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TD n°10
Ondes électromagnétiques dans le vide

Exercice 1 : OPPM électromagnétique b | � ©

On étudie la propagation d’une onde électromagnétique dans le vide.
1. Rappeler l’équation aux dérivées partielles à laquelle satisfont les champs électrique E⃗(M, t)

et magnétique B⃗(M, t).
On suppose que le champ électrique est de la forme : E⃗ = E0 cos(ωt − kz)u⃗x.

2. Déterminer une équation satisfaite par k pour que ce champ soit solution de l’équation donnée
en Q.1.

3. Quels sont la direction, le sens et la vitesse de propagation de cette onde ?
4. Quel est son état de polarisation ?
5. Indiquer la relation de structure de ce champ électromagnétique. En déduire le champ B⃗(M, t)

de cette onde puis le vecteur de Poynting de l’onde.
La puissance moyenne rayonnée par cette onde à travers une surface S = 4 mm2 orthogonale à sa
direction de propagation est P = 10 W.

6. Calculer les amplitudes E0 et B0 des champs électrique et magnétique.

Exercice 2 : OPPM électromagnétique de direction quelconque b | � ©

On étudie une onde électromagnétique dans le vide, dont le champ électrique s’écrit :

E⃗ = Exu⃗x + Eyu⃗y avec Ex = E0 exp
[
i

(
k

3(2x + 2y + z) − ωt

)]
L’onde se propage dans le vide et sa longueur d’onde est λ = 600 nm.

1. Calculer la fréquence de l’onde. Dans quel domaine du spectre se situe cette onde ?
2. Calculer la valeur numérique de k.
3. Établir l’équation cartésienne d’un plan d’onde.
4. Exprimer Ey en fonction de Ex.
5. Calculer le champ magnétique B⃗ de cette onde.
6. Calculer la densité volumique moyenne d’énergie électromagnétique associée à cette onde.
7. Même question pour le vecteur de Poynting. Commentaire ?

Exercice 3 : Onde électromagnétique b b | © å

On donne la représentation complexe du champ électrique d’une onde électromagnétique dans le
vide, en coordonnées cartésiennes :

E⃗ =

∣∣∣∣∣∣∣∣∣∣∣

0
E0 cos

(
πy

a

)
e

i(ωt−k0z)

αE0 sin
(

πy

a

)
e

i(ωt−k0z)

où α est complexe et k0 réel positif.
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1. Déterminer α et k0 en fonction de E0, ω, a et c.
2. Déterminer le champ magnétique B⃗ de cette onde.
3. Cette onde est-elle plane ? progressive ? harmonique ? transverse ?
4. Calculer le vecteur de Poynting instantanné puis sa moyenne temporelle.

Exercice 4 : Corde vibrante b b | © å Ý

On considère une corde sans raideur de masse linéique µ uniforme. Cette corde est soumise à une
tension T0 constante. Dans ces conditions, elle coïncide quasiment avec l’axe horiontal (Ox) (la ten-
sion est supposée assez importante pour que le poids de la corde soit négligeable).

On se propose de déterminer l’équation de propagation d’une perturbation le long de cette corde.
Cette perturbation est caractérisée par la déformation y, fonction de x et de t, comme illustré sur le
schéma ci–dessous.

x

y

O
y(x, t)

L

T0

La tension dans la corde est notée T⃗ = Txe⃗x +Tye⃗y. On suppose qu’il n’y a pas de mouvement suivant

l’axe e⃗x et que le déplacement y(x, t) est un infiniment petit d’ordre un ainsi que l’angle α =
∣∣∣∣∣dy

dx

∣∣∣∣∣
que fait la corde au point d’abscisse x avec l’axe Ox.

1. Effectuer un bilan des forces sur un petit élément de corde compris entre x et x + dx, les
représenter sur un schéma.

2. Écrire le principe fondamental de la dynamique à ce petit élément de corde. En déduire que
la tension de la corde reste constante suivant e⃗x, c’est-à-dire Tx(x) = T0.

3. Établir l’équation de propagation sur y(x, t). Quelle forme reconnaît-on ? Identifier la vitesse
c de la perturbation.

Un dispositif impose maintenant le mouvement y(0, t) = b cos(ωt) avec b ≪ L. On cherche y(x, t) de
la forme f(x) cos(ωt). On suppose que sin

(
ωL
c

)
̸= 0.

4. Montrer que pour certaines valeurs de ω, il y a résonance et que les pulsations possibles se
mettent sous la forme ωn = nω0 en exprimant ω0.
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Exercice 5 : Câble coaxial sans pertes b b | © å Ý

On modélise un élément mésoscopique de câble coaxial sans pertes :

L0dx i(x,t)

C0dx

i(x + dx,t)

v(x,t) v(x + dx,t)

où L0, C0 représentent respectivement l’inductance linéique et la capacité linéique du câble. Dans
la section d’abscisse x du câble, le courant vaut i(x, t) et la différence de potentiel v(x, t). Dans la
section d’abscisse x+dx du câble, le courant vaut i(x+dx, t) et la différence de potentiel v(x+dx, t).
On prendra L0 = 0,25 µH · m−1 et C0 = 100 pF · m−1. On admet le théorème de Schwarz pour les

dérivées partielles : pour une fonction f des variables x et t, ∂

∂t

(
∂f

∂x

)
= ∂

∂x

(
∂f

∂t

)
.

1. Établir le système d’équations reliant les grandeurs i(x, t) et v(x, t). En déduire les équations
de propagation vérifiées par les fonctions i(x, t) et v(x, t).

2. Exprimer puis calculer la vitesse c de propagation des ondes dans le câble.
On étudie la propagation d’une onde plane progressive harmonique se propageant vers les x croissants.
On pose i(x, t) = I0 exp(j(ωt − kx)) et v(x, t) = V 0 exp(j(ωt − kx)).

3. Déterminer la relation liant v et i pour cette onde.
4. Exprimer l’impédance caractéristique ZC de la ligne en fonction de L0 et C0. Application

numérique.

Exercice 6 : Chaîne d’oscillateurs b b | © å X

On considère une chaîne infinie d’atomes ponctuels de masse m liés par des ressorts de constante
de raideur K. La chaîne est portée par l’axe (Ox). À l’équilibre, les atomes occupent les positions
xn = na avec n ∈ Z où a est la longueur à vide des ressorts. On note ξn le déplacement de l’atome
n par rapport à sa position d’équilibre. On supposera que le poids des atomes est négligeable devant
les forces de rappel élastique.

x

Au repos

Perturbé

K

m

K

m

K

m

K

m

K

m

K

m

K

a
xn = na

ξn

1. Établir l’équation du mouvement de la particule n.
2. On pose ξ

n
= Ae

i(ωt−kxn) . Déterminer alors la relation entre ω et k.
3. Montrer que la chaîne se comporte comme un filtre passe-bas dont on calculera la pulsation

de coupure ωc.
4. Que devient la relation de dispersion quand ω ≪ ωc ? Déterminer alors la vitesse c de propa-

gation des ondes dans la chaîne.
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Exercice 7 : Rotation d’une polarisation rectiligne b b | © .

E⃗ = Exu⃗x
x

y

u⃗p

u⃗⊥

θ

u⃗z

On considère une OPPM électromagnétique se propageant dans
la direction (Oz) et polarisée rectilignement dans la direction u⃗x.
On place sur le trajet de cette onde un polariseur orienté pour
transmettre une polarisation rectiligne perpendiculaire à (Oz) et
faisant un angle θ par rapport au vecteur u⃗x.
La direction u⃗p selon laquelle le polariseur transmet une polari-
sation rectiligne est appelée direction privilégiée. Pour une onde
transverse polarisée rectilignement, le polariseur ne transmet que
la projection du champ électrique sur la direction privilégiée.

1. Écrire l’expression du champ électrique E⃗ de cette onde avant la traversée du polariseur (on
introduira les notations nécessaires).

2. En déduire l’expression du champ électrique E⃗1 de l’onde après la traversée du polariseur (on
note φ0 le déphasage dû à la traversée).

On définit le coefficient de transmission η d’un polariseur comme le rapport de l’éclairement E1 de
l’onde à la sortie par l’éclairement E0 de l’onde à l’entrée. L’éclairement est donné par la moyenne
temporelle de la norme du vecteur de Poynting : E = ⟨∥Π⃗∥⟩.

3. Calculer η.
Indication : Utiliser la densité volumique d’énergie électromagnétique (comment se répar-
tissent les contributions magnétiques et électriques ?)

On place maintenant sur le trajet de l’onde une suite de N polariseurs. Le polariseur n est orienté
pour transmettre une polarisation rectiligne formant un angle nθ par rapport à l’axe u⃗x.

4. Quel est l’éclairement EN de l’onde après la traversée de ces N polariseurs ?
5. Montrer que pour N suffisament grand, le dispositif permet de faire tourner la direction de

polarisation rectiligne d’un angle α quelconque avec une perte d’éclairement négligeable.
6. Combien de polariseurs faut-il utiliser pour faire tourner la direction de polarisation d’un

angle de 90◦ avec une perte d’éclairement inférieure à 1% ?
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