
TP n°7-12 (D) Étude d'une machine thermique

connaissances requises	Thermodynamique, principes de la thermodynamique en système ouvert, machines thermiques
but du TP	Étude d'une machine thermique, détermination d'un coefficient d'efficacité
matériel	Pompe à chaleur

Le compresseur, alimenté par le secteur, agit en source extérieure d'énergie, de rendement global de l'ordre de 40%. Le réfrigérant (fluide SES36) y est comprimé puis conduit à travers des tuyaux en cuivre calorifugés jusqu'à la cuve du condenseur. Le fluide entre dans le condenseur à la pression P_c et à la température T_7 pour y subir une condensation isobare et ressortir sous forme liquide à la température T_8 (le refroidissement est assuré par de l'eau qui circule dans un serpentin plongé dans la cuve du condenseur ; l'eau du serpentin entre dans la cuve à la température d'entrée T_4 et sort à la température de sortie T_3). Le réfrigérant passe ensuite au travers d'un débitmètre puis de la vanne de détente, réglable manuellement. En sortie du détendeur, le fluide est à la pression P_e et commence à bouillir. Il entre alors dans la cuve de l'évaporateur. Durant son passage dans cette cuve, le fluide est chauffé jusqu'à la température T_5 . Le phénomène d'ébullition (ou d'évaporation) se produit à la pression constante P_e (le chauffage est assuré par de l'eau qui circule dans un serpentin plongé dans l'évaporateur ; l'eau du serpentin entre dans la cuve à la température d'entrée T_1 et sort à la température de sortie T_2). Le réfrigérant en phase vapeur, surchauffé, quitte alors l'évaporateur et retourne au compresseur à travers des tuyaux en cuivre calorifugés et le cycle recommence.

On rappelle que la capacité thermique massique de l'eau vaut $c_{eau} = 4.2 \, \mathrm{J \cdot K^{-1} \cdot g^{-1}}$.

1 – Mise en route de la machine

La machine a déjà été mise en route.

C'est à vous!

- Chercher sur le dispositif les différentes parties représentées sur le schéma et repérer les 2 manomètres. Une fois les composants identifiés, appeler le professeur.
- X Attendre que l'équilibre thermique s'installe en vérifiant les températures des thermomètres.

Les vannes d'arrivée d'eau et la vanne de détente peuvent alors être ajustée afin d'obtenir les conditions voulues. Après une longue période de fonctionnement, toute variation importante nécessitera 15 à 20 minutes avant d'obtenir un nouvel état d'équilibre.

riangle À la fin de la séance de TP, en pas éteindre la machine riangle

2 – Mesures et exploitation

C'est à vous! —

- Remplir le tableau ci–dessous.
- X Tracer le cycle parcouru par le réfrigérant sur le diagramme enthalpique.
- X Déterminer la valeur de l'énergie cédée au fluide par le compresseur en réalisant les hypothèses nécessaires. Comment vérifier ces hypothèses?
- X En déduire l'efficacité en tenant compte du rendement du moteur.

Grandeur mesurée	Symbole	Unité	Mesures
Température ambiante	T_A		
Puissance électrique	\mathcal{P}		
Débit du réfrigérant	m_r		
Température de l'eau à l'entrée du condenseur	T_4		
Température de l'eau à la sortie du condenseur	T_3		
Débit d'eau dans le condenseur	m_c		
Pression du réfrigérant dans le condenseur	P_c		
Température d'entrée du réfrigérant	T_7		
Température de sortie du réfrigérant	T_8		
Température de changement d'état	T_6		
Température de l'eau à l'entrée de l'évaporateur	T_1		
Température de l'eau à la sortie de l'évaporateur	T_2		
Débit d'eau dans l'évaporateur	m_e		
Pression du réfrigérant dans l'évaporateur	P_e		
Température de sortie du réfrigérant	T_5		