MP* Lycée Buffon 2025-2026 TP 3 1

TP D’OPTION INFORMATIQUE 3
Application des arbres

1 Implémentation des files de priorité

1. Ecrire une fonction remonter prenant en argument un tableau t et un entier i, supposant
que t est un i-sur-tas, et permutant ses éléments pour en faire un tas.

2. Ecrire une fonction entasser , prenant en argument un tableau t , un entier i et un entier
k, et permutant les éléments du i-sous-tas formé des k premiers éléments de t de fagon a en
faire un tas.

3. On considere le type suivant pour implémenter les files de priorité :

type ('a,'b) file_prio = {
mutable taille :int;
tas : ('ax'b) option array

}5s

Les éléments de la file ont une priorité de type 'a et une valeur de type 'b. L’attribut
taille correspond au nombre d’éléments actuellement dans la file, & ne pas confondre avec
la capacité de la file, qui est la longueur du tableau tas, et qui correspond & la taille maximale
possible de la file.

(a) Implémenter les opérations suivantes, en utilisant quand nécessaire les opérations sur les
tas : ¢

e creer__file_ prio (c) : renvoie une file de priorité vide de capacité c;

e est_vide f : renvoie un booléen indiquant si la file est vide;

e enfiler f ¢ v : modifie la file f en lui ajoutant la valeur v associée a la priorité ¢, ou
affiche un message d’erreur si la file est pleine; =

e defiler f: modifie la file f en supprimant une valeur de priorité maximale, et renvoie
cette valeur, ou affiche un message d’erreur si la file est vide.

(b) Déterminer leur complexité.

2 Reésolution de Sudoku par backtracking

L’objectif de cette partie est de résoudre un probléeme de Sudoku : on considere une grille 9 x
9 représentée par un tableau de tableaux, chaque case contenant un nombre de 0 a 9. Les 0
correspondent aux cases libres, et on cherche a les remplacer par des nombres de 1 a 9 de sorte que
chaque ligne, chaque colonne et chacun des 9 carrés 3 x 3 partitionnant la grille contiennent une
et une seule fois chaque numéro.

1. Ecrire une fonction afficher_grille prenant en argument une grille et 'affichant de fagon
lisible.

2. Ecrire trois fonctions test_ligne, test_colonne, test_carre, prenant en argument une
grille partiellement remplie, un indice de ligne i et un indice de colonne j, et testant res-
pectivement si la ligne, la colonne ou le carré contenant la case (4, j) respecte les contraintes
du sudoku.

3. Ecrire une fonction resoudre_sudoku prenant en argument une grille partiellement remplie
et affichant une grille complétée respectant les contraintes du sudoku. On supposera que la
grille initiale admet bien une solution. On procédera par backtracking, en travaillant tout le
long en place dans la méme grille (on n’oubliera pas de remettre un 0 dans une case apres
avoir essayé de lui attribuer toutes les valeurs sans atteindre de solution).



MP* Lycée Buffon 2025-2026 TP 3 2

3 Files de priorité avec modification

L’objectif de cette partie est d’implémenter une structure de files de priorité ajoutant une opération
permettant de modifier la priorité associée a une valeur. On supposera que les valeurs présentes
dans la file sont toujours distinctes.

L’implémentation de ces files de priorité va utiliser un tas binaire, comme dans la partie 1, mais
également une table de hachage position qui stocke la position dans le tas binaire de toutes les va-
leurs qui y sont présentes : si v est une valeur présente dans le tas, alors Hashtbl.find position v
est l'indice i auquel on trouve le couple (p,v) dans le tas, avec p la priorité associée a v. Le type
de ces files de priorité sera donc :

type ('a,'b) file_prio = {
mutable taille :int;
tas : ('a * 'b) option array;
position : ('b,int) Hashtbl.t
35

1. Donner une représentation possible dans ce type d’une file de priorité de capacité 5, conte-
nant la valeur 3 avec priorité 10, la valeur 2 avec priorité 1 et la valeur 4 avec priorité
0.

2. Implémenter les opérations de cette structure de données :

e creer_file_ prio (c) : renvoie une file de priorité vide de capacité c

e est__vide f : renvoie un booléen indiquant si la file est vide

e enfiler f ¢ v : modifie la file £ en lui ajoutant la valeur v associée a la priorité c, ou
affiche un message d’erreur si la file est pleine.

e defiler f: modifie la file f en supprimant une valeur de priorité maximale, et renvoie
cette valeur, ou affiche un message d’erreur si la file est vide.

e modifier_ prio f p v : modifie la priorité de la valeur v a p, ou affiche un message
d’erreur si la valeur v n’est pas dans la file. On prendra garde d’obtenir une complexité
logarithmique pour cette fonction.

On pourra utiliser les fonctions suivantes :

e Hashtbl.create O renvoie une table de hachage vide;

e Hashtbl.replace h b i change la valeur associée a la clé b dans la table h, qui vaut a
présent i. Si b n’est pas déja une clé de h, elle est ajoutée a la table avec la valeur i.

3. Déterminer la complexité des opérations implémentées (toutes les fonctions sur les tables
de hachage étant en O(1)).



	Implémentation des files de priorité
	Résolution de Sudoku par backtracking
	Files de priorité avec modification

