
Centrale 2017 - Option informatique
Un corrigé

1 Considérations générales

1. Pour une machine a un seul état q0, tout mot lu depuis l’unique état mène en q0. Tout mot est
synchronisant.

2. Ici l’alphabet est Σ = {a}. Une récurrence simple montre qu’un mot de longueur paire mène
de i en i alors qu’un mot de longueur impaire mène de i en 3 − i. Aucun mot ne mène donc
simultanément de 1 et 2 dans le même état. Il n’existe donc pas de mot synchronisant.

3. Le mot acb est synchronisant pour M2.

4. let rec delta_etoile m e u =

match u with

|[] -> e

|x::q -> delta_etoile m (m.delta m e x) q;;

5. On regarde l’état q0 obtenu par lecture du mot à partir de l’état 0. On teste alors successivement
si on atteint le même état à partir de 1, 2, . . . , p− 1. On peut s’arrêter dès que l’on tombe sur
autre chose que q0 et c’est pourquoi je choisis une boucle conditionnelle.

let est_synchronisant m u =

let q0=delta_etoile m 0 u

in let i=ref 1

in while !i<m.n_etats && (delta_etoile m !i u)=q0 do incr i done;

!i=m.n_etats;;

6. Supposons qu’on dispose d’un mot synchronisant u. La machine possède au moins deux états
q0 et q1 et par définition, on a q0.u = q1.u.
Comme q0.ε ̸= q1.ε, il existe un préfixe v de u tel que q0.v ̸= q1.v. Comme l’ensemble des
préfixes de u est fini, il va exister un plus long préfixe v tel que q0.v ̸= q1.v.
Comme q0.u = q1.u, v ̸= u et il existe une lettre x telle que vx soit préfixe de u. Par choix de
v, on a (q0.v).x = q0.(vx) = q1.(vx) = (q1.v).x. Les états q = q0.v et q′ = q1.v et la lettre x
conviennent donc.

7. On note que par induction immédiate on a :

∀P ⊂ Q, δ̂∗(P,m) = {δ∗(p,m), p ∈ P}

(a) Supposons qu’il existe un mot u synchronisant pour M et notons q0 l’état de M où mène

la lecture de u. Soit P = Q (considéré comme partie de Q et donc état de M̂). On a alors

δ̂∗(P, u) = {δ∗(p, u), p ∈ P} = {q0}

Réciproquement, supposons qu’il existe un mot u tel que δ̂∗(Q, u) soit un singleton {q0}.
Alors u est synchronisant pour M .
Il existe donc un mot synchronisant pour M si et seulement si il existe dans M̂ un singleton
accessible depuis l’état Q.

(b) Considérons l’automate obtenu depuis la machine M̂ en prenant Q comme état initial et les
singletons comme états terminaux. Les mots reconnus par cet automate sont exactement
les éléments de LS(M).

(c) On commence par donner la table de M0 puis on en déduit celle de M̂0. On procède comme
pour l’algorithme de déterminisation en partant de ce qui sera l’état initial c’est à dire

1

{0, 1, 2}.
M0 0 1 2

0 1 0 0
1 1 2 2

M̂0 0, 1, 2 0, 1 1, 2 0 2 1 0, 2 ∅
0 0, 1 0, 1 0 1 0 0 0, 1 ∅
1 1, 2 1, 2 2 1 2 2 1, 2 ∅

Au delà de la double barre, les états sont non accessibles depuis l’état initial de l’automate
reconnaissant LS(M0) qui est dessiné ci-dessous.

012��
��

-

01��
��

0��
��

-

2��
��

-12��
��

1��
��

-

�

0

J
J
J
J
Ĵ

1

?

1

�

0

-1

6

0
�

�
�

�
�

�
�=

1

^

0, 1
]

0

I
0

�

1
Dès que l’on arrive sur un état singleton, on reste sur ces états. On arrive pour la première
fois sur un singleton quand on lit le premier 1 puis un 0 ou un 1. Ainsi

LS(M0) = 0∗1(0 + 1)(0 + 1)∗

8. Soit M une machine et q0 un état de M . Notons M ′ la machine obtenue à partir de M en
redirigeant toutes les transitions issues de q0 vers lui même.
- Supposons que M ′ possède un mot synchronisant u. Comme q0.u = q0, la lecture de u dans
M ′ depuis tout état mène à q0. On en déduit que la lecture de u depuis tout état dans M
passe par q0.

- Réciproquement, s’il existe u tel que la lecture de u depuis tout état dans M passe par q0
alors u est synchronisant pour M ′ (la lecture de u dans M ′ depuis tout état mène en q0).

2 Algorithmes classiques

1. (a) let ajoute f x =

if f.vide then begin

f.vide <- false ;

f.fin <- (1+f.deb) mod (Array.length f.tab);

f.tab.(f.deb) <- x

end

else if f.fin <> f.deb then begin

f.tab.(f.fin) <- x ;

f.fin <- (f.fin + 1) mod (Array.length f.tab)

end

else failwith "File pleine";;

(b) On stocke l’élément en position f.deb (si la file n’est pas vide) et on incrémente ce champ.
Il faut bien sûr éventuellement changer la valeur du booléen.

let retire f =

if f.vide then failwith "File vide";

let x = f.tab.(f.deb) in

2

f.deb <- (f.deb + 1) mod (Array.length f.tab);

f.vide <- f.deb = f.fin ;

x;;

(c) Ces deux fonctions ont immédiatement une complexité constante O(1).

2. Le seul problème de terminaison vient de la boucle conditionnelle. On a un premier invariant
de l’algorithme (qui est immédiat puisque D[s] n’est modifié que lorsque s est ajouté à la file).

(I1) : s est ou a été dans F si et seulement si D[s] < ∞

On observe alors que la quantité ”longueur de la file plus nombre de sommets s vérifiant
D[s] < ∞” est un variant de boucle, ce qui garanti la terminaison.

3. Les initialisations ont un coût O(|S|) (créations de tableaux de taille n).
La première boucle est effectuée au plus |E| fois et chaque itération est en temps constant. La
première boucle a donc un coût O(n).
Dans la boucle conditionnelle, on regarde au plus une fois la liste des arêtes issues de chaque
sommet. Cette boucle a donc un coût O(|A|).
Finalement, le coût de l’algorithme 1 est O(|S|+ |A|).

4. On prouve le résultat par récurrence (sur le numéro de la boucle que l’on exécute).
- Initialement, la file contient les éléments de E et les valeurs de D associées sont toutes
nulles. La propriété est ainsi vraie.

- Supposons la propriété vraie à un instant donné et supposons que la boucle s’effectue. La
file contient des sommets s1, . . . , sr avec les propriétés voulues pour D. En fin de boucle, la
file contiendra des éléments s2, . . . , sr, s

′
1, . . . , s

′
k. Les valeurs D[si] n’ont pas été modifiées

et D[s′j] = D[s1] + 1. Comme D[sr] ≤ D[s1] + 1 = D[s′1] = · · · = D[s′k], on a la propriété
d’ordre. De plus
si r ≥ 2, D[s′k]−D[s2] = D[s1] + 1−D[s2] ≤ 1 et on aussi la seconde propriété
sinon, D[s′k]−D[s′1] = 0 et on conclut encore.

5. (a) On a l’invariant suivant :

(I2) : si D[s] < ∞ alors s est accessible depuis un sommet de E.

Supposons, par l’absurde, qu’il existe un sommet accessible depuis un sommet de E et tel
que D[s] = ∞ en fin d’algorithme. On peut alors choisir parmi ces sommets un élément tel
que ds est minimal. En considérant le prédécesseur t de s dans un chemin de longueur ds
entre un élément de E et s, on a donc D[t] < +∞ (par minimalité) ce qui montre que t est
passé par la file (invariant I1). Mais alors, tous les voisins de t et donc s ont été ajoutés à
F et D[s] = +∞, ce qui est une contradiction.
On montre ensuite que l’on a l’invariant

(I3) : ∀s, D[s] est la longueur d’un chemin d’un élément de E à s quand D[s] ̸= ∞.

On en déduit alors a fortiori que ∀s, D[s] ≥ ds (immédiat si D[s] = ∞ et conséquence de
l’invariant sinon).
On décrémente c à chaque fois que l’on ajoute un élément à la file. En fin de boucle, c est
le nombre de sommets inaccessibles depuis E.

(b) Montrons que la propriété suivante est un invariant

∀s, D[s] est la longueur d’un chemin minimal d’un élément de E à s quand D[s] ̸= ∞
si s est en tête de F , on a D[s′] ̸= ∞ pour tout sommet s′ tel que ds′ ≤ D[s] = ds.

- La propriété est initialement vraie car on traité correctement tous les éléments de E.
- On suppose que la propriété est vraie et que la boucle s’effectue. On considère l’élément
s en tête de F . On modifie alors la valeur D[s′] quans s′ est un successeur de s. Cette
modification ne s’effectue que si D[s′] = ∞ et par l’hypothèse de récurrence, ds′ > D[s].
Comme D[s′] = D[s]+1 on a donc D[s′] ≤ ds′ et avec la question précédente, ds′ = D[s].

3

Pour la seconde partie de l’invariant, il n’y a de problème que si la nouvelle tête t de F
vérifie D[t] > D[s]. Avec la question 4, on a alors D[t] = D[s] + 1. Il s’agit donc de voir
que tous les sommets à distance D[s] + 1 ont été incorporés à F . Ceci est vrai car tous
les sommets à distance dS ont été “traités” (hypothèse de récurrence) puis sortis de F
(puisque l’on est dans le cas où D[t] > D[s]).

Comme en fin de boucle on a traité tous les sommets accessibles depuis E, on a ds = D[s]
pour tous ces sommets en fin de boucle.
La tableau P permet de reconstruire un chemin minimal entre un sommet de E et un sommet
s. P [s] contient en effet ‘ ‘la dernière arête” dans un tel chemin minimal (si P [s] = (t, y), la
dernière arête dans ce chemin est (s, t, y)).

6. let accessibles v e =

(* création des tableaux et de la file *)

let n=Array.length v in

let f= {tab=Array.make n 0;deb=0;fin=0;vide=true} in

let d=Array.make n (-1) in

let p=Array.make n (-2,-1) in

let c=ref n in

(* fonction pour la première boucle *)

let rec initier e = match e with

|[]->()

|s::q ->ajoute f s;

d.(s) <- 0 ;

p.(s) <- (-1,-1);

decr c ;

initier q

(* fonction de parcours d’une liste d’adjacence pour un sommet *)

in let rec parcours l s= match l with

|[] -> ()

|(t,y)::q -> if d.(t)=(-1) then

begin

d.(t) <- d.(s) + 1;

p.(t) <- (s,y);

ajoute f t;

decr c

end ;

parcours q s

in initier e;

while not f.vide do

let s=retire f in

parcours v.(s) s

done;

(!c,d,p);;

7. A partir de s, on trouve le prédécesseur dans un plus court chemin avec p.(s). On obtient
(s’il existe) un sommet t à partir duquel on recommence (appel récursif). On notera les points
suivants en notant (t, y) la valeur de p.(s).
- Si t = −2, on n’a pas de chemin.
- Si t = −1, t ∈ E et on a terminé.
- Le chemin se construit à l’envers (on obtient en premier la dernière lettre). C’est pourquoi on
écrit une fonction auxiliaire faisant la construction (creeliste). Le résultat à renvoyer est
l’image miroir de la liste créée. On aurait pu utiliser un accumulateur pour éviter d’utiliser
rev (image miroir).

4

let chemin s p =

let rec creeliste s =

let (t,y)=p.(s) in

if y=(-2) then failwith "Chemin inexistant"

else if y=(-1) then []

else y::(creeliste t)

in rev (creeliste s);;

3 Reduction SAT

1. On ne représente ici que les transitions qui ne pointent pas vers l’état puits.

q1,1��
��

q1,2��
��

q1,3��
��

q1,4��
��

q1,5��
��

-0 -1 -0 -
0, 1

q2,1��
��

q2,2��
��

q2,3��
��

q2,4��
��

q2,5��
��

-1 -
0, 1

-
0, 1

-1

q3,1��
��

q3,2��
��

q3,3��
��

q3,4��
��

q3,5��
��

-
0, 1

-0 -1 -0

2. On peut choisir (1, 1, 0, 0) ou encore (1, 1, 1, 0) et on obtient des mots synchronisants (la lecture
à partir de tout état mène à l’état puits).

3. La lecture d’une lettre depuis un état qi,j mène soit dans l’état puits soit dans l’état qi,j+1. Un
mot de longueur k à partir de qi,j et ne menant pas à f mène donc à qi,j+k. Ceci n’est possible
que si j + k ≤ m + 1 et impose k ≤ m (puisque j ≥ 1). Ainsi, un mot de longueur m + 1 est
synchronisant puisqu’il amène en l’état f .
Si u est un mot de longueur m. Par le même raisonnement, la lecture de u depuis qi,j avec j ≥ 2
amène en f . u est donc synchronisant si et seulement si qi,1.u = f pour tout i.

4. On suppose F satisfiable et on considère le mot v = v1 . . . vm associé à une distribution de
vérité satisfaisant F . D’après la question précédente, on cherche à montrer que qi,1.v = f pour
tout i.
Soit i ∈ [|1, n|]. ci étant satisfaite par la distribution, il existe un entier j tel que (vj = 1 et
xj est présent dans ci) ou (vj = 0 et xj est présent dans ci) car une disjonction est satisfaite
quand un des littéraux qui la compose l’est. On peut alors considérer le premier tel j. On a
δ(qi,1, v1 . . . vj−1) = qi,j et la lecture de vj mène en f .
Ceci montre que v est un mot synchronisant.

5. Supposons, que l’on dispose d’un mot synchronisant v = v1 . . . vk avec k ≤ m. Comme f est
un état puits, c’est l’état commun où l’on aboutit par lecture de v depuis tout état. Ainsi
∀i, qi,1.v = f . Considérons la distribution donnant la valeur vi à xi si i ≤ k et une valeur
quelconque arbitraire si i ≥ k + 1.
Supposons, par l’absurde, que la clause ci ne soit pas satisfaite par cette distribution. On montre
alors comme en question précédente que δ∗(qi,1, v1 . . . vk) = qi,k+1 ce qui est contradictoire.
Toutes les clauses sont donc satisfaites et F est satisfiable (et on a trouvé une distribution
associée).

4 Existence

1. (a) Comme les machines considérées sont déterministes, la lecture d’une lettre depuis un en-
semble d’états fait diminuer (au sens large) le nombre d’états. La suite de terme général
|Q.ui| est donc décroissante. De plus, |Q.ur| = 1 car le mot u est synchronisant.

5

(b) S’il existe un mot synchronisant u alors ∀q, q′, q.u = q′.u et on peut choisir uq,q′ = u pour
satisfaire la propriété.
Supposons maintenant que pour chaque choix de q et q′ on ait l’existence d’un mot uq,q′ .
La machine possède au moins deux états q0, q1 et on peut trouver un mot m0 tel que
q0.m0 = q1.m0. Ainsi, |Q.m0| est de cardinal au plus n−1. Si |Q.m0| = 1, on s’arrête. Sinon,
Q.m0 possède au moins deux états et on trouve un mot m1 tel que |(Q.m0).m1| < |Q.m0|.
On a donc |Q.(m0m1)| ≤ n − 2. On va alors pouvoir poursuivre la construction. On peut
formaliser à l’aide d’une récurrence en construisant pour tout k ∈ [|0, n− 2|] un mot uk tel
que |Q.uk| ≤ n− k − 1. Le mot un−2 est alors synchronisant.

2. Il y a n parties à 1 élément et
(
n
2

)
= n(n−1)

2 parties à 2 éléments. Ainsi

ñ = n+
n(n− 1)

2
=

n(n+ 1)

2

3. On calcule l’état q associé à q. C’est une liste qui a un ou deux éléments qui sont des états de m.
On regarde vers quels états nous mènent ces éléments (ou cet élément). On obtient un ou deux
états de m que l’on transforme en une liste (ordonnée) puis en un entier qui est l’état cherché

de M̃ .

let delta2 m e x = match (nb_to_set m.n_etats e) with

|[i] -> set_to_nb m.n_etats [m.delta i x]

|[i;j] -> let ei=m.delta i x

and ej=m.delta j x

in if ei=ej then set_to_nb m.n_etats [ei]

else if ei<ej then set_to_nb m.n_etats [ei;ej]

else set_to_nb m.n_etats [ej;ei];;

4. On crée un tableau vr de bonne taille ñ composé de listes vides. Pour chaque état q de M̃
et chaque lettre x, delta2 permet d’obtenir l’état atteint dans M̃ . On a donc une transition
(q, x, q′) de M̃ . Ceci signifie que dans G̃R, on a un arc de q′ vers q d’étiquette x et on met donc
la case q′ de vr à jour.

let retourne_machine m =

let n=m.n_etats in

let ntilde=n*(n+1)/2 in

let vr=Array.make ntilde [] in

for e=0 to ntilde-1 do

for x=0 to m.n_lettres-1 do

let f=delta2 m e x in

vr.(f) <- (e,x)::vr.(f)

done ;

done;

vr;;

5. D’après la question 4.1b, il existe un mot synchronisant si depuis tout état du type [i; j] (i < j)

de M̃ il existe un mot ui,j qui nous amène dans un état [k]. Comme la lecture d’un mot dans

M̃ depuis un état [i] nous amène toujours dans un état [k], ceci revient à voir si tout état de

M̃ permet d’atteindre un état du type [k].
Il s’agit donc de voir si dans G̃ il existe un chemin de tout état vers un état singleton. Ceci
revient à voir si dans G̃R on peut atteindre tout état depuis les états singleton.
Il suffit donc d’appliquer accessibles depuis l’ensemble des états singleton à G̃R et de voir si
on peut atteindre tous les sommets du graphe.

6. La fonction construit : int → int → int list est telle que construit n k crée la liste
des états [i] de M̃ avec i = k, . . . , n − 1. On utilise alors accessibles avec cette liste et G̃R

6

comme indiqué en question précédente. On obtient un triplet dont le premier élément donne le
nombre d’éléments non accessibles et on regarde s’il est nul.

let rec construit n k =

if k=n then []

else (set_to_nb n [k])::(construit n (k+1));;

let existe_synchronisant m =

let (c,d,p)=accessibles (retourne_machine m) (construit m.n_etats 0)

in c=0;;

7

