+ E,i, avec E,= Ejexp [z (3(2x +2y+2) — wt)]

L’onde se propage dans le vide et sa longueur d’onde est A\ = 600 nm.
1. Calculer la fréquence de I'onde. Dans quel domaine du spectre se situe cette onde ?
Calculer la valeur numérique de k.
Etablir 'équation cartésienne d’un plan d’onde.
Exprimer £, en fonction de E,.
Calculer le champ magnétique B de cette onde.

Calculer la densité volumique moyenne d’énergie électromagnétique associée a cette onde.

Nk

Méme question pour le vecteur de Poynting. Commentaire ?

Exercice 3 : Onde électromagnétique ** | ¥x F

On donne la représentation complexe du champ électrique d’une onde électromagnétique dans le
vide, en coordonnées cartésiennes :

0
Ey cos (Wy) ez(wt_koz)
a

QEO sin (’Tfy) ei(wtfkoz)
a

E =

ou « est complexe et kg réel positif.
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1. Déterminer « et kg en fonction de Ey, w, a et c.
2. Déterminer le champ magnétique B de cette onde.
3. Cette onde est-elle plane ? progressive ? harmonique ? transverse 7
4. Calculer le vecteur de Poynting instantanné puis sa moyenne temporelle.
Exercice 4 : Corde vibrante *xx | Ix F X

On considere une corde sans raideur de masse linéique g uniforme. Cette corde est soumise a une
tension 7 constante. Dans ces conditions, elle coincide quasiment avec 'axe horiontal (Oz) (la ten-
sion est supposée assez importante pour que le poids de la corde soit négligeable).

On se propose de déterminer I’équation de propagation d’une perturbation le long de cette corde.
Cette perturbation est caractérisée par la déformation y, fonction de x et de t, comme illustré sur le
schéma ci—dessous.

~

y(z,1)

=]

La tension dans la corde est notée T' = T,,é, +T,¢€,. On suppose qu’il n’y a pas de mouvement suivant

I'axe €, et que le déplacement y(x,t) est un infiniment petit d’ordre un ainsi que l'angle o = q
x

que fait la corde au point d’abscisse x avec 'axe Oz.

1. Effectuer un bilan des forces sur un petit élément de corde compris entre x et x + dx, les
représenter sur un schéma.

2. Ecrire le principe fondamental de la dynamique & ce petit élément de corde. En déduire que
la tension de la corde reste constante suivant €, c’est-a-dire T,(x) = Tp.

3. Etablir I'équation de propagation sur y(x,t). Quelle forme reconnait-on ? Identifier la vitesse
c de la perturbation.

Un dispositif impose maintenant le mouvement y(0,t) = bcos(wt) avec b < L. On cherche y(z,t) de
: L
la forme f(x)cos(wt). On suppose que sin (%) # 0.
4. Montrer que pour certaines valeurs de w, il y a résonance et que les pulsations possibles se
mettent sous la forme w, = nwy en exprimant wy.




Lycée Jean Bart Physique-Chimie MP 2025 — 2026

Exercice 5 : Cable coaxial sans pertes *xx | Iz F X

On modélise un élément mésoscopique de cable coaxial sans pertes :

Lodz (1) i(z + da,t)

— s
v(x,t)T Coda Tv(x +da,t)

ou Lg, Cy représentent respectivement 'inductance linéique et la capacité linéique du cable. Dans
la section d’abscisse x du céble, le courant vaut i(z,t) et la différence de potentiel v(zx,t). Dans la
section d’abscisse 4 dx du céble, le courant vaut i(x +dzx, t) et la différence de potentiel v(z+dx, t).
On prendra Ly = 0,25pH - m™! et Cy = 100pF - m~!. On admet le théoréme de Schwarz pour les

e : ) . . g (of\ o [Of
dérivées partielles : pour une fonction f des variables x et t, e (83@) =5 (&f)

1. Etablir le systéme d’équations reliant les grandeurs i(z,t) et v(x,t). En déduire les équations
de propagation vérifiées par les fonctions i(z,t) et v(z,t).
2. Exprimer puis calculer la vitesse ¢ de propagation des ondes dans le cable.
On étudie la propagation d’une onde plane progressive harmonique se propageant vers les x croissants.
On pose i(z,t) = Iyexp(j(wt — kz)) et v(z,t) = Vyexp(j(wt — kx)).
3. Déterminer la relation liant v et ¢ pour cette onde.

4. Exprimer I'impédance caractéristique Zo de la ligne en fonction de Ly et Cy. Application
numeérique.

Exercice 6 : Chaine d’oscillateurs xx | i &

On consideére une chaine infinie d’atomes ponctuels de masse m liés par des ressorts de constante
de raideur K. La chaine est portée par I'axe (Ox). A Déquilibre, les atomes occupent les positions
T, = na avec n € Z ou a est la longueur a vide des ressorts. On note &, le déplacement de I'atome
n par rapport a sa position d’équilibre. On supposera que le poids des atomes est négligeable devant
les forces de rappel élastique.
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X

1. Etablir équation du mouvement de la particule n.
i(wt—kxy
2. Onpose{ = Ae( '

3. Montrer que la chaine se comporte comme un filtre passe-bas dont on calculera la pulsation
de coupure w,.

). Déterminer alors la relation entre w et k.

4. Que devient la relation de dispersion quand w < w, ? Déterminer alors la vitesse ¢ de propa-
gation des ondes dans la chaine.
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Exercice 7 : Rotation d’une polarisation rectiligne **x | iz A

On considere une OPPM électromagnétique se propageant dans
la direction (Oz) et polarisée rectilignement dans la direction .
On place sur le trajet de cette onde un polariseur orienté pour
transmettre une polarisation rectiligne perpendiculaire a (Oz) et
faisant un angle 6 par rapport au vecteur .

La direction 1, selon laquelle le polariseur transmet une polari-
sation rectiligne est appelée direction privilégiée. Pour une onde
transverse polarisée rectilignement, le polariseur ne transmet que
la projection du champ électrique sur la direction privilégiée.

1. Ecrire 'expression du champ électrique E de cette onde avant la traversée du polariseur (on
introduira les notations nécessaires).

2. En déduire 'expression du champ électrique E; de l'onde apres la traversée du polariseur (on
note g le déphasage dii a la traversée).
On définit le coefficient de transmission 1 d’un polariseur comme le rapport de I'éclairement &; de

I'onde a la sortie par ’éclairement & de l'onde a l'entrée. L’éclairement est donné par la moyenne
temporelle de la norme du vecteur de Poynting : £ = (J|II|]).

3. Calculer 7.
Indication : Utiliser la densité volumique d’énergie électromagnétique (comment se répar-
tissent les contributions magnétiques et électriques ?)

On place maintenant sur le trajet de 'onde une suite de N polariseurs. Le polariseur n est orienté
pour transmettre une polarisation rectiligne formant un angle nf par rapport a 'axe .

4. Quel est 'éclairement £y de 'onde apres la traversée de ces N polariseurs ?

5. Montrer que pour N suffisament grand, le dispositif permet de faire tourner la direction de
polarisation rectiligne d'un angle o quelconque avec une perte d’éclairement négligeable.

6. Combien de polariseurs faut-il utiliser pour faire tourner la direction de polarisation d'un
angle de 90° avec une perte d’éclairement inférieure a 1% 7




