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TD n°23
Mécanique quantique

Exercice 1 : Modèle de Bohr b | �

Pour expliquer la stabilité de l’atome, Bohr imagina que les électrons devaient se déplacer sur des
orbites circulaires. Sur la première orbite, de rayon a0, la quantité de mouvement de l’électron vérifie
p0 = ℏ

a0
.

1. Afin qu’il soit possible de parler de trajectoire au sens classique du terme, quelles limitations
doit-on imposer aux indéterminations ∆p et ∆r pour l’orbite de Bohr considérée ?

2. Montrer que ces indéterminations sont incompatibles avec l’inégalité de Heisenberg spatiale.
3. Que peut-on conclure sur le modèle de Bohr ?

Exercice 2 : Largeur spectrale b | �

Un atome se trouve dans un état excité dont l’énergie est supérieure à celle du niveau fondamental
de 4,7 eV. Le temps de vie de cet état excité est de 1,0 × 10−13 s.

1. Déterminer la fréquence et la longueur d’onde du rayonnement émis lors de la désexcitation
de l’atome.

2. Quelle est l’indétermination minimale sur l’énergie du photon émis lorsque l’atome se désex-
cite ?

3. En déduire la largeur spectrale de la raie d’émission correspondante (on l’exprimera à la fois
en termes de fréquences et de longueur d’onde). Que vaut alors la longueur de cohérence de
cette source ?

Exercice 3 : Oscillateur harmonique quantique b b | � © å

Soit une particule quantique de masse m, soumise à une énergie potentielle de la forme V (x) =
1
2mω

2
0x

2. Dans un état stationnaire d’énergie E, la fonction d’onde de cette particule s’écrit :

ψ(x, t) = ϕ(x) exp
(

−iEt

ℏ

)

avec, dans l’état fondamental, ϕ(x) = A exp
(

−x2

a2

)
, A étant une constante de normalisation et a

une largeur caractéristique.
1. Déterminer la constante de normalisation A.
2. Représenter l’allure de la densité de probabilité de présence de la particule. En déduire (sans

calculs) la valeur de la position moyenne ⟨x⟩ de la particule.
3. Calculer l’indétermination quantique ∆x sur la position.
4. Écrire l’équation de Schrödinger indépendante du temps dans le cas considéré.
5. Déterminer alors l’expression de l’énergie E et de a en fonction de ℏ, ω0, et de m.

Données : on admet que
� +∞

−∞
e

−αu2

du =
√
π

α
et que

� +∞

−∞
u2e

−αu2

du =
√

π

4α3
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Exercice 4 : Puits de potentiel infini b | ©

On considère une particule quantique de masse m dans un puits de potentiel infiniment profond, de
largeur a.

1. Représenter l’allure de la fonction d’onde propre pour les trois premiers niveau d’énergie de
cette particule.

2. En déduire, dans chaque cas, l’expression de la longueur d’onde de De Broglie.
3. Déterminer également l’expression de l’énergie E dans chaque cas en fonction de a, ℏ et de la

masse m de la particule.
4. En généralisant, trouver l’expression de l’énergie En du nieme niveau en fonction de n, m, a et

ℏ.

Exercice 5 : Quantification dans un potentiel b b | © X

On considère le potentiel suivant :

V (x) =


+∞ si x < 0

0 si 0 ≤ x < L
U0 ≥ 0 sinon

1. Trouver la relation de quantification de l’énergie dans le cas E < U0.
2. Expliciter le spectre En lorsque U0 → ∞.
3. Étudier le cas E > U0.

Exercice 6 : Marche de potentiel b b | å

On étudie le mouvement d’une particule quantique dans le potentiel V (x) défini par :

V (x) =
{

0 pour x < 0 région (I)
V0 pour x ≥ 0 région (II)

On commence par étudier une particule d’énergieE > V0. On pose k1 =
√

2mE
ℏ2 et k2 =

√
2m(E − V0)

ℏ2 .

1. Montrer qu’un état stationnaire de la particule peut être représenté par la fonction d’onde
propre ϕ(x) = A exp(ik1x) + rA exp(−ik1x) dans la région I et par ϕ(x) = tA exp(ik2x) dans
la région II. A est une constante non nulle et r et t respectivement les coefficients de réflexion
et de transmission en amplitude.

2. Écrire les équations de raccordement en x = 0 et en déduire les expressions de r et t. Que se
passe-t-il si E ≫ V0 ?

On se place maintenant dans le cas E < V0. L’expression de k1 et la fonction d’onde propre dans la
région I peuvent être conservées.

3. Comment est modifiée k2 ? En déduire les nouveaux coefficients r et t. Que vaut alors la
probabilité de réflexion R de la particule ?
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Exercice 7 : Barrière de potentiel b b | © X

Soit le potentiel V (x) =


0 pour x < −a/2 (I)
V0 pour − a/2 ≤ x ≤ a/2 (II)
0 pour x > a/2 (III)

dans lequel évolue une particule de masse

m et d’énergie E > 0. On se limite au cas où E > V0, on pose k =
√

2mE
ℏ2 et K =

√
2m(E − V0)

ℏ2 .

1. Décrire qualitativement le mouvement de la particule dans le cas de la mécanique classique.

Si la particule est quantique, son état est décrit par la fonction d’onde ψ(x, t) = ϕ(x) exp
(

−iEt

ℏ

)
.

2. Établir les équations différentielles vérifiées par ϕ dans les trois régions et proposer une forme
de ϕ dans chacune des trois régions (pas de particules provenant de la région III). On précisera
les conditions limites et les conditions de raccordement.

Ces conditions de raccordement permettent de déduire les expressions des probabilités de réflexion
R et de transmission T par la barrière. On donne :

T = 1

1 + V 2
0

4E(E − V0)
sin2

(
a

ℏ

√
2m(E − V0)

)

3. Déterminer l’expression de R à partir de celle de T donnée.
4. Représenter l’allure de R et T en fonction de E pour E > V0. Commenter.

Des électrons, d’énergie E = 10 eV arrivent sur une barrière de potentiel telle que V0 = 4 eV.
5. Déterminer les épaisseurs de la barrière telles que la transmission soit totale. Comparer ces

valeurs à la longueur d’onde de De Broglie des électrons dans la barrière.
6. La barrière est maintenant d’épaisseur a = 0,4 nm. Déterminer l’intensité du courant transmis

si le courant incident est I = 1 mA.

Exercice 8 : Superposition dans un puits b b | © å .

Une particule de masse m et d’énergie E > 0 est placée dans un puits infini de potentiel situé entre
x = 0 et x = a. Cette particule se trouve dans une superposition de deux états :

ψ(x, t) = A1 sin
(
πx

a

)
e

−iE1t/ℏ + A2 sin
(2πx

a

)
e

−iE2t/ℏ

avec En = n2 ℏ
2π2

2ma2 .

1. En cherchant une solution stationnaire ϕ(x) telle que ψ(x, t) = ϕ(x) · u(t), montrer que son
énergie est quantifiée et justifier l’expression proposée pour En.

2. Établir la relation entre A1 et A2.

3. Pour la suite, on prendra A1 = A2 = 1√
a

, vérifier que ces valeurs conviennent.

4. Représenter ρ(x, t) = |ψ(x, t)|2 pour des valeurs de t bien choisies.
5. Quelle est la période T des oscillations quantiques ?
6. Calculer et commenter le produit ∆E · T où ∆E est l’incertitude sur l’énergie.
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Exercice 9 : Interaction rayonnement-matière b b b | © . X

On étudie le circuit ci-dessous, éclairé par une source lumineuse dont la puissance est connue. On
remarque qu’à partir d’une certaine fréquence d’émission f0, un courant circule dans le circuit.

1. a) Expliquez pourquoi la physique classique ne peut expliquer ce phénomène, en décrivant
ce que l’on aurait du observer.

b) Donnez le nom du phénomène, de la personne qui a proposé une explication au phénomène
et explicitez cette dernière.

2. On donne la formule pour l’énergie de l’électron hf = Wext +Ec avec Wext l’énergie nécessaire
à l’extraction et Ec l’énergie cinétique de l’électron. Expliquez cette formule. Exprimer Wext

en fonction de f0.
3. On étudie une cellule électrochimique de potassium pour laquelle Wext = 2,3 eV. On éclaire

les plaques avec deux sources lumineuses : d’abord une à λ1 = 440 nm puis une deuxième à
λ2 = 660 nm.

a) Pour chaque cas, dîtes s’il y a apparition de courant dans le circuit.
b) Dans les cas où les électrons circulent, donnez leur vitesse.

4. Proposez un protocole permettant la détermination de la valeur de h en modifiant la valeur
de E, tension aux bornes de la pile et la longueur d’onde du rayonnement.
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