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TD n°13
Rayonnement dipolaire électrique

Exercice 1 : Antenne assimilable à un dipôle oscillant b | � å .

On considère une antenne hertzienne de taille ℓ alimentée en son milieu
par un circuit qui délivre l’intensité :

Icircuit(t) = I0 cos(ωt)

Dans l’antenne, l’intensité I dépend de z et du temps. On suppose
qu’elle est nulle aux deux extrémités de côte z = ± ℓ

2. D’après les
hypothèses, le courant dans l’antenne vaut :

I(z, t) = Icircuit(t)
(

1 − 2 |z|
ℓ

)

1. Quelle doit être la condition sur ℓ pour que cette antenne puisse-être étudiée dans le cadre
des dipôles électrique oscillant ?

2. En utilisant la loi locale de conservation de la charge sous la forme ∂λ
∂t

+ ∂I

∂z
= 0, déterminer

la densité linéique de charge λ(z, t) le long du fil en z > 0 et en z < 0.
3. En déduire que cette antenne est assimilable à un dipôle, dont le moment dipolaire s’écrit

p⃗(t) = p0 cos(ωt+ ψ)u⃗z

avec p0 et ψ à exprimer.

Exercice 2 : Dipôle électrique oscillant b | �

On donne l’expression du champ électromagnétique en un point M de coordonnées sphériques
(r, θ, φ), créé dans le vide par un dipôle électrique oscillant p⃗(t) = p0 cos(ωt)u⃗z placé en O. On
se place dans une zone telle que r soit très grand devant la taille caractéristique ℓ du dipôle.

E⃗(M, t) = p0 cos θ
2πε0r

( 1
r2 cos(ωt− kr) − ω

cr
sin(ωt− kr)

)
u⃗r

+p0 sin θ
4πε0r

(
1
r2 cos(ωt− kr) − ω

cr
sin(ωt− kr) − ω2

c2 cos(ωt− kr)
)
u⃗θ

et
B⃗(M, t) = −p0 sin θ

4πε0cr

(
ω

cr
sin(ωt− kr) + ω2

c2 cos(ωt− kr)
)
u⃗φ

en notant k = ω

c
.

1. Vérifier l’homogénéité de ces expressions.
2. Simplifier ces expressions dans le cas où kr ≪ 1 en ne gardant que le(s) termes(s) de plus

forte amplitude pour chacun des champs.
3. Commenter les expressions simplifiées et comparer les ordres de grandeurs des densités volu-

miques moyennes d’énergie électrique et magnétique.
4. Reprendre les deux questions précédentes pour kr ≫ 1.
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Exercice 3 : Dipôle magnétique oscillant b b | � å

Une spire circulaire de centre O, de rayon a et d’axe (Oz) est parcourue par un courant sinusoïdal
de pulsation ω et dont l’intensité i(t) = I0 cos(ωt) est la même en tout point du circuit. Cette spire
possède un moment magnétique instantané m⃗(t) = m0 cos(ωt)u⃗z avec m0 une constante. Elle crée
dans sa zone de rayonnement un champ électromagnétique ayant dans le système de coordonnées
sphériques (r, θ, φ) d’axe (Oz) l’expression :

µ0m0ω
2 sin θ

4πrc cos(ωt− kr)u⃗φ et − µ0m0ω
2 sin θ

4πrc2 cos(ωt− kr)u⃗θ

1. Exprimer m0 en fonction de I0 et a.
2. Identifier dans les deux expressions ci-dessus, celle du champ électrique E⃗(M, t) et celle du

champ magnétique B⃗(M, t). Donner le plus possible d’arguments pour justifier votre réponse.

3. Que vaut le rapport ∥E⃗∥
∥B⃗∥

? Décrire la structure du champ électromagnétique rayonné par le

dipôle magnétique oscillant, la comparer au champ électromagnétique rayonné par le dipôle
électrique oscillant.

4. Calculer le vecteur de Poynting Π⃗ ainsi que sa moyenne temporelle.
5. Calculer la puissance moyenne ⟨P⟩ rayonnée dans tout l’espace. Montrer qu’elle se met sous

la forme :
⟨P⟩ = 1

2R0

(
a

λ

)4
I2

0

avec λ la longueur d’onde et R0 à exprimer en fonction de µ0 et c uniquement. Faire l’appli-
cation numérique pour R0.

Exercice 4 : Antenne demi-onde b b | © å

Une antenne filiforme, colinéire à (Oz), de longueur ℓ = λ

2 , centrée à l’origine, est le siège d’un

courant sinusoïdal de la forme : I(z, t) = I0 cos
(

2π z
λ

)
e

iωt avec ω = 2πc
λ

.

Un point M est repéré par ses coordonnées sphériques (r, θ, φ) d’origine O et d’axe (Oz). On se place
dans la zone de rayonnement r ≫ λ. On admet que le champ magnétique total rayonné est :

B⃗(M, t) = iµ0I0

2πr sin θ cos
(
π

2 cos θ
)

exp
[
iω
(
t− r

c

)]
u⃗φ

et que localement, ce champ électromagnétique a la structure d’une onde plane progressive de direc-
tion de propagation u⃗r.

1. Calculer la valeur moyenne du vecteur de Poynting en M .
2. Dans quelle direction cette antenne rayonne-t-elle le maximum d’énergie ? Représenter l’indi-

catrice de rayonnement.
3. Calculer la puissance moyenne P rayonnée par l’antenne à travers une sphère de rayon r.
4. En déduire la résistance de rayonnement R de l’antenne, définie par P = RI2

eff (Ieff est la
valeur efficace du courant circulant dans l’antenne). Faire l’application numérique.

Formulaire :
� π

0

cos2
(
π

2 cos θ
)

sin θ dθ = 1, 22.
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Exercice 5 : Diffusion par un atome b b | © å X

Un atome d’hydrogène H est placé à l’origine O d’un repère d’espace cartésien (Oxyz). On suppose
que le proton est immobile en O. L’électron, de charge −e et de masse m est repéré par son vecteur
position −−→

OM de coordonnées (x, y, z). On note v⃗ son vecteur vitesse. On suppose que :
• l’électron n’est pas relativiste
• l’électron est lié au proton par une force de rappel élastique F⃗r = −mω2

0
−−→
OM

• on tient compte de la perte d’énergie de l’électron par rayonnement en introduisant une force
de frottement de type fluide F⃗ = −m

τ
v⃗

• l’atome est placé dans une OPPM électromagnétique de pulsation ω, rectilignement polarisée
selon u⃗z et se propageant dans la direction +u⃗x.

Le champ électrique de l’onde en notation complexe s’écrit donc : E⃗(M, t) = E0 exp[i(ωt − kx)]u⃗z.
avec E0 > 0. Exepté l’atome d’hydrogène, tout l’espace est vide donc on suppose que cette onde se
propage dans le vide.

1. Déterminer le champ magnétique B⃗(M, t) associé à cette onde.
2. Montrer que la force magnétique exrercée par l’onde sur l’électron est négligeable devant la

force électrique.
3. En se placant dans le domaine optique, justifier que le champ puisse être considéré comme

uniforme à l’échelle de l’atome. En déduire que la force exercée par l’onde sur l’électron peut
s’écrire : F⃗e = −eE⃗(0, t).
Astuce : Évaluer et comparer la taille caractéristique de l’atome et la longueur d’onde.

4. Appliquer le PFD à l’électron. Montrer que pour t ≫ τ (après le régime transitoire), le
mouvement forcé de l’électron se fait uniquement suivant u⃗z.

5. Déterminer l’expression de z(t).
L’atome d’hydrogène se comporte alors comme un dipôle électrique oscillant, de moment

p⃗(t) = −e z(t) u⃗z = p0e
iωt
u⃗z

On rappelle que dans ce cas, le champ électromagnatique rayonné s’écrit en notation complexe et
dans la zone de rayonnement :

E⃗r(M, t) = −
µ0p0ω

2 sin θ
4πr exp[i(ωt− kr)]u⃗θ et B⃗r(M, t) = −

µ0p0ω
2 sin θ

4πrc exp[i(ωt− kr)]u⃗φ

6. Déterminer la valeur moyenne ⟨Π⃗⟩ du vecteur de Poynting de l’onde rayonnée.
7. En déduire la puissance électromagnétique moyenne rayonnée Pray. On montrera qu’elle se

met sous la forme :
Pray = K

ω4

(ω2 − ω2
0)2 + ω2

τ 2

avec K une constante à exprimer en fonction de E0, e, m, c et ε0.

8. ω0 et 1
τ

étant du même ordre de grandeur, quelle est la forme approchée de Pray lorsque
ω ≪ ω0 (diffusion Rayleigh) ? Et si ω ≫ ω0 (diffusion Thomson) ?
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Exercice 6 : Durée de vie d’un atome b b | © X

Dans le modèle planétaire classique de l’atome, les électrons décrivent des orbites circulaires autour
du noyau. Considérons un atome d’hydrogène dont le noyau est immobile en O et où l’électron, de
masse m et de charge électrique −e, est en orbite à la distance constante re du noyau.

1. En supposant que la seule force exercée sur l’électron est la force électrique due au noyau,
calculer l’accélération a⃗(t) de l’électron en fonction de m, e, ε0 et re.

2. Expliciter l’énergie mécanique E de l’électron en fonction de e, ε0 et re.
La puissance rayonnée à travers une sphère de centre O et de rayon r par une particule d’accélération
a⃗ est donnée par la formule de Larmor :

Pray = 2
3

1
4πε0

e2∥a⃗∥2

c3

3. Déterminer Pray en fonction de e, m, ε0, c et re.
Cette puissance rayonnée est prélevée sur l’énergie mécanique de l’électron. Si on suppose que l’éner-
gie rayonnée durant une révolution de l’électron autour du noyau est très petite devant l’énergie
mécanique E, on peut considérer que l’orbite électronique est quasiment circulaire avec un rayon
re(t) qui varie lentement.

4. Établir, à partir de considérations énergétiques, l’équation différentielle vérifiée par re(t) et en
déduire l’évolution du rayon de l’orbite en fonction du temps. On notera r0 la valeur de re à
t = 0.

5. Application numérique : à t = 0, r0 = 53 pm (rayon de Bohr). Calculer la durée τ au bout de
laquelle re = 0 et la comparer à la période T de révolution de l’électron. Conclure.
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