TP n°7-13 (G) Mesure d'une capacité thermique

connaissances requises	Principes de la thermodynamique, calorimétrie
but du TP	Mesurer une capacité thermique, utiliser des méthodes de calorimétrie
matériel	Un calorimètre, une balance, eau à différentes températures connues, morceau de laiton, plaque de chauffage, une sonde Pt100, interface FOXY

Données : On prendra la capacité thermique massique de l'eau : $c_e = 4{,}185\,\mathrm{J\cdot K^{-1}\cdot g^{-1}}$.

1) Étalonnage du calorimètre

Pour étalonner le calorimètre (déterminer sa valeur en eau μ), on mélange deux masses d'eau différentes à des températures différentes et on mesure la valeur de la température finale atteinte par le système.

- ♣ Démarrer l'acquisition de la température à l'aide de la sonde à disposition et de l'interface Foxy sur une durée de 20 minutes.
- \clubsuit Placer dans le calorimètre une masse m_1 (connue) d'eau à la température ambiante T_1 (connue) et laisser le système se stabiliser pendant 10 minutes.
- \clubsuit Verser alors une masse m_2 (connue) d'eau à la température $T_2 > T_1$ (connue) et laisser évoluer le système pendant à nouveau 10 minutes.
- \clubsuit Tracer la courbe T = f(t).
- \clubsuit Déterminer expérimentalement la valeur en eau μ du calorimètre.

2) Mesure de la capacité thermique du laiton

On dispose d'un morceau de laiton dont on veut déteminer la capacité thermique.

- ♣ Démarrer l'acquisition de la température à l'aide de la sonde à disposition et de l'interface Foxy sur une durée de 20 minutes.
- \clubsuit Placer dans le calorimètre une masse m_1 (connue) d'eau à la température ambiante T_1 (connue) et laisser le système se stabiliser pendant 10 minutes.
- \clubsuit Ajouter ensuite un morceau de laiton de masse m_s connue, placé au préalable dans de l'eau bouillante depuis quelques minutes.
- ⚠ Manipuler la plaque chauffante et le morceau de métal chaud avec précaution!
- A Laisser évoluer le système pendant à nouveau 10 minutes.
- \clubsuit Tracer la courbe T = f(t) et en déduire la valeur de la température finale.
- ♣ Déterminer expérimentalement la capacité thermique du laiton et la comparer avec la valeur tabulée $c_{laiton} = 377 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{kg}^{-1}$.