TP $n^{\circ}13$ Détermination d'un produit de solubilité

Connaissances requises	Équilibres de solubilité, dosage colorimétrique et conductimétrique
But du TP	Détermination du produit de solubilité.
Matériel	conductimètre avec accessoires (étalonnage non nécessaire),
	1 erlenmeyer de 200 mL, 1 bécher de 100 mL, 1 bécher de 300 mL,
	1 eprouvette graduée de 100 mL,
	1 pipette jaugée de $20\mathrm{mL},$ une de $10\mathrm{mL}$ et une de $50\mathrm{mL},$
	2 burettes graduées, agitateurs magnétiques, pied et entonnoir pour fil-
	tration
	acide sulfurique (environ $0.5 \mathrm{mol}\cdot\mathrm{L}^{-1})$
	nitrate de baryum $Ba(NO_3)_2$ à $0.1 mol \cdot L^{-1}$
	iodate de potassium KIO ₃ à $0.1 \mathrm{mol} \cdot \mathrm{L}^{-1}$
	iodure de potassium KI à environ $0.1 \mathrm{mol}\cdot\mathrm{L}^{-1}$
	thiosulfate de sodium $Na_2S_2O_3$ à $0.01 \text{ mol} \cdot L^{-1}$
	sulfate de sodium Na_2SO_4 à $0.05 \text{mol} \cdot L^{-1}$
	empois d'amidon

1 – Étude théorique

On fait précipiter de l'iodate de baryum en mélangeant une solution de nitrate de baryum à une solution d'iodate de potassium. La réaction en solution est la suivante (les ions spectateurs ne sont pas représentés) :

$$2 IO_3^{-}_{(aq)} + Ba_{(aq)}^{2+} = Ba(IO_3)_{2(s)}$$
 (K_s)

Que vaut le produit de solubilité à l'équilibre en fonction des concentrations des ions présents?

On cherche à déterminer le produit de solubilité K_s en déterminant les concentrations des ions restant en solution :

- les ions iodates sont dosés par une réaction rédox
- les ions baryum sont dosés par conductimétrie

Dosage des ions iodates

On fait réagir un excès d'ion iodure $I_{(aq)}^-$ sur la solution contenant les ions iodates (la réaction peut-être considérée comme totale). Le diiode formé est alors dosé par le thiosulfate.

- Écrire l'équation rédox entre les ions iodures et les ions iodates sachant que les couples mis en jeu sont IO_3^-/I_2 et I_2/I^- .
- Écrire l'équation de dosage par le thiosulfate sachant que les couples mis en jeu sont I_2/I^- et $S_4O_6^{2-}/S_2O_3^{2-}$.

Dosage des ions baryums

L'ion baryum est dosé en le faisant précipiter à l'aide d'ion sulfate. Cette réaction est suivie par conductimétrie. On rappelle que la conductance d'une solution diluée est proportionnelle à la conductivité de celle-ci (loi de Kohlrausch) : $\sigma = \sum_i \lambda_i C_i$ avec λ_i la conductivité molaire ionique du composé ionique i et C_i sa concentration en mol· L^{-1} . La conductivité s'exprime en général en mS·cm⁻¹.

- Donner la réaction de dosage en faisant apparaître les ions spectateurs.
- Déterminer qualitativement l'allure de la courbe donnant la conductivité de la solution en fonction du volume de la solution d'ion sulfate versé.

Données : Les conductivités molaires ioniques de quelques ions à $25\,^{\circ}\text{C}$ exprimées en mS·L·cm⁻¹·mol⁻¹ : $\text{H}_3\text{O}^+: 3.5\,; \, \text{SO}_4^{\,2-}: 1.6\,; \, \text{Ba}^{2+}: 1.3\,; \, \text{Na}^+: 0.5\,; \, \text{K}^+: 0.7\,; \, \text{IO}_3^-: 0.4\,; \, \text{NO}_3^-: 0.7\,; \, \text{HO}^-: 2.0.$

2 – Étude pratique

Préparation

C'est à vous!

- Dans un erlenmeyer, introduire environ 100 mL d'eau et ajouter dans chaque un volume quelconque de nitrate de baryum et d'iodate de potassium (volumes compris entre 10 et 20 mL)
- Agiter les solutions pour faciliter la précipitation puis laisser reposer jusqu'à l'obtention d'une solution limpide.

⚠ Lors du prélèvement pour réaliser les dosages, ne pas pipeter de grains de solide ⚠

Dosage des ions iodates (groupe 1)

C'est à vous!

- Dans un bécher, introduire 20 mL de la solution obtenue, 10 mL de solution d'ion iodure et quelque mL d'acide sulfurique.
- Doser le diiode formé lors de l'étape précédente par du thiosulfate (placer quelques gouttes d'empois d'amidon pour une visualisation plus précise de la fin du dosage).

Dosage des ions Baryum (groupe 2)

C'est à vous!

- ▲ Introduire dans un bécher 50 mL du filtrat et environ 150 mL d'eau.
- A Réaliser le dosage à l'aide d'une solution de sulfate de sodium en suivant la précipitation du sulfate de baryum par conductimétrie (la précipitation n'étant pas immédiate, attendre la stabilisation de la mesure).

Exploitation

- Déterminer la valeur de la concentration en ion iodate puis en ion baryum dans le filtrat.
- 🖒 En déduire la valeur du produit de solubilité de l'iodate de baryum.
- Évaluer les erreurs de mesures et donner un ordre de grandeur de l'incertitude relative.
- \bigcirc Comparer avec la valeur donnée dans les tables : p $K_s = 8.82$.