
MP* Lycée Buffon 2025-2026 1

OPTION INFORMATIQUE
Concours Blanc

1 Logique propositionnelle

1. Donner une forme normale conjonctive de la formule (p↔ q) → (p ∧ r)
2. On rappelle les règles de la déduction naturelle :

Règles structurelles

Γ, φ ⊢ φ (Ax)
Γ ⊢ φ

Γ, ψ ⊢ φ (Aff)

Règles d’introduction

Γ ⊢ ⊤ (⊤i)
Γ, φ ⊢ ψ

Γ ⊢ φ→ ψ
(→i)

Γ ⊢ φ
Γ ⊢ φ ∨ ψ (∨g

i)
Γ ⊢ ψ

Γ ⊢ φ ∨ ψ (∨d
i)

Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ (∧i)

Γ, φ ⊢ ⊥
Γ ⊢ ¬φ (¬i)

Règles d’élimination

Γ ⊢ φ→ ψ Γ ⊢ φ
Γ ⊢ ψ (→e)

Γ ⊢ φ ∨ ψ Γ, φ ⊢ θ Γ, ψ ⊢ θ
Γ ⊢ θ (∨e)

Γ ⊢ φ ∧ ψ
Γ ⊢ φ (∧g

e)
Γ ⊢ φ ∧ ψ
Γ ⊢ ψ (∧d

e)

Γ ⊢ ¬φ Γ ⊢ φ
Γ ⊢ ⊥ (¬e)

Γ ⊢ ⊥
Γ ⊢ φ (⊥e)

Règles de la logique classique

Γ,¬φ ⊢ ⊥
Γ ⊢ φ (Abs)

Γ ⊢ φ ∨ ¬φ (TE)
Γ ⊢ ¬¬φ
Γ ⊢ φ (¬¬e)

Démontrer les séquents suivants :

(a) p→ q ⊢ p→ (p ∧ q)
(b) ¬(p→ q) ⊢ q → p

(c) p→ (q ∨ r),¬q,¬r ⊢ ¬p
(d) ⊢ ((p ∧ q) → r) → ((p→ r) ∨ (q → r))

Centrale 2017 - Option informatique
Mots synchronisants

Notations

- On appelle machine tout triplet (Q,Σ, δ) oùQ est un ensemble fini non vide dont les éléments sont
appelés états, Σ un ensemble fini non vide appelé alphabet dont les éléments sont appelés lettres
et δ une application de Q × Σ dans Q appelée fonction de transition. Une machine correspond
donc à un automate déterministe complet sans notion d’état initial ou d’états finaux.

- Pour un état q et une lettre x, on note q.x = δ(q, x).

- L’ensemble des mots (c’est-à-dire des concaténations de lettres) sur l’alphabet Σ est noté Σ∗.

- Le mot vide est noté ε.

- On note ux le mot obtenu par la concaténation du mot u et de la lettre x.

- On note δ∗ l’extension à Q× Σ∗ de la fonction de transition δ définie par{
∀q ∈ Q, δ∗(q, ε) = q
∀(q, x, u) ∈ Q× Σ× Σ∗, δ ∗ (q, xu) = δ∗(δ(q, x), u)

- Pour un état q de Q et un mot m de Σ∗, on note encore q.m pour désigner δ ∗ (q,m).

Pour deux états q et q′, q′ est dit accessible depuis q s’il existe un mot u tel que q′ = q.u.
On dit qu’un mot m de Σ∗ est synchronisant pour une machine (Q,Σ, δ) s’il existe un état q de Q tel
que pour tout état q de Q, q.m = q0.
L’existence de tels mots dans certaines machines est utile car elle permet de ramener une machine
dans un état particulier connu en lisant un mot donné (donc en pratique de la “réinitialiser” par une
succession précise d’ordres passés à la machine réelle).
La partie 1 de ce problème étudie quelques considérations générales sur les mots synchronisants, la
partie 2 est consacrée à des problèmes algorithmiques classiques, la partie 3 relie le problème de la
satisfiabilité d’une formule logique à celui de la recherche d’un mot synchronisant de longueur donnée
dans une certaine machine et enfin la partie 4 s’intéresse à l’étude de l’existence d’un mot synchronisant
pour une machine donnée. Les parties 1,2 et 3 peuvent être traitées indépendamment. La partie 4,
plus technique, utilise la partie 2.
Dans les exemples concrets de machines donnés plus loin, l’ensemble d’états peut être quelconque, de
même que l’alphabet (Σ = {0, 1}, {a, b, c}, . . .). Par contre, pour la modélisation en Caml, l’alphabet
Σ sera toujours considéré comme étant un intervalle d’entiers [|0, p − 1|] où p = |Σ|. Une lettre
correspondra donc à un entier entre 0 et p− 1. Un mot de Σ∗ sera représenté par une liste de lettres
(donc d’entiers).

type lettre = int;;

type mot = lettre list;;

De même, en Caml, l’ensemble d’étatsQ d’une machine sera toujours considéré comme étant l’intervalle
d’entiers [|0, n− 1|] où n = |Q|.

type etat = int;;

Ainsi, la fonction de transition δ d’une machine sera modélisée par une fonction Caml de signature
etat → lettre → etat. On introduit alors le type machine

type machine = {n_etats : int ; n_lettres : int ; delta : etat -> lettre -> etat};;

n etats correspond au cardinal de Q, n lettres à celui de Σ et delta à la fonction de transition.
Pour une machine nommée M, les syntaxes M.n etats, M.n lettres ou M.delta permettent d’accéder
à ses différents paramètres. Dans le problème, on suppose que M.delta s’exécute toujours en temps
constant.
Par exemple, on peut créer une machine M0 à trois états sur un alphabet à deux lettres ayant comme
fonction de transition la fonction f0 donnée ci-après.

1

let f0 etat lettre = match etat,lettre with

|0,0 -> 1

|0,1 -> 1

|1,0 -> 0

|1,1 -> 2

|2,0 -> 0

|2,1 -> 2;;

f0 : int -> int -> int = <fun>

let M0 = {n_etats=3 ; n_lettres = 2 ; delta = f0};;

La figure 1 fournit une représentation de la machine M0

0��
��

1��
��

2��
��

s
0, 1

k
0

+

1

6

0

�

1 Figure 1 La machine M0

On pourra observer que les mots 11 et 10 sont tous les deux synchronisants pour la machine M0.
Dans tout le sujet, si une question demande la complexité d’un programme ou d’un algorithme, on
attend une complexité temporelle exprimée en O(. . .).

1 Considérations générales

1. Que dire des mots synchronisants pour une machine ayant un seul état ?

Dans toute la suite du problème, on supposera que les machines ont au moins deux états.

2. On considère la machine M1 représentée figure 2. Donne un mot synchronisant pour M1 s’il en
existe un. Justifier la réponse.

1��
��

2��
��
s

a

k
a

Figure 2 La machine M1

3. On considère la machine M2 représentée figure 3. Donner un mot synchronisant de trois lettres
pour M2. On ne demande pas de justifier sa réponse.

4. Ecrire une fonction delta etoile de signature machine → etat → mot → etat qui, prenant
en entrée une machine M , un état q et un mot u, renvoie l’état atteint par la machine M en
partant de l’état q et en lisant le mot u.

5. Ecrire une fonction est synchronisant de signature machine → mot → bool qui, prenant en
entrée une machine M et un mot u, dit si le mot est synchronisant pour M .

6. Montrer que pour qu’une machine ait un mot synchronisant, il faut qu’il existe une lettre x et
deux états distincts de Q, q et q′, tels que q.x = q′.x.

2

7. Soit LS(M) le langage des mots synchronisants d’une machine M = (Q,Σ, δ). On introduit la

machine des parties M̂ = (Q̂,Σ, δ̂) où Q̂ est l’ensemble des parties de Q et où δ̂ est définie par

∀P ⊂ Q, ∀x ∈ Σ, δ̂(P, x) = {δ(p, x), p ∈ P}

(a) Justifier que l’existence d’un mot synchronisant pour M se ramène à un problème d’acces-
sibilité de certain(s) état(s) depuis certain(s) état(s) dans la machine des parties.

(b) En déduire que le langage LS(M) des mot synchronisants de la machine M est reconnais-
sable.

1��
��

2��
��

3��
��

4��
��

q
a

i

b, d]

c

^

d

i

b

q

a, c
U

c

K

d

I
a

R
b, d

R
b

I
a, c

Figure 3 M2 : une machine à 4 états

(c) Déterminer la machine des parties associée à la machine M0 puis donner une expression
régulière du langage LS(M0).

8. Montrer que si l’on sait résoudre le problème de l’existence d’un mot synchronisant, on sait dire,
pour une machine M et un état q0 de M choisi, s’il existe un mot u tel que pour tout état q de
Q, le chemin menant de q à q.u passe forcément par q0.

2 Algorithmes classiques

On appellera graphe d’automate tout couple (S,A) où S est un ensemble dont les éléments sont appelés
sommets et A une partie de S × Σ × S dont les éléments sont appelés arcs. Pour un arc (q, x, q′), x
est l’étiquette de l’arc, q son origine et q′ son extrémité. Un graphe d’automate correspond donc à un
automate non déterministe sans notion d’état initial ou final.
Par exemple, avec

Σ = {a, b}
S0 = {0, 1, 2, 3, 4, 5}
a0 = {(0, b, 0), (0, a, 3), (0, b, 2), (0, a, 1), (1, a, 1), (1, a, 2), (2, b, 1),

(2, b, 3), (2, b, 4), (3, a, 2), (4, a, 1), (4, b, 5), (5, a, 1)}

le graphe d’automate G0 = (S0, A0) est représenté en figure 4.

0��
��

1��
��

2��
��

3��
��

4��
��

5��
��

-a

@
@
@
@
@
@
@R

b

?

a

-b @
@
@
@
@
@
@I

a

-b HH
HH

HH
HH

HH
HH

HHY

a

�

a

�

b

s
a

k
b

R
b

I
a

Figure 4 Le graphe d’automate G0

3

Soient s et s′ deux sommets d’un graphe (S,A). On appelle chemin de s vers s′ de longueur ` toute
suite d’arcs (s1, x1, s

′
1), (s2, x2, s

′
2), . . . , (s`, x`, s

′
`) de A telle que s1 = s, s′` = s′ et pour tout i de

[|1, ` − 1|], s′i = si+1. L’étiquette de ce chemin est alors le mot x1x2 . . . x` et on dit que s′ est acces-
sible depuis s. En particulier, pour tout s ∈ S, s est accessible depuis s par le chemin vide d’étiquette ε.

Dans les programmes à écrire, un graphe aura toujours pour ensemble de sommets un intervalle
d’entiers [|0, n − 1|] et l’ensemble des arcs étiquetés par Σ (comme précédemment supposé être un
intervalle [|0, p − 1|]) sera codé par un tableau de listes d’adjacences V : pour tout s ∈ S, V.(s) est
la liste (dans n’importe quel ordre) de tous les couples (s′, x) tels que (s, x, s′) soit un arc du graphe.
Pour des raisons de compatibilité ultérieure, les sommets (qui sont, rappelons-le, des entiers) seront
codés par le type etat.
Ainsi, avec l’alphabet Σ = {a, b}, la lettre a est codée 0 et la lettre b est codée 1 ; l’ensemble des arcs
du graphe G0, dont chaque sommet est codé par son numéro, admet pour représentation Caml :

V0 : (etat*lettre) list array =[|

[(0,1);(3,0);(2,1);(1,0)];

[(1,0);(2,0)];

[(1,1);(3,1);(4,1)];

[(2,0)];

[(1,0);(5,1)];

[(1,0)] |]

1. On veut implémenter une file d’attente à l’aide d’un tableau circulaire. On définit pour cela un
type particulier nommé file par

type ’a file ={

tab:’a array;

mutable deb:int;

mutable fin:int;

mutable vide:bool };;

deb indique l’indice du premier élément dans la file, fin l’indice qui suit celui du dernier élément
de la file, vide indiquant si la file est vide. Les éléments sont rangés depuis la case deb jusqu’à
la case précédent fin en repartant à la case 0 quand on arrive au bout du tableau (cf exemple).
Ainsi, on peut très bien avoir l’indice fin plus petit que l’indice deb. Par exemple, la file figure
5 contient les éléments 4, 0, 1, 12 et 8 dans cet ordre, avec fin= 2 et deb= 9.

12 8

fin
↓

7 2 5 3 1 16 3

deb
↓

4 0 1

Figure 5 Un exemple de file où fin<deb

On rappelle qu’un champ mutable peut voir sa valeur modifiée.
Par exemple, la syntaxe f.deb <- 0 affecte la valeur 0 au champ deb de la file f.

(a) Ecrire une fonction ajoute de signature ’a file → ’a → unit telle que ajoute f x

ajoute x à la fin de la file d’attente f. Si c’est impossible, la fonction devra renvoyer un
message d’erreur, en utilisant l’instruction failwith "File pleine".

(b) Ecrire une fonction retire de signature ’a file → ’a telle que retire f retire l’élément
en tête de la file d’attente et la renvoie. Si c’est impossible, la fonction devra renvoyer un
message d’erreur.

(c) Quelle est la complexité de ces fonctions ?

4

On considère l’algorithme A s’appliquant à un graphe d’automates G = (S,A) et à un ensemble
de sommets E (on note n = |S| et ∞, vide et rien des valeurs particulières).

créer une file d’attente F , vide au départ
créer un tableau D dont les cases sont indexées par S et initialisées à ∞
créer un tableau P dont les cases sont indexées par S et initialisées à vide
créer une variable c initialisée à n
pour tout s ∈ E faire

insérer s à la fin de la file d’attente F
fixer D[s] à 0
fixer P [s] à rien
diminuer c de 1

fin pour
tant que F n’est pas vide faire

extraire le sommet s qui est en tête de F
pour tout arc (s, y, s′) ∈ A tel que D[s′] =∞ faire

fixer D[s′] à D[s] + 1
fixer P [s′] à (s, y)
insérer s′ à la fin de la file d’attente F
diminuer c de 1

fin pour
fin tant que
renvoyer (c,D, P)

Algorithme 1

2. Justifier que l’algorithme 1 termine toujours.

3. Donner la complexité de cet algorithme en fonction de |S| et |A|. On justifiera la réponse.

4. Justifier qu’au début de chaque passage dans la boucle “tant que F n’est pas vide”, si F contient
dans l’ordre les sommets s1, s2, . . . , sr, alors D[s1] ≤ D[s2] ≤ · · · ≤ D[sr] et D[Sr]−D[S1] ≤ 1.

5. Pour s sommet de G, on note ds la distance de E à s c’est à dire la longueur d’un plus court
chemin d’un sommet de E à s (avec la convention ds =∞ s’il n’existe pas de tel chemin).

(a) Justifier brièvement qu’à la fin de l’algorithme, pour tout sommet s, D[s] 6=∞ si et seule-
ment si s est accessible depuis un sommet de E et que ds ≤ D[s]. Que désigne alors c ?

(b) Montrer qu’en fait, à la fin, on a pour tout sommet s, D[s] = ds. Que vaut alors P [s] ?

6. Ecrire une fonction

accessibles : ((etat*lettre) list) array -> etat list

-> int*int array*(etat*lettre) array

prenant en entrée un graphe d’automate (sous forme de son tableau de listes d’adjacence V) et un
ensemble E de sommets (sous forme d’une liste d’états) et qui renvoie le triplet (c,D, P) calculé
selon l’algorithme précédent. Les constantes ∞, vide et rien seront respectivement codées par
−1, (−2,−1) et (−1,−1) dans cette fonction.

7. Ecrire une fonction chemin de signature etat → (etat*lettre) array → mot qui, prenant
en entrée un sommet s et le tableau P calculé à l’aide de la fonction accessibles sur un graphe
G et un ensemble E, renvoie un mot de longueur minimale qui est l’étiquette d’un chemin d’un
sommet de E à s (ou un message d’erreur s’il n’en existe pas).

3 Reduction SAT

On s’intéresse dans cette partie à la satisfiabilité d’une formule logique portant sur des variables
propositionnelles x1, . . . , xm. On note classiquement ∧ le connecteur logique “et”, ∨ le connecteur

5

“ou” et f la négation d’une formule f .
On appelle littéral une formule constituée d’une variable xi ou de sa négation xi, on appelle clause
une disjonction de littéraux.
Considérons une formule logique sous forme normale conjonctive, c’est à dire sous la forme d’une
conjonction de clauses. Par exemple,

F1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

est une formule sous forme normale conjonctive formée de trois clauses et portant sur quatre variables
propositionnelles x1, x2, x3 et x4.
Soit F une formule sous forme normale conjonctive, composée de n clauses et faisant intervenir m
variables. On suppose les clauses numérotées c1, c2, . . . , cn. On veut ramener le problème de la satis-
fiabilité d’une telle formule au problème de la recherche d’un mot synchronisant de longueur ≤ m sur
une certaine machine. On introduit pour cela la machine suivante associée à F :

- Q est formé de mn+n+1 états, un état particulier noté f et n(m+1) autres états qu’on notera
qi,j avec (i, j) ∈ [|1, n|]× [|1,m+ 1|] ;

- Σ = {0, 1} :

- δ est défini par

• f est un état puits, c’est à dire δ(f, 0) = δ(f, 1) = f ,

• pour tout entier i ∈ [|1, n|], δ(qi,m+1, 0) = δ(qi,m+1, 1) = f ,

• pour tous i ∈ [|1, n|] et j ∈ [|1,m|],

δ(qi,j , 1) =

{
f si le littéral xj apparâıt dans la clause ci
qi,j+1 sinon

δ(qi,j , 0) =

{
f si le littéral xj apparâıt dans la clause ci
qi,j+1 sinon

1. Représenter la machine associée à la formule F1.

2. Donner une distribution de vérité (v1, v2, v3, v4) ∈ [|0, 1|]4 (la valeur vi étant associée à la variable
xi) satisfaisant F1. Le mot v1v2v3v4 est-il synchronisant ?

3. Montrer que tout mot u de longueur m + 1 est synchronisant. A quelle condition sur les qi,1.u
un mot de longueur m est-il synchronisant ?

4. Montrer que si la formule F est satisfiable, toute distribution de vérité la satisfaisant donne un
mot synchronisant de longueur m pour l’automate.

5. Inversement, prouver que si l’automate dispose d’un mot synchronisant de longueur ≤ m, F est
satisfiable. Donner alors une distribution de vérité convenable.

4 Existence

On reprend dans cette partie le problème de l’existence d’un mot synchronisant pour une machine M .

1. Soit M = (Q,Σ, δ) une machine.
Pour toute partie E de Q et tout mot u de Σ∗, on note E.u = {q.u, q ∈ E}.
(a) Soit u un mot synchronisant de M et u0, u1, . . . , ur une suite de préfixes de u rangés dans

l’ordre croissant de leur longueur et telle que ur = u. Que peut-on dire de la suite des
cardinaux |Q.ui| ?

(b) Montrer qu’il existe un mot synchronisant si et seulement s’il existe pour tout couple d’états
(q, q′) de Q2 un mot uq,q′ tel que q.uq,q′ = q′.uq,q′ .

6

On veut se servir du critère établi ci-dessus pour déterminer s’il existe un mot synchronisant. Pour
cela, on associe à la machine M la machine M̃ = (Q̃,Σ, δ̃) définie par :

- Q̃ est formé des parties à un ou deux éléments de Q ;

- δ̃ est définie par ∀(E, x) ∈ Q̃× Σ, δ̃(E) = {δ(q, x), q ∈ E}.

2. Si n = |Q|, que vaut ñ = |Q̃| ?

On a dit que pour la modélisation informatique, l’ensemble d’états d’une machine doit être modélisée
par un intervalle [|0, n−1|]. Q̃ doit donc être modélisé par l’intervalle [|0, ñ−1|]. Soit ϕn une bijection
de Q̃ sur [|0, ñ− 1|]. On suppose qu’on dispose d’une fonction set to nb de signature int → (etat

list) → etat telle que set to nb n l pour n représentant un élément n ∈ N∗ et l représentant une
liste ` d’états renvoie {

ϕn({i}) si ` = [i], 0 ≤ i ≤ n− 1
ϕn({i, j}) si ` = [i; j], 0 ≤ i < j ≤ n− 1

On suppose qu’on dispose aussi d’une fonction réciproque nb to set de signature int → etat →
(etat list) telle que nb to set n q pour n ∈ N∗ et q ∈ [|0, ñ − 1|] renvoie une liste d’états de la
forme [i] ou [i; j] (avec i < j) correspondant à ϕ−1n (q). Ces deux fonctions de conversion sont supposées
agir en temps constant.
Enfin, pour ne pas confondre un état de Q̃ avec sa représentation informatique par un entier, on notera
q l’entier associé à l’état q.

3. Ecrire une fonction delta2 de signature machine → etat → lettre → etat qui prenant en
entrée une machine M , un état q de Q̃ et une lettre x, renvoie l’état de Q̃ atteint en lisant la
lettre x depuis l’état q dans M̃ .

4. Il est clair qu’à la machine M̃ , on peut associer un graphe d’automate G̃ dont l’ensemble des
sommets est Q̃ et dont l’ensemble des arcs est {(q, x, δ̃(q, x)), (q, x) ∈ Q̃× Σ}. On associe alors
à G̃ le graphe retourné G̃R qui a les mêmes sommets que G̃ mais dont les arcs sont retournés
(i.e. (q, x, q′) est un arc de G̃R si et seulement si (q′, x, q) est un arc de G̃).
Ecrire une fonction retourne machine de signature machine → ((etat*lettre) list) array

qui à partir d’une machine M , calculer le tableau V des listes d’adjacence du graphe G̃R.

5. Justifier qu’il suffit d’appliquer la fonction accessibles de la partie 2 au graphe G̃R et à
l’ensemble des sommets de G̃R correspondant à des singletons pour déterminer si la machine M
possède un mot synchronisant.

6. Ecrire une fonction existe synchronisant de signature machine → bool qui dit si une ma-
chine possède un mot synchronisant.

Jan Černỳ, chercheur slovaque, a conjecturé au milieu des années 60 que si une machine à n états
possédait un mot synchronisant, elle en avait un de longueur ≤ (n − 1)2. La construction faite dans
la partie 3 affirme que la recherche, dans une machine, d’un mot synchronisant de longueur ≤ m fixé
est au moins aussi difficile en terme de complexité que celui de la satisfiabilité d’une formule logique
à m variables sous forme normale conjonctive (qu’on sait être un problème “difficile”).

7

	Logique propositionnelle

