MP* Lycée Buffon 2025-2026

OPTION INFORMATIQUE
Concours Blanc

1 Logique propositionnelle

1. Donner une forme normale conjonctive de la formule (p <> q) — (p A1)

2. On rappelle les regles de la déduction naturelle :
Regles structurelles

Loty ™ Lot e A0
Regles d’introduction
Lok
rrr (70 Theog 0
Tk p 4 d
rovy V9 Trove V9
'te T'Hy oL
Trong M Trop
Regles d’élimination
Tkp—oty Tho Thovey T,pF0 T,F0
TF (Ze) THo (Ve)
oAy A A
Tro (AZ) Tro (A2)
F'k=p TFreyp =
rrr (9 Ty (e
Regles de la logique classique
I-pkF L 'kF—-=p
Trp A oy (T8 ey)

Démontrer les séquents suivants :

(a) p—qbFp—(PAq)

(b) ~(p—qFqg—p

(c) p—=(qVr),—g,-rk-p

(d) F(lpAg) =7) = ((p—=7)V(g—T))

Centrale 2017 - Option informatique
Mots synchronisants

Notations

- On appelle machine tout triplet (@, X, §) ou @ est un ensemble fini non vide dont les éléments sont
appelés états, ¥ un ensemble fini non vide appelé alphabet dont les éléments sont appelés lettres
et 0 une application de () x X dans @) appelée fonction de transition. Une machine correspond
donc & un automate déterministe complet sans notion d’état initial ou d’états finaux.

- Pour un état ¢ et une lettre =, on note q.z = 6(q, x).

- L’ensemble des mots (c’est-a-dire des concaténations de lettres) sur ’alphabet 3 est noté ¥*.
- Le mot vide est noté ¢.

- On note uz le mot obtenu par la concaténation du mot u et de la lettre x.

- On note 0* 'extension a @ x X* de la fonction de transition § définie par

{ Vg€ Q, 0"(q.e) =¢
V(g,z,u) € Q@ x X x Xk, §* (q,zu) = 6*(6(q,z),u)

- Pour un état g de @ et un mot m de ¥*, on note encore g.m pour désigner 9 * (g, m).

Pour deux états q et ¢/, ¢’ est dit accessible depuis ¢ s’il existe un mot u tel que ¢’ = q.u.

On dit qu’un mot m de ¥* est synchronisant pour une machine (Q, X, 9) s’il existe un état ¢ de @ tel
que pour tout état ¢ de @, g.m = qo.

L’existence de tels mots dans certaines machines est utile car elle permet de ramener une machine
dans un état particulier connu en lisant un mot donné (donc en pratique de la “réinitialiser” par une
succession précise d’ordres passés a la machine réelle).

La partie 1 de ce probleme étudie quelques considérations générales sur les mots synchronisants, la
partie 2 est consacrée a des problemes algorithmiques classiques, la partie 3 relie le probleme de la
satisfiabilité d’une formule logique & celui de la recherche d’un mot synchronisant de longueur donnée
dans une certaine machine et enfin la partie 4 s’intéresse a I’étude de 'existence d’un mot synchronisant
pour une machine donnée. Les parties 1,2 et 3 peuvent étre traitées indépendamment. La partie 4,
plus technique, utilise la partie 2.

Dans les exemples concrets de machines donnés plus loin, 'ensemble d’états peut étre quelconque, de
méme que l'alphabet (X = {0,1},{a,b,c},...). Par contre, pour la modélisation en Caml, ’alphabet
¥ sera toujours considéré comme étant un intervalle d’entiers [|0,p — 1]] ou p = |X|. Une lettre
correspondra donc a un entier entre 0 et p — 1. Un mot de X* sera représenté par une liste de lettres
(donc d’entiers).

type lettre = int;;
type mot = lettre list;;

De méme, en Caml, 'ensemble d’états () d’'une machine sera toujours considéré comme étant I'intervalle
d’entiers [|0,n — 1|] ou n = |Q)|.

type etat = int;;

Ainsi, la fonction de transition ¢ d’'une machine sera modélisée par une fonction Caml de signature
etat — lettre — etat. On introduit alors le type machine

type machine = {n_etats : int ; n_lettres : int ; delta : etat -> lettre -> etatl};;

n_etats correspond au cardinal de (), n_lettres a celui de X et delta & la fonction de transition.
Pour une machine nommeée M, les syntaxes M.n_etats, M.n_lettres ou M.delta permettent d’accéder
a ses différents parametres. Dans le probleme, on suppose que M.delta s’exécute toujours en temps
constant.

Par exemple, on peut créer une machine MO a trois états sur un alphabet a deux lettres ayant comme
fonction de transition la fonction £0 donnée ci-apres.

let fO etat lettre = match etat,lettre with

0,0 -> 1
0,1 -> 1
[1,0 => 0
[1,1 -> 2
[2,0 => 0
(2,1 —> 2;;

fO : int -> int -> int = <fun>

let MO = {n_etats=3 ; n_lettres = 2 ; delta = f0};;

La figure 1 fournit une représentation de la machine M,

0,1
0
0\ 1
1 Figure 1 La machine M)

On pourra observer que les mots 11 et 10 sont tous les deux synchronisants pour la machine M.
Dans tout le sujet, si une question demande la complexité d’un programme ou d’un algorithme, on
attend une complexité temporelle exprimée en O(...).

1 Considérations générales

1. Que dire des mots synchronisants pour une machine ayant un seul état ?

Dans toute la suite du probleme, on supposera que les machines ont au moins deux états.
2. On considere la machine M; représentée figure 2. Donne un mot synchronisant pour M; s’il en
existe un. Justifier la réponse.

a

OWliB O,

a
Figure 2 La machine M;

3. On considere la machine M représentée figure 3. Donner un mot synchronisant de trois lettres
pour Ms. On ne demande pas de justifier sa réponse.

4. Ecrire une fonction delta_etoile de signature machine — etat — mot — etat qui, prenant
en entrée une machine M, un état ¢ et un mot u, renvoie 1’état atteint par la machine M en
partant de ’état ¢ et en lisant le mot wu.

5. Ecrire une fonction est_synchronisant de signature machine — mot — bool qui, prenant en
entrée une machine M et un mot u, dit si le mot est synchronisant pour M.

6. Montrer que pour qu’une machine ait un mot synchronisant, il faut qu’il existe une lettre z et
deux états distincts de Q, g et ¢, tels que q.z = ¢ .x.

7. Soit LS(M) le langage des mots synchronisants d’une machine M = Q.2 5) On introduit la
machine des parties M= (Q by 5) ou Q est ’ensemble des parties de) et ou § est définie par

VP CQ, Yz e, §(P,x)={d(p,x), p€ P}
(a) Justifier que l'existence d’un mot synchronisant pour M se raméne & un probleme d’acces-
sibilité de certain(s) état(s) depuis certain(s) état(s) dans la machine des parties.

(b) En déduire que le langage LS(M) des mot synchronisants de la machine M est reconnais-
sable.

Figure 3 M, : une machine a 4 états
(c) Déterminer la machine des parties associée a la machine M, puis donner une expression
réguliere du langage LS(Mp).
8. Montrer que si I’on sait résoudre le probleme de I’existence d’un mot synchronisant, on sait dire,

pour une machine M et un état gy de M choisi, s’il existe un mot u tel que pour tout état ¢ de
Q, le chemin menant de ¢ & ¢.u passe forcément par ¢g.

2 Algorithmes classiques

On appellera graphe d’automate tout couple (S, A) ott S est un ensemble dont les éléments sont appelés
sommets et A une partie de S x ¥ x S dont les éléments sont appelés arcs. Pour un arc (¢, z,q’),
est [’étiquette de 'arc, q son origine et ¢ son extrémité. Un graphe d’automate correspond donc & un
automate non déterministe sans notion d’état initial ou final.
Par exemple, avec

Y = {a,b}

So = {0,1,2,3,4,5}

ap = {(0,0,0),(0,a,3),(0,b,2),(0,a,1),(1,a,1),(1,a,2),(2,b,1),

(2,b,3),(2,b,4),(3,a,2),(4,a,1),(4,b,5),(5,a,1)}

le graphe d’automate Go = (Sp, Ap) est représenté en figure 4.

Figure 4 Le graphe d’automate Gy

Soient s et s’ deux sommets d’un graphe (S, A). On appelle chemin de s vers s’ de longueur ¢ toute
suite d’arcs (s1,x1,5)), (s2,22,85), ..., (50,24, 5;) de A telle que 51 = s, 8, = &' et pour tout ¢ de
[11,€ — 1|], s; = s;41. L’étiquette de ce chemin est alors le mot z1z2...x, et on dit que s’ est acces-
sible depuis s. En particulier, pour tout s € .S, s est accessible depuis s par le chemin vide d’étiquette €.

Dans les programmes a écrire, un graphe aura toujours pour ensemble de sommets un intervalle
d’entiers [|0,n — 1|] et ensemble des arcs étiquetés par ¥ (comme précédemment supposé étre un
intervalle [|0,p — 1|]) sera codé par un tableau de listes d’adjacences V : pour tout s € S, V. (s) est
la liste (dans n’importe quel ordre) de tous les couples (s', x) tels que (s, z,s’) soit un arc du graphe.
Pour des raisons de compatibilité ultérieure, les sommets (qui sont, rappelons-le, des entiers) seront
codés par le type etat.

Ainsi, avec lalphabet ¥ = {a, b}, la lettre a est codée 0 et la lettre b est codée 1; I'ensemble des arcs
du graphe Gy, dont chaque sommet est codé par son numéro, admet pour représentation Caml :

VO : (etatxlettre) list array =[|
[€0,1);(3,0);(2,1);(1,0)];
[(1,0);(2,00];
[(1,1);(3,1);4,1)];

[(2,0)];
[(1,0);(5,1)];
[(1,00] |1

1. On veut implémenter une file d’attente a ’aide d’un tableau circulaire. On définit pour cela un
type particulier nommé file par

type ’a file ={
tab:’a array;
mutable deb:int;
mutable fin:int;
mutable vide:bool };;

deb indique l'indice du premier élément dans la file, fin I'indice qui suit celui du dernier élément
de la file, vide indiquant si la file est vide. Les éléments sont rangés depuis la case deb jusqu’a
la case précédent fin en repartant & la case 0 quand on arrive au bout du tableau (cf exemple).
Ainsi, on peut treés bien avoir I'indice fin plus petit que I'indice deb. Par exemple, la file figure
5 contient les éléments 4,0,1,12 et 8 dans cet ordre, avec fin= 2 et deb= 9.

fin deb
\ 3

12 | 8 7 2 5 3 1 16 | 3 4 0 1

Figure 5 Un exemple de file ot fin<deb

On rappelle qu’un champ mutable peut voir sa valeur modifiée.
Par exemple, la syntaxe f.deb <- 0 affecte la valeur 0 au champ deb de la file £.

(a) Ecrire une fonction ajoute de signature ’a file — ’a — unit telle que ajoute f x
ajoute x a la fin de la file d’attente £. Si c’est impossible, la fonction devra renvoyer un
message d’erreur, en utilisant 'instruction failwith "File pleine".

(b) Ecrire une fonction retire de signature a file — ’a telle que retire f retire I’élément
en téte de la file d’attente et la renvoie. Si c’est impossible, la fonction devra renvoyer un
message d’erreur.

(¢) Quelle est la complexité de ces fonctions 7

On considere l'algorithme A s’appliquant & un graphe d’automates G = (.S, A) et & un ensemble
de sommets E (on note n = |S| et oo, vide et rien des valeurs particuliéres).

créer une file d’attente F', vide au départ
créer un tableau D dont les cases sont indexées par S et initialisées a oo
créer un tableau P dont les cases sont indexées par S et initialisées a vide
créer une variable c¢ initialisée a n
pour tout s € F faire
insérer s a la fin de la file d’attente F’
fixer D[s] & 0
fixer P[s] a rien
diminuer ¢ de 1
fin pour
tant que F' n’est pas vide faire
extraire le sommet s qui est en téte de F
pour tout arc (s,y,s’) € A tel que D[s'] = oo faire
fixer D[s'] & D[s] + 1
fixer P[s'] & (s,y)
insérer s’ & la fin de la file d’attente F'
diminuer ¢ de 1
fin pour
fin tant que
renvoyer (¢, D, P)

Algorithme 1

2. Justifier que ’algorithme 1 termine toujours.

3. Donner la complexité de cet algorithme en fonction de |S| et |A|. On justifiera la réponse.
4. Justifier qu’au début de chaque passage dans la boucle “tant que F' n’est pas vide”, si F' contient
dans l'ordre les sommets s1, s2,. .., S, alors D[s;| < D[sg] < --- < D[s,] et D[S,] — D[S1] < 1.
5. Pour s sommet de G, on note d; la distance de E a s c’est a dire la longueur d’un plus court
chemin d’'un sommet de E a s (avec la convention ds = oo s'il n’existe pas de tel chemin).
(a) Justifier brievement qu’a la fin de 'algorithme, pour tout sommet s, D[s] # oo si et seule-
ment si s est accessible depuis un sommet de E et que ds < D[s]. Que désigne alors ¢?
(b) Montrer qu’en fait, a la fin, on a pour tout sommet s, D[s] = ds. Que vaut alors Pls|?
6. Ecrire une fonction

accessibles : ((etat*lettre) list) array -> etat list
-> int*int array*(etatxlettre) array

prenant en entrée un graphe d’automate (sous forme de son tableau de listes d’adjacence V) et un
ensemble E de sommets (sous forme d’une liste d’états) et qui renvoie le triplet (¢, D, P) calculé
selon l'algorithme précédent. Les constantes oo, vide et rien seront respectivement codées par
-1, (=2,-1) et (—1,—1) dans cette fonction.

7. Ecrire une fonction chemin de signature etat — (etat*lettre) array — mot qui, prenant
en entrée un sommet s et le tableau P calculé a ’aide de la fonction accessibles sur un graphe
G et un ensemble E, renvoie un mot de longueur minimale qui est I'étiquette d’un chemin d’un
sommet de E & s (ou un message d’erreur s’il n’en existe pas).

3 Reduction SAT

On s’intéresse dans cette partie a la satisfiabilité d’une formule logique portant sur des variables
propositionnelles x1,...,Zy,. On note classiquement A le connecteur logique “et”, V le connecteur

“ou” et f la négation d’une formule f.

On appelle littéral une formule constituée d’une variable x; ou de sa négation T;, on appelle clause
une disjonction de littéraux.

Considérons une formule logique sous forme normale conjonctive, c’est a dire sous la forme d’une
conjonction de clauses. Par exemple,

Fi=(x V& Va3) A (FTVTI) A (22 VT3V 24)

est une formule sous forme normale conjonctive formée de trois clauses et portant sur quatre variables
propositionnelles x1, xo, x3 et x4.

Soit F' une formule sous forme normale conjonctive, composée de n clauses et faisant intervenir m
variables. On suppose les clauses numérotées ci, ¢, ..., c,. On veut ramener le probleme de la satis-
fiabilité d’une telle formule au probleme de la recherche d’un mot synchronisant de longueur < m sur
une certaine machine. On introduit pour cela la machine suivante associée a F' :

- @ est formé de mn +n+ 1 états, un état particulier noté f et n(m+ 1) autres états qu’on notera
iy avee (i,) € [[1,n] x [[1,m + 1]];
-¥X={0,1}:
- 0 est défini par
e f est un état puits, c’est a dire 0(f,0) =4o(f,1) = f,
e pour tout entier ¢ € [|1,n], 6(¢im+1,0) = 6(gim+1,1) = f,
e pour tous i € [|1,n]|] et j € [|1,m]],

5gisi1) = f si le littéral x; apparait dans la clause ¢;
g) = Qi j+1 sinon

5(gii,0) = f si le littéral T; apparait dans la clause ¢;
ij> ™) = qi,j+1 sinon
1. Représenter la machine associée a la formule F7.

2. Donner une distribution de vérité (v1, ve,v3,v4) € [|0, 1]]* (la valeur v; étant associée a la variable
x;) satisfaisant F;. Le mot vjvovsvy est-il synchronisant ?

3. Montrer que tout mot u de longueur m + 1 est synchronisant. A quelle condition sur les ¢; 1.u
un mot de longueur m est-il synchronisant ?

4. Montrer que si la formule F' est satisfiable, toute distribution de vérité la satisfaisant donne un
mot synchronisant de longueur m pour ’automate.

5. Inversement, prouver que si 'automate dispose d’un mot synchronisant de longueur < m, F est
satisfiable. Donner alors une distribution de vérité convenable.

4 Existence

On reprend dans cette partie le probléme de I’existence d’un mot synchronisant pour une machine M.

1. Soit M = (@, %,) une machine.
Pour toute partie E de @ et tout mot u de ¥*, on note F.u = {q.u, ¢ € E}.

(a) Soit w un mot synchronisant de M et ug,u1, ..., u, une suite de préfixes de u rangés dans
l’ordre croissant de leur longueur et telle que u, = u. Que peut-on dire de la suite des
cardinaux |Q.u;| ?

(b) Montrer qu’il existe un mot synchronisant si et seulement s’il existe pour tout couple d’états
(¢,¢") de Q? un mot Ug.q tel que qug gy = q gy

On veut se servir du critere établi ci-dessus pour déterminer s’il existe un mot synchronisant. Pour

cela, on associe & la machine M la machine M = (@, ¥, d) définie par :
- @ est formé des parties a un ou deux éléments de Q) ;
- & est définie par V(E,z) € Q x ¥, §(E) = {(¢,z), q € E}.
2. Sin=|Q|, que vaut 7 = |Q|?

On a dit que pour la modélisation informatique, 'ensemble d’états d’'une machine doit étre modélisée
par un intervalle [|0,n —1[]. @ doit donc étre modélisé par I'intervalle [|0,7 — 1]]. Soit ¢, une bijection
de @ sur [|0,7 — 1|]. On suppose qu’on dispose d’une fonction set_to nb de signature int — (etat
list) — etat telle que set_tonb n 1 pour n représentant un élément n € N* et 1 représentant une

liste ¢ d’états renvoie
en({1}) si £=i], 0<i<n-1
on({i,7}) sil=[ij], 0<i<j<n-1

On suppose qu’on dispose aussi d’une fonction réciproque nb_to_set de signature int — etat —

(etat list) telle que nb_to_set n q pour n € N* et ¢ € [|0,72 — 1|] renvoie une liste d’états de la

forme [i] ou [i; j] (avec i < j) correspondant & ¢, 1(q). Ces deux fonctions de conversion sont supposées

agir en temps constant.

Enfin, pour ne pas confondre un état de @ avec sa représentation informatique par un entier, on notera

g lentier associé a 1’état q.

3. Ecrire une fonction delta2 de signature machine — etat — lettre — etat qui prenant en

entrée une machine M, un état g de é et une lettre x, renvoie 1’état de @ atteint en lisant la
lettre x depuis 1’état g dans M.

4. Il est clair qu’a la machine M , on peut associer un graphe d’automate G dont Iensemble des
sommets est @ et dont I'ensemble des arcs est {(q,7,6(q,7)), (¢,7) € Q@ x X}. On associe alors
a G le graphe retourné Gr _qui a les mémes sommets que G mais dont les arcs sont retournés
(i.e. (q,x,q¢") est un arc de Gp si et seulement si (¢, x, q) est un arc de G).
Ecrire une fonction retourne machine de signature machine — ((etat*lettre) list) array
qui a partir d’'une machine M, calculer le tableau V des listes d’adjacence du graphe G R-

5. Justifier qu’il suffit d’appliquer la fonction accessibles de la partie 2 au graphe G R et a
I’ensemble des sommets de G correspondant a des singletons pour déterminer si la machine M
possede un mot synchronisant.

6. Ecrire une fonction existe_synchronisant de signature machine — bool qui dit si une ma-
chine possede un mot synchronisant.

Jan Cerny, chercheur slovaque, a conjecturé au miliew des années 60 que si une machine & n états
possédait un mot synchronisant, elle en avait un de longueur < (n — 1)2. La construction faite dans
la partie 3 affirme que la recherche, dans une machine, d’un mot synchronisant de longueur < m fizé
est au moins aussi difficile en terme de complexité que celui de la satisfiabilité d’une formule logique
a m variables sous forme normale conjonctive (qu’on sait étre un probléme “difficile”).

	Logique propositionnelle

