Centrale 2017 - Option informatique
Un corrigé

1 Considérations générales

1.

Pour une machine a un seul état gy, tout mot lu depuis I'unique état mene en gg. Tout mot est
synchronisant.

. Ici Palphabet est 3 = {a}. Une récurrence simple montre qu'un mot de longueur paire mene

de i en ¢ alors qu’'un mot de longueur impaire méne de 7 en 3 — . Aucun mot ne mene donc
simultanément de 1 et 2 dans le méme état. Il n’existe donc pas de mot synchronisant.

3. Le mot acb est synchronisant pour Ma.

4. let rec delta_etoilem e u =

match u with
I > e

|x::q -> delta_etoile m (m.delta m e x) q;;

On regarde I’état q0 obtenu par lecture du mot a partir de I’état 0. On teste alors successivement
si on atteint le méme état a partir de 1,2,...,p — 1. On peut s’arréter des que 1'on tombe sur
autre chose que g0 et c¢’est pourquoi je choisis une boucle conditionnelle.

let est_synchronisant m u =

let gO0=delta_etoile m O u

in let i=ref 1

in while !i<m.n_etats && (delta_etoile m !'i u)=q0 do incr i done;
li=m.n_etats;;

Supposons qu’on dispose d'un mot synchronisant u. La machine possede au moins deux états
qo et g1 et par définition, on a gg.u = ¢1.u.

Comme ¢g.e # qi.€, il existe un préfixe v de u tel que gg.v # ¢1.v. Comme l’ensemble des
préfixes de u est fini, il va exister un plus long préfixe v tel que gg.v # q1.v.

Comme qg.u = q1.u, v # u et il existe une lettre  telle que vz soit préfixe de u. Par choix de
v, on a (go.v).x = qo-(vr) = q1.(vz) = (q1.v).x. Les états ¢ = qo.v et ¢ = ¢q1.v et la lettre x
conviennent donc.

On note que par induction immédiate on a :
VP C Q, 6*(P,m) = {6*(p,m), p € P}

(a) Supposons qu’il existe un mot u synchronisant pour M et notons gy 1’état de M ou mene
la lecture de wu. Soit P = @ (considéré comme partie de @ et donc état de M). On a alors

o~

6" (P,u) = {6%(p,u), p € P} = {qo}

Réciproquement, supposons qu’il existe un mot u tel que g*(Q,u) soit un singleton {go}.
Alors u est synchronisant pour M. .

Il existe donc un mot synchronisant pour M si et seulement si il existe dans M un singleton
accessible depuis 'état Q).

(b) Considérons l'automate obtenu depuis la machine M en prenant () comme état initial et les
singletons comme états terminaux. Les mots reconnus par cet automate sont exactement
les éléments de LS(M).

(c) On commence par donner la table de My puis on en déduit celle de ]\/4\0. On procede comme
pour l'algorithme de déterminisation en partant de ce qui sera 1’état initial c’est a dire



{0,1,2}.

My|0 1 2 My |0,1,2 0,1 12021\\0,2@
01T 00 0] 01 01 10 0[[01 0
112 2 1] 1,2 1,2 12 2)1,2 0

Au dela de la double barre, les états sont non accessibles depuis 1’état initial de ’'automate
reconnaissant LS(Mj) qui est dessiné ci-dessous.

Dés que l'on arrive sur un état singleton, on reste sur ces états. On arrive pour la premiere
fois sur un singleton quand on lit le premier 1 puis un 0 ou un 1. Ainsi

LS(Mg) = 0"1(0+ 1)(0 + 1)*

8. Soit M une machine et gy un état de M. Notons M’ la machine obtenue & partir de M en
redirigeant toutes les transitions issues de qg vers lui méme.
- Supposons que M’ posseéde un mot synchronisant u. Comme ¢g.u = qo, la lecture de u dans
M’ depuis tout état meéne & gy. On en déduit que la lecture de u depuis tout état dans M
passe par qq.
- Réciproquement, s’il existe u tel que la lecture de u depuis tout état dans M passe par qg
alors u est synchronisant pour M’ (la lecture de u dans M’ depuis tout état mene en qq).

2 Algorithmes classiques

1. (a) let ajoute f x =

if f.vide then begin
f.vide <- false ;
f.fin <- (1+f.deb) mod (Array.length f.tab);
f.tab.(f.deb) <- x
end

else if f.fin <> f.deb then begin
f.tab.(f.fin) <- x ;
f.fin <- (f.fin + 1) mod (Array.length f.tab)
end

else failwith "File pleine";;

(b) On stocke 1’élément en position f.deb (si la file n’est pas vide) et on incrémente ce champ.
Il faut bien str éventuellement changer la valeur du booléen.

let retire f =
if f.vide then failwith "File vide";
let x = f.tab.(f.deb) in



()

f.deb <- (f.deb + 1) mod (Array.length f.tab);
f.vide <- f.deb = f.fin ;
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Ces deux fonctions ont immédiatement une complexité constante O(1).

2. Le seul probleme de terminaison vient de la boucle conditionnelle. On a un premier invariant
de lalgorithme (qui est immédiat puisque D[s] n’est modifié que lorsque s est ajouté a la file).

(I1) : s est ou a été dans F si et seulement si D[s] < oo

On observe alors que la quantité ”longueur de la file plus nombre de sommets s vérifiant
Dls] < 00” est un variant de boucle, ce qui garanti la terminaison.

3. Les initialisations ont un cout O(|S]) (créations de tableaux de taille n).
La premiére boucle est effectuée au plus |E| fois et chaque itération est en temps constant. La
premiére boucle a donc un cotut O(n).
Dans la boucle conditionnelle, on regarde au plus une fois la liste des arétes issues de chaque
sommet. Cette boucle a donc un coit O(|A]).
Finalement, le cotit de lalgorithme 1 est O(|S| + |A]).

4. On prouve le résultat par récurrence (sur le numéro de la boucle que 1'on exécute).
- Initialement, la file contient les éléments de E et les valeurs de D associées sont toutes

(b)

nulles. La propriété est ainsi vraie.
Supposons la propriété vraie & un instant donné et supposons que la boucle s’effectue. La

file contient des sommets s1, ..., s, avec les propriétés voulues pour D. En fin de boucle, la
file contiendra des éléments so,...,s,,5],...,s,. Les valeurs D[s;] n’ont pas été modifiées
et D[s}] = D[s1] + 1. Comme DIs,] < D[s1] +1 = D[s}] = --- = DI[s}], on a la propriété

d’ordre. De plus

sir > 2, D[s}]| — D[sa] = D[s1] + 1 — D[sa] <1 et on aussi la seconde propriété
sinon, D(s}] — D[s}] = 0 et on conclut encore.

On a l'invariant suivant :

(I2) : si D[s] < oo alors s est accessible depuis un sommet de E.

Supposons, par 'absurde, qu’il existe un sommet accessible depuis un sommet de E et tel
que D[s] = oo en fin d’algorithme. On peut alors choisir parmi ces sommets un élément tel
que ds est minimal. En considérant le prédécesseur ¢t de s dans un chemin de longueur d;
entre un élément de E et s, on a donc D[t] < +oo (par minimalité) ce qui montre que ¢ est
passé par la file (invariant ;). Mais alors, tous les voisins de ¢ et donc s ont été ajoutés a
F et D[s] = 400, ce qui est une contradiction.

On montre ensuite que ’on a 'invariant

(I3) : Vs, D]s] est la longueur d’un chemin d’un élément de E & s quand D[s] # oc.

On en déduit alors a fortiori que Vs, D[s] > ds (immédiat si D[s] = oo et conséquence de
I'invariant sinon).

On décrémente ¢ a chaque fois que 'on ajoute un élément a la file. En fin de boucle, ¢ est
le nombre de sommets inaccessibles depuis FE.

Montrons que la propriété suivante est un invariant

Vs, DIs] est la longueur d’un chemin minimal d’un élément de E a s quand D[s] # oo
si s est en téte de F, on a DI[s'] # oo pour tout sommet s’ tel que dy < D[s] = ds.

- La propriété est initialement vraie car on traité correctement tous les éléments de E.

- On suppose que la propriété est vraie et que la boucle s’effectue. On considere 1’élément
s en téte de F. On modifie alors la valeur D[s'] quans s’ est un successeur de s. Cette
modification ne s’effectue que si D[s'] = oo et par ’hypotheése de récurrence, dy > Ds].
Comme D[s'] = D[s]+1 on a donc D[s'] < dy et avec la question précédente, dy = D]s].



Pour la seconde partie de I'invariant, il n’y a de probleme que si la nouvelle téte ¢ de F'
vérifie D[t] > D[s]. Avec la question 4, on a alors D[t] = D[s] + 1. Il s’agit donc de voir
que tous les sommets a distance D[s] + 1 ont été incorporés a F. Ceci est vrai car tous
les sommets a distance dg ont été “traités” (hypothese de récurrence) puis sortis de F'
(puisque l'on est dans le cas ou D[t] > DIs]).
Comme en fin de boucle on a traité tous les sommets accessibles depuis E, on a ds = D|s]
pour tous ces sommets en fin de boucle.
La tableau P permet de reconstruire un chemin minimal entre un sommet de E et un sommet
s. P[s] contient en effet ‘ ‘la derniére aréte” dans un tel chemin minimal (si P[s| = (¢,y), la
derniere aréte dans ce chemin est (s,t,y))

6. let accessibles v e =

(* création des tableaux et de la file *)
let n=Array.length v in
let f= {tab=Array.make n 0;deb=0;fin=0;vide=true} in
let d=Array.make n (-1) in
let p=Array.make n (-2,-1) in
let c=ref n in

(x fonction pour la premiére boucle *)
let rec initier e = match e with

[1->0

|s::q —>ajoute f s;
d.(s) <- 0 ;
p-(s) <= (-1,-1);
decr c ;

initier q
(* fonction de parcours d’une liste d’adjacence pour un sommet *)
in let rec parcours 1 s= match 1 with
' -> O
| (t,y)::q -> if d.(t)=(-1) then
begin
d.(t) <- d.(s) + 1;
p-(t) <= (s,y);
ajoute f t;
decr c
end ;
parcours q s
in initier e;
while not f.vide do
let s=retire f in
parcours v.(s) s
done;
('c,d,p)s;;

7. A partir de s, on trouve le prédécesseur dans un plus court chemin avec p.(s). On obtient
(s’il existe) un sommet ¢ a partir duquel on recommence (appel récursif). On notera les points
suivants en notant (¢,y) la valeur de p.(s).

- Sit= -2, on n’a pas de chemin.

- Sit=-1,t € FE et on a terminé.

- Le chemin se construit a I’envers (on obtient en premier la derniere lettre). C’est pourquoi on
écrit une fonction auxiliaire faisant la construction (creeliste). Le résultat a renvoyer est
I’image miroir de la liste créée. On aurait pu utiliser un accumulateur pour éviter d’utiliser
rev (image miroir).



let chemin s p =
let rec creeliste s =
let (t,y)=p.(s) in
if y=(-2) then failwith "Chemin inexistant"
else if y=(-1) then []
else y::(creeliste t)
in rev (creeliste s);;

3 Reduction SAT

1. On ne représente ici que les transitions qui ne pointent pas vers ’état puits.
D CaDaO=D
(e o) )
(B0~ ) o) )

2. On peut choisir (1,1,0,0) ou encore (1,1,1,0) et on obtient des mots synchronisants (la lecture
a partir de tout état mene a I’état puits).

3. La lecture d’une lettre depuis un état g; ; mene soit dans ’état puits soit dans I'état g; j+1. Un
mot de longueur k a partir de ¢; ; et ne menant pas a f mene donc a g; j4x. Ceci n’est possible
que si j+k < m+ 1 et impose k < m (puisque j > 1). Ainsi, un mot de longueur m + 1 est
synchronisant puisqu’il amene en 1’état f.

Si u est un mot de longueur m. Par le méme raisonnement, la lecture de u depuis ¢; ; avec j > 2
amene en f. u est donc synchronisant si et seulement si ¢; 1. = f pour tout 4.

4. On suppose F satisfiable et on considere le mot v = v;1...v,, associé a une distribution de
vérité satisfaisant F'. D’apres la question précédente, on cherche a montrer que ¢;1.v = f pour
tout 1.

Soit ¢ € [|1,n|]. ¢; étant satisfaite par la distribution, il existe un entier j tel que (v; = 1 et
x; est présent dans ¢;) ou (v; = 0 et T; est présent dans ¢;) car une disjonction est satisfaite
quand un des littéraux qui la compose ’est. On peut alors considérer le premier tel j. On a
0(gi1,v1...vj—1) = qi; et la lecture de v; mene en f.

Ceci montre que v est un mot synchronisant.

5. Supposons, que l'on dispose d’un mot synchronisant v = vy ...v; avec k < m. Comme f est
un état puits, c’est I’état commun ou 'on aboutit par lecture de v depuis tout état. Ainsi
Vi, ¢i1.v = f. Considérons la distribution donnant la valeur v; a z; si ¢ < k et une valeur
quelconque arbitraire si ¢ > k 4 1.

Supposons, par I’absurde, que la clause ¢; ne soit pas satisfaite par cette distribution. On montre
alors comme en question précédente que 6*(g;1,v1...v;) = ¢ir+1 ce qui est contradictoire.

Toutes les clauses sont donc satisfaites et F' est satisfiable (et on a trouvé une distribution
associée).

4 Existence

1. (a) Comme les machines considérées sont déterministes, la lecture d’une lettre depuis un en-
semble d’états fait diminuer (au sens large) le nombre d’états. La suite de terme général
|Q.u;| est donc décroissante. De plus, |Q.u,| = 1 car le mot u est synchronisant.



(b) S’ existe un mot synchronisant u alors Yq,q', ¢.u = ¢’.u et on peut choisir u,, = u pour
satisfaire la propriété.
Supposons maintenant que pour chaque choix de ¢ et ¢’ on ait I'existence d’un mot ug .
La machine possede au moins deux états ¢g,qp et on peut trouver un mot mg tel que
qo-mo = q1.mg. Ainsi, |Q.mo| est de cardinal au plus n—1. Si |Q.mg| = 1, on s’arréte. Sinon,
().mp posséde au moins deux états et on trouve un mot m; tel que [(Q.mg).m1| < |Q.mo.
On a donc |Q.(mom1)| < n — 2. On va alors pouvoir poursuivre la construction. On peut
formaliser & I’aide d’une récurrence en construisant pour tout k € [|0,n — 2|] un mot uy, tel
que |Q.ug] < n —k — 1. Le mot u,_o est alors synchronisant.

n(n—1)
2

. Il y a n parties a 1 élément et (g) = parties a 2 éléments. Ainsi

- nin—1)  n(n+1)
n=n-+ 5 = 5

. On calcule I’état g associé a g. C’est une liste qui a un ou deux éléments qui sont des états de m.
On regarde vers quels états nous menent ces éléments (ou cet élément). On obtient un ou deux
états de m que l'on transforme en une liste (ordonnée) puis en un entier qui est I’état cherché
de M.

let delta2 m e x = match (nb_to_set m.n_etats e) with
| [i] -> set_to_nb m.n_etats [m.delta i x]
[[i;j] -> let ei=m.delta i x
and ej=m.delta j x
in if ei=ej then set_to_nb m.n_etats [ei]
else if ei<ej then set_to_nb m.n_etats [ei;ej]
else set_to_nb m.n_etats [ej;eil;;

. On crée un tableau vr de bonne taille n composé de listes vides. Pour chaque état g de M
et chaque lettre x, delta2 permet d’obtenir 'état atteint dans M. On a donc une transition
(¢, z,q) de M. Ceci signifie que dans G, on a un arc de ¢ vers g d’étiquette z et on met donc
la case ¢’ de vr & jour.

let retourne_machine m =
let n=m.n_etats in
let ntilde=n*(n+1)/2 in
let vr=Array.make ntilde [] in
for e=0 to ntilde-1 do
for x=0 to m.n_lettres-1 do
let f=delta2 m e x in
vr.(f) <- (e,x)::vr.(f)
done ;
done;
vr;;
. D’apres la question 4.1b, il existe un mot synchronisant si depuis tout état du type [i; j] (¢ < j)
de M il existe un mot u;; qui nous amene dans un état [k]. Comme la lecture d'un mot dans
M depuis un état [i] nous ameéne toujours dans un état [k], ceci revient & voir si tout état de
M permet d’atteindre un état du type [k].
Il s’agit donc de voir si dans G il existe un chemin de tout état vers un état singleton. Ceci
revient & voir si dans G r on peut atteindre tout état depuis les états singleton.
11 suffit donc d’appliquer accessibles depuis 'ensemble des états singleton a G Rr et de voir si
on peut atteindre tous les sommets du graphe.

. La fonction construit : int — int — int list est telle que construit n k crée la liste
des états [i] de M avec i = k,...,n — 1. On utilise alors accessibles avec cette liste et Gg



comme indiqué en question précédente. On obtient un triplet dont le premier élément donne le
nombre d’éléments non accessibles et on regarde s’il est nul.

let rec construit n k =

if k=n then []
else (set_to_nb n [k])::(construit n (k+1));;

let existe_synchronisant m =
let (c,d,p)=accessibles (retourne_machine m) (construit m.n_etats 0)

in c=0;;



