CCINP MP 2023

Ex 1: Soit E un K-espace vectoriel de dimension $n \in \mathbb{N}^*$. Soit $f \in \mathcal{L}(E)$ de rang un.

- 1. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que : $f^2 = \lambda f$.
- 2. A-t-on : $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$?
- 3. Montrer que les assertions suivantes sont équivalentes :
 - i. Il existe un scalaire c non nul tel que cf soit un projecteur;
 - ii. $f \circ f \neq 0$;
 - iii. $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$.

Ex 2: Soit $f: \mathbb{C} \to \mathbb{C}$.

- 1. Montrer que f est un endomorphisme de \mathbb{C} considéré comme un \mathbb{R} -espace vectoriel si et seulement s'il existe deux nombres complexes a, b tels que $\forall z \in \mathbb{C}, f(z) = az + b\bar{z}$.
- 2. Montrer l'unicité du couple (a, b).
- 3. Montrer que f est un projecteur si et seulement si $a^2 + |b|^2 = a$ et $b(a + \bar{a}) = b$.
- 4. Montrer que f est un projecteur différent de l'endomorphisme nul et de l'identité si et seulement si $Re(a) = \frac{1}{2}$ et |a| = |b|.

Ex 3: Soient E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$.

- 1. Montrer que si u est nilpotent, alors $u^n = 0$.
- 2. On suppose que u est d'indice de nilpotence n. Montrer qu'il existe une base \mathcal{B} de E telle que :

$$A = Mat_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 0 & & & 0 \\ 1 & 0 & & & (0) & \vdots \\ 0 & 1 & & & & \\ & & \ddots & & \vdots \\ (0) & & & 1 & 0 \end{pmatrix}.$$

3. Déterminer les matrices X de $\mathcal{M}_n(\mathbb{K})$ telles que $X^2=A$.

$$\mathbf{\underline{Ex 4}} : \text{On pose } A = \begin{pmatrix} 0_n & \mathbf{I}_n & 0_n \\ 0_n & 0_n & \mathbf{I}_n \\ 0_n & 0_n & 0_n \end{pmatrix}$$

- 1. Calculer le polynôme caractéristique, le polynôme minimal et le rang de A
- 2. Soit u un endomorphisme, montrer que $\dim(\operatorname{Ker}(u^2)) \leq 2\dim(\operatorname{Ker}(u))$
- 3. Soit $B \in \mathcal{M}_{3n}(\mathbb{R})$ telle que $B^3 = 0$ et $\operatorname{rg}(B) = 2n$
 - i. Montrer que $\mathrm{Im}(B^2)\subset \mathrm{Ker}(B)$
 - ii. En déduire la dimension de $\text{Im}(B^2)$

- iii. Soit $(E_1; ...; E_m)$ une base d'un supplémentaire de $Ker(B^2)$. Montrer que $(B^2E_1; ...; B^2E_m; BE_1; ...; BE_m; E_1; ...; E_m)$ est une famille libre
- iv. Montrer que A et B sont semblables.

 $\underline{\mathbf{Ex}\ \mathbf{5}}$: Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Soit $\omega \in \mathbb{C}$ une valeur propre de A de multiplicité $p \in \mathbb{N}^*$. Montrer que $\bar{\omega}$ est une valeur propre de A de multiplicité p.
- 2. i. Montrer que le polynôme $X^3 3X 4$ admet une unique racine réelle.
 - ii. On suppose que $A^3 3A 4I_n = 0$. Montrer que $\det(A) \ge 0$.
- 3. On suppose que $A^2 + A + I_n = 0$. Montrer que n est pair.

 $\mathbf{\underline{Ex 6}} : \text{Soit } A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 5 & 5 & 9 \end{pmatrix}.$

- 1. Donner les conditions de diagonalisabilité concernant les polynômes annulateurs et caractéritstiques.
- 2. Montrer que pour $B \in \mathcal{M}_3(\mathbb{R})$ qui vérifie $B^2 = A$, alors B est diagonalisable.
- 3. Trouver toutes les matrices B de $\mathcal{M}_3(\mathbb{R})$ qui vérifient $B^2 = A$.

 $\mathbf{Ex} \ \mathbf{7} :$

- 1. Localiser les racines réelles de $X^3 X 1$.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Déterminer $\chi_A(0)$, $\lim_{t \to \infty} \chi_A$ et $\lim_{t \to \infty} \chi_A$.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 = A + I_n$. Montrer que $\det(A) > 0$.

 $\mathbf{\underline{Ex\ 8}}: \mathrm{Soit}\ A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}.$

- 1. Diagonaliser A.
- 2. Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 + M = A$.
 - i. Trouver un polynôme annulateur de A de degré 2, puis un polynôme annulateur de M de degré 4.
 - ii. Montrer que M est diagonalisable, et préciser les valeurs possibles de son spectre.
 - iii. Donner les différentes formes possibles de M.

Ex 9: Soit $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant $A^2 + A^T = I_n$.

- 1. Justifier que, pour tout $M \in \mathcal{M}_n(\mathbb{C})$, $\operatorname{Sp} M = \operatorname{Sp} M^T$.
- 2. Montrer que A est inversible si et seulement si $1 \notin \operatorname{Sp} A$.
- 3. Montrer que le polynôme $X^4 2X^2 + X$ est annulateur de A. La matrice A est-elle diagonalisable?

Ex 10: Soient $n \in \mathbb{N}^*$, $(\lambda, \mu) \in \mathbb{C}^{*2}$, $(M, A, B) \in \mathcal{M}_n(\mathbb{C})^3$ telles que $A + B = I_n$, $M = \lambda A + \mu B$, $M^2 = \lambda^2 A + \mu^2 B$.

- 1. Déterminer $M^2 (\lambda + \mu)M + 2\lambda\mu I_n$.
- 2. Montrer que M est inversible et calculer M^{-1} .
- 3. Montrer que A et B sont des matrices de projecteurs.
- 4. La matrice M est-elle diagonalisable? Déterminer son spectre.

Ex 11: Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$.

- 1. Montrer que, pour $P \in \mathbb{R}[X], P(B) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$.
- 2. Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

Ex 12: Soit a, b, c, d, e, f des réels et

$$A = \begin{pmatrix} 1 & a & b & c \\ 0 & -1 & 0 & 0 \\ 0 & d & 1 & e \\ 0 & f & 0 & -1 \end{pmatrix}$$

- 1. Montrer que A est trigonalisable.
- 2. Trouver une condition nécessaire et suffisante pour que la matrice A soit diagonalisable.
- 3. Dans ce cas, trouver une base de vecteur propres

$\mathbf{Ex} \ \mathbf{13}$:

Soit A = \$\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})\$. Montrer que A est diagonalisable dans \$\mathcal{M}_2(\mathbb{R})\$ si et seulement si ab > 0 ou a = b = 0.
 Soit n ∈ \mathbb{N} pair et A = \$\begin{pmatrix} 0 & \cdots & 0 & a_n \\ \dots & \cdots & \cdots & \dots \\ 0 & a_2 & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \do

2. Soit
$$n \in \mathbb{N}$$
 pair et $A = \begin{pmatrix} 0 & \cdots & 0 & a_n \\ \vdots & & \ddots & 0 \\ 0 & a_2 & & \vdots \\ a_1 & 0 & \cdots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$

- i. Déterminer un espace de dimension deux stable par A.
- ii. Montrer que A soit diagonalisable si et seulement si : $\forall i \in [1, n], \ a_i = a_{n+1-i} = 0 \text{ ou } a_i a_{n+1-i} > 0.$

$\underline{\mathbf{Ex}} \ \mathbf{14}$: Soit $E = \mathbb{R}_{2n+1}[X]$. Soit $P \in E$ et on pose f(P) = Q, avec $Q = (X^2 - 1)P'(X) - (2n+1)XP(X)$.

- 1. Montrer que f est un endomorphisme de E.
- 2. Donner les valeurs propres et les sous-espaces propres de f (on pourra résoudre une équation différentielle).
- 3. Montrer que f est diagonalisable.

$$\underline{\mathbf{Ex}\ \mathbf{15}} : \mathrm{Soit}\ f\ \mathrm{l'application}\ \mathrm{de}\ M_2(\mathbb{R})\ \mathrm{dans}\ \mathrm{lui-m\^{e}me}\ \mathrm{donn\acute{e}e}\ \mathrm{par}\ f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} d & 2b \\ 2c & a \end{pmatrix}.$$

- 1. Montrer que f est un endomorphisme.
- 2. Redéfinir la base canonique de $M_2(\mathbb{R})$. Écrire la matrice de f dans cette base.
- 3. Donner les éléments propres de f.
- 4. L'application f est-elle inversible? Est-elle diagonalisable? Si c'est le cas, exprimer la matrice de f dans la base canonique en fonction d'une matrice diagonale.
- 5. Pour n dans \mathbb{N} , exprimer f^n .

Ex 16: Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie $n \ge 2$. On suppose que E est le seul sous-espace vectoriel stable par u non réduit à $\{0\}$.

- 1. Que dire du spectre de u?
- 2. Montrer que, pour tout vecteur $x \neq 0_E$, $(x, u(x), u^2(x), \dots, u^{n-1}(x))$ est une base de E. Quelle est la forme de la matrice de u dans cette base?
- 3. Montrer que cette matrice ne dépend pas du vecteur x choisi.

Ex 17: Soit $\phi: M \in \mathcal{M}_n(\mathbb{R}) \mapsto M + \operatorname{tr}(M)I_n$.

- 1. Montrer que ϕ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Cet endomorphisme est-il diagonalisable?
- 3. Trouver une base des sous-espaces propres de ϕ .
- 4. Déterminer $\operatorname{tr} \phi$ et $\det \phi$.
- 5. L'endomorphisme ϕ est-il inversible? Si oui, déterminer ϕ^{-1} .

Ex 18: Soient $n \in \mathbb{N}^*$ et N_n l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$.

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que les propositions suivantes sont équivalentes :

- i. A est diagonalisable;
- ii. $\forall P \in \mathbb{C}[X], P(A) \in N_n \Leftrightarrow P(A) = 0.$

Ex 19: Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ ainsi que deux endomorphismes u et v de E. On suppose que u et v commutent et u diagonalisable avec n valeurs propres distinctes.

- 1. Montrer que tous les vecteurs propres de u sont également vecteurs propres de v.
- 2. Montrer que v est diagonalisable dans une même base que u.
- 3. Montrer qu'il existe $(a_k)_{0 \leqslant k \leqslant n-1} \in \mathbb{K}^n$ telle que $v = \sum_{k=0}^{n-1} a_k u^k$.

 $\underline{\mathbf{Ex}}\ \mathbf{20}$: Soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{R})$, où $a_{1,i}=a_{i,1}=1$ pour $1\leqslant i\leqslant n$, les autres coefficients étant nuls. On note f l'endomorphisme canoniquement associé à A.

- 1. Quel est le rang de A?
- 2. Trouver les valeurs propres et sous-espaces propres de A.
- 3. Donner la matrice de la projection orthogonale de \mathbb{R}^n sur l'image de f pour la structure euclidienne canonique.

Ex 21: On note $E = \mathbb{R}[X]$.

- 1. Montrer que l'on définit un produit scalaire sur E en posant $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$.
- 2. Trouver a et b dans \mathbb{R} tels que $\int_0^1 (t^2 at b)^2 dt$ soit minimal :
 - en construisant une base orthonormée de $\mathbb{R}_1[X]$;
 - en recherchant a et b tels que $X^2 aX b$ soit orthogonal à $\mathbb{R}_1[X]$.

Ex 22: On définit trois fonctions sur le segment $[0,1]: f_0: t \mapsto 1, f_1: t \mapsto t$ et $f_2: t \mapsto e^t$, et on note $E = \text{Vect}_{\mathbb{R}}(f_0, f_1, f_2)$.

- 1. Montrer que $(f,g) \mapsto \int_0^1 f(t)g(t)dt$ est un produit scalaire sur E.
- 2. Trouver une base orthonormée de $F = \text{Vect}(f_0, f_1)$.
- 3. Trouver a et b tels que la distance de f_2 à $t \mapsto at + b$ soit minimale.

Ex 23: Soient $(E, \langle ., . \rangle)$, un espace euclidien, $v \in \mathcal{L}(E)$ tel que $\forall x \in E, ||v(x)|| \leq ||x||$.

- 1. Montrer que $\operatorname{Ker}(v-\operatorname{id}) \oplus \operatorname{Im}(v-\operatorname{id}) = E$. Ind. Considérer l'application $t \mapsto \|x+ty\|^2 - \|v(x+ty)\|^2$.
- 2. Soit, pour $x \in E$ et $p \in \mathbb{N}$, $w_p(x) = \frac{1}{p+1} \sum_{k=0}^p v^k(x)$.

Montrer que, pour tout $x \in E$, la suite $(w_p(x))$ converge. Déterminer sa limite.

Ex 24: Soient u et v deux endomorphismes autoadjoints d'un espace euclidien $(E, \langle \rangle,)$.

- 1. Montrer que u et v commutent si et seulement si $u \circ v$ est autoadjoint.
- 2. Montrer que u et v commutent si et seulement s'il existe une base orthonormée de vecteurs propres communs à u et v.
- 3. Soit s la symétrie orthogonale par rapport au plan x + y + z = 0. Caractériser les symétries orthogonales de \mathbb{R}^3 qui commutent avec s.

Ex 25 : Soit E un espace euclidien de dimension n. On note S(E) l'ensemble des endomorhpismes autoadjoints de E.

- 1. Soit $v \in S(E)$ tel que : $\forall x \in E$, (v(x)|x) = 0. Montrer que v = 0.
- 2. i. Montrer qu'un projecteur orthogonal de E est autoadjoint.
 - ii. Montrer qu'un projecteur de S(E) est un projecteur orthogonal.
- 3. Soient $u_1, ..., u_p \in S(E)$ tels que $rg(u_1) + ... + rg(u_p) = n$ et :

$$\forall x \in E, \ \sum_{i=1}^{p} (u_i(x)|x) = (x|x).$$

- i. Montrer que $u_1 + ... + u_p = Id_E$.
- ii. Montrer que $\operatorname{Im}(u_1) \oplus ... \oplus \operatorname{Im}(u_p) = E$.

- iii. Montrer que pour tout i de [1,p], u_i est la projection sur $\mathrm{Im}(u_i)$ parallèlement à $\operatorname{Im}(u_1) \oplus ... \oplus \operatorname{Im}(u_{i-1}) \oplus \operatorname{Im}(u_{i+1}) \oplus ... \oplus \operatorname{Im}(u_p).$
- iv. Montrer que les $\operatorname{Im}(u_i)$ sont orthogonaux entre eux deux à deux.

Ex 26: Soient E un espace euclidien et $u \in \mathcal{L}(E)$ tel que $u^* \circ u = u \circ u^*$,

- 1. Soient $\lambda \in \operatorname{sp} u$ et x un vecteur propre associé. Montrer que $\|u^*(x)\|^2 = \lambda^2 \|x\|^2$. Montrer que uet u^* ont les mêmes espaces propres.
- 2. Montrer que u et u^* ont les mêmes espaces propres.
- 3. Montrer que les espaces propres de u sont orthogonaux.
- 4. Montrer que, si u est diagonalisable, alors u est symérique.

Ex 27: Soient $(E, \langle ..., ... \rangle)$ un espace euclidien de dimension $n \ge 2, f$ un endomorphisme autoadjoint de E, a sa plus petite valeur propre et b sa plus grande valeur propre.

- 1. Montrer que, pour tout $x \in E$, $a||x||^2 \leqslant \langle x, f(x) \rangle \leqslant b||x||^2$,
- 2. Soient $k \in \mathbb{R}$ et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ où $a_{i,j} = k$ si $i = j, a_{i,j} = 1$ si |i j| = 1, les autres coefficients étant nuls.

Montrer que la plus grande valeur propre b de A vérifie $k+2 \ge b$,

Ex 28 : Soient E un espace euclidien, a et b deux vecteurs linéairement indépendants. Soit $u: x \mapsto \langle a, x \rangle a + \langle b, x \rangle b$.

- 1. Montrer que u est un endomorphisme autoadjoint.
- 2. Déterminer son noyau.
- 3. Déterminer les éléments propres de u, lorsque a et b sont unitaires.

Ex 29: Soit $(E, \|\cdot\|)$ un espace euclidien et $f \in \mathcal{L}(E)$ autoadjoint.

- 1. Montrer que :
 - i. $f \in S_n^+(\mathbb{R}) \iff \operatorname{Sp}(f) \subset \mathbb{R}_+$. ii. $f \in S_n^{++}(\mathbb{R}) \iff \operatorname{Sp}(f) \subset \mathbb{R}_+^*$.
- 2. Soit f symétrique positive, montrer qu'il existe un endomorphisme g autoadjoint et positif tel que $f = q^2$. Que dire si f est défini positif?
- 3. Soit f défini positif et g positif, montrer que $f \circ g$ est diagonalisable.

$$\mathbf{\underline{Ex 30}} : \text{Soit } A = \frac{1}{7} \begin{pmatrix} -1 & 4 & 4 & 4 \\ 4 & 5 & -2 & -2 \\ 4 & -2 & 5 & -2 \\ 4 & -2 & -2 & 5 \end{pmatrix}.$$

- 1. Calculer $A^T A$.
- 2. Sans utiliser χ_A , trouver les valeurs propres de A et les multiplicités associées.
- 3. Calculer π_A et χ_A .
- 4. Trouver $P \in \mathcal{O}_4(\mathbb{R})$ telle que P^TAP soit diagonale.

5. Trouver le commutant de A.

<u>**Ex 31**</u>: $E = \mathcal{M}_n(\mathbb{R})$, muni d'une norme sous-multiplicative $\|.\|$, ie : $\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2$, $\|AB\| \leq \|A\| \|B\|$.

- 1. Soit $H \in E$, ||H|| < 1, montrer que $I_n H$ est inversible, d'inverse $\sum_{n=0}^{\infty} H^n$
- 2. Montrer que $GL_n(\mathbb{R})$ est ouvert dans E
- 3. Soit $f: \left\{ \begin{array}{ll} GL_n(\mathbb{R}) & \to & GL_n(\mathbb{R}) \\ M & \mapsto & M^{-1} \end{array} \right.$
 - i. Montrer que f est différentiable en I_n et que $df(I_n)(H) = -H$
 - ii. Montrer que f est différentiable en tout point de $GL_n(\mathbb{R})$ (on remarquera que $(M+H)^{-1}=(M(I_n+M^{-1}H))^{-1})$.

Ex 32: On pose $\forall n \in \mathbb{N}, n \geq 2, u_n = \sum_{k=1}^{n} (\ln(k))^2$

- 1. Montrer que $\sum u_n$ diverge.
- 2. Montrer que $\forall n \in \mathbb{N}, n \geq 2$:

$$\int_{1}^{n} (\ln(t))^{2} dt \le u_{n} \le \int_{2}^{n+1} (\ln(t))^{2} dt$$

- 3. Pour $x \ge 1$, calculer $\int_1^x (\ln(t))^2 dt$ et en trouver un équivalent en $+\infty$ en fonction de $x \mapsto x(\ln(x))^2$.
- 4. Déterminer un équivalent de $\left(\frac{1}{u_n}\right)_{n\geq 2}$ et en déduire la nature de $\sum_{n\geq 2}\frac{1}{u_n}$.

<u>Ex 33</u>: Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n (-1)^k \sqrt{k}$.

- 1. Montrer que : $u_{2n} = \sum_{\ell=1}^{n} \frac{1}{\sqrt{2\ell} + \sqrt{2\ell 1}}$.
- 2. En déduire que $u_{2n} \underset{n \to +\infty}{\sim} \frac{\sqrt{2n}}{2}$.
- 3. Déterminer un équivalent simple de u_n quand n tend vers $+\infty$.
- 4. Pour $n \in \mathbb{N}^*$, on pose $v_n = u_n + u_{n+1}$. Justifier que la série $\sum_{n \geqslant 1} (v_{n+1} v_n)$ est convergente de somme strictement négative.
- 5. Trouver la nature de $\sum_{n\geqslant 1} \frac{1}{u_n}$.

1. Soit M > 0 et $u : [1, +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ tel que } : \forall x \in [1, +\infty[, |u(x)| \leqslant M.$ Montrer que $\int_{1}^{\infty} \frac{u'(t)}{t} dt$ converge.

2. Montrer que $\int_{1}^{\infty} \frac{\sin t}{t} dt$ et $\int_{1}^{\infty} \sin(t^2) dt$ convergent.

3. Montrer que $\int_{1}^{\infty} \sin(t^3) dt$ converge.

$$\underline{\mathbf{Ex}} \ \mathbf{35} : \text{On note } I = \int_0^{+\infty} \frac{t \sin(t)}{t^2 + 1} \, dt.$$

1. Montrer que I converge.

2. On pose
$$\forall x \in \mathbb{R}$$
, $J(x) = \int_0^x \frac{t |\sin(t)|}{t^2 + 1} dt$.
Montrer que : $\forall n \in \mathbb{N}^*$, $J(n\pi) = \sum_{k=0}^{n-1} \int_0^\pi \frac{(u + k\pi)\sin(u)}{(u + k\pi)^2 + 1} du$.

3. I converge-t-elle absolument?

Ex 36: Soit, pour *n* un entier naturel non nul, $I_n = \int_0^{+\infty} \frac{1}{(1+t^4)^n} dt$.

- 1. Monter que I_n est défini, puis que la suite $(I_n)_{n>0}$ converge vers une limite à déterminer.
- 2. Trouver une relation de récurrence entre I_n et I_{n+1} . En déduire une seconde façon de déterminer la limite de la suite $(I_n)_{n>0}$.

Ex 37: Pour
$$n \in \mathbb{N}^*$$
, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^3)^n}$.

- 1. Justifier que I_n est bien définie pour tout $n \ge 1$.
- 2. Montrer que $I_{n+1} = \left(1 \frac{1}{3n}\right)I_n$.
- 3. On pose $u_n = n^{1/3} I_n$. étudier la convergence de la suite (u_n) . Ind. Poser $v_n = \ln (u_n)$.
- 4. Étudier la convergence de la série $\sum I_n$

Ex 38: On pose, pour tous $n \in \mathbb{N}^*$ et $t \in [0,1], g_n(t) = e^t \left(1 - \frac{t}{n}\right)^n$.

- 1. Montrer que : $\forall (t,n) \in [0,1] \times \mathbb{N}^*, |g'_n(t)| \leq \frac{e^t}{n}$.
- $2. \ \text{Montrer que}: \forall (t,n) \in [0,1] \times \mathbb{N}^*, \left| e^{-t} \left(1 \frac{t}{n}\right)^n \right| \leqslant \frac{t}{n}.$
- 3. Étudier la convergence simple et uniforme sur [0,1] de la suite de fonctions $(G_n)_{n\in\mathbb{N}^*}$ définie par $G_n: x\in[0,1]\mapsto\int_0^xg_n(t)\mathrm{d}t.$

Ex 39: Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose $v_n(x) = n^x e^{-nx}$.

Soit
$$S(x) = \sum_{n=0}^{+\infty} v_n(x)$$
.

- 1. Donner l'ensemble de définition de S.
- 2. Montrer que S est continue sur son ensemble de définition.
- 3. Donner la limite de S en $+\infty$ à l'aide du théorème de la double limite.
- 4. $\sum_{n\geq 0} v_n$ converge-t-elle uniformément sur $]0,+\infty[?]$
- 5. S est-elle dérivable sur $]0, +\infty[?]$

Ex 40: Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $f_n(x) = \frac{2x}{x^2 + n^2}$.

1. Justifier la convergence simple sur $\mathbb R$ de la série de fonctions $\sum_{n\geqslant 1} f_n$. On note S la fonction somme :

$$\forall x \in \mathbb{R}, \ S(x) = \sum_{n=1}^{+\infty} f_n(x).$$

- 2. Justifier la continuité de S sur \mathbb{R} .
- 3. Démontrer que : $\lim_{x\to +\infty} S(x) = \pi$ (on pourra considérer, pour $x\in \mathbb{R}_+^*$, la fonction $t\mapsto \frac{2x}{x^2+t^2}$).

Ex 41 : Soit $(a_n)_{n\geqslant 0}$ une suite décroissante de réels positifs qui converge vers 0 , Pour tout $t\in [0,1]$, on pose $u_n(t)=a_n(1-t)t^n$.

- 1. Montrer que la série de fonctions $\sum u_n$ converge simplement sur [0,1].
- 2. Trouver une condition nécessaire et suffisante pour que cette série converge normalement.
- 3. Montrer que la série $\sum u_n$ converge uniformément sur [0,1].

Ex 42: On pose $f_n(t) = \frac{(t^2 - 1)^{n+1}}{n+1}$ pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$.

- 1. Déterminer l'intervalle de convergence de $\sum u_n$, noté D.
- 2. Déterminer $\sum_{n=0}^{+\infty} f_n(t)$ pour $t \in D$.
- 3. Étudier la convergence normale sur [0,1] de $\sum f_n$
- 4. Convergence uniforme?
- 5. Soit $u_n = \int_0^1 \frac{(t^2 1)^{n+1}}{n+1} dt$. Montrer que $\sum u_n$ converge.
- 6. Calculer $\sum_{n=0}^{+\infty} u_n$.

Ex 43: Pour tout $(n,x) \in \mathbb{N} \times \mathbb{R} \setminus \{-1\}$, on pose $f_n(x) = \frac{1-x^{2n+2}}{1+x}$.

- 1. Étudier la convergence simple de (f_n) .
- 2. Étudier la convergence uniforme de (f_n) sur son intervalle de convergence simple.
- 3. Calcular $\lim_{n\to+\infty}\int_0^1 f_n(t)dt$.
- 4. Montrer que : $\forall (n, x) \in \mathbb{N} \times]-1, 1[, f_n(x) = \sum_{k=0}^n x^{2k} \sum_{k=0}^n x^{2k+1}.$
- 5. Montrer que $\sum \frac{(-1)^k}{k+1}$ converge et calculer sa somme à l'aide des questions précédentes.

Ex 44 : On considère la suite définie pour tout n par : $u_n = \int_0^1 \left(\frac{1+t^2}{2}\right)^n dt$.

- 1. Montrer que $(u_n)_n$ tend vers 0.
- 2. Montrer que $\sum_{k=0}^{+\infty} (-1)^k u_k = \int_0^1 \frac{2}{3+t^2} dt$.
- 3. Calcular $\int_0^1 \frac{2}{3+t^2} dt$.

Ex 45: On définit pour $n \ge 1$, $f_n: t \mapsto \frac{t^{n-1}\ln(t)}{n}$ sur I = [0,1] avec la convention $f_n(0) = 0$.

- 1. Déterminer $||f_n||_{\infty,I}$.
- 2. On pose $g: t \mapsto \frac{\ln(1-t)\ln(t)}{t}$ sur J =]0,1[.
 - i. Montrer que g est intégrable sur J. Indication : on pourra rappeler la valeur de $\lim_{t\to 1^-} \frac{\ln(t)}{t-1}$.
 - ii. Montrer que : $\int_0^1 g(t)dt = \sum_{k=1}^{+\infty} \frac{1}{k^3}.$

Ex 46:

- 1. Justifier l'existence de $I = \int_0^{+\infty} \frac{\sqrt{t}}{e^t 1} dt$.
- 2. Montrer que $I = \frac{\sqrt{\pi}}{2} \sum_{n=1}^{+\infty} \frac{1}{n\sqrt{n}}$. On admet que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Ex 47: Pour $(p,q) \in \mathbb{N}^2$, on pose $I_{p,q} = \int_0^1 x^p \ln(x)^q dx$.

- 1. Montrer la convergence des intégrales $I_{p,q}$ et les calculer.
- 2. Montrer que $\int_0^1 e^{x \ln(x)} dx = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{1}{n^n}$.

Ex 48: Pour $x \in \mathbb{R}_+^*$ et $n \in \mathbb{N}$, on pose $f_n : x \mapsto \frac{(x \ln(x))^n}{n!}$.

- 1. Montrer que $\sum_{n\geq 0} f_n$ converge simplement sur \mathbb{R}_+^* et calculer sa somme.
- 2. Montrer que $\int_0^1 f_n(t)dt$ converge et calculer cette intégrale.
- 3. Montrer que $\int_0^1 t^t dt$ converge et exprimer cette intégrale sous la forme d'une série.

 $\underline{\mathbf{Ex}} \ \mathbf{49}$: On définit la suite réelle (I_n) par : $I_0 = I_1 = 1$ et $\forall n \geqslant 2$ $I_n = I_{n-1} + (n-1)I_{n-2}$. Soit $f: x \longmapsto \sum_{n=0}^{+\infty} \frac{I_n}{n!} x^n$.

- 1. Montrer que le rayon de convergence R vérifie $R \ge 1$.
- 2. Donner une équation differentielle du premier ordre vérifiée par f.
- 3. Donner l'expression de f, le rayon de convergence, exprimer I_n .

<u>Ex 50</u>: On pose, pour $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{4}} \tan^n(t) dt$.

- 1. Montrer que, pour $n \in \mathbb{N}$, $0 \leq I_n \leq \frac{\pi}{4}$. En déduire que le rayon de convergence de $\sum I_n x^n$ est $\geqslant 1$.
- 2. Montrer, pour $n \in \mathbb{N}$, que $I_{n+2} + I_n = \frac{1}{n+1}$.
- 3. Donner un équivalent simple de I_n .
- 4. Déterminer le rayon de convergence R de $\sum I_n x^n$. Calculer $\sum_{n=0}^{+\infty} I_n x^n$ pour $x \in]-R, R[$.

$\underline{Ex 51}$:

- 1. Étudier la convergence simple de la série entière $\sum_{n\geqslant 1} \sin\left(\frac{1}{\sqrt{n}}\right) x^n$. On note D l'ensemble de convergence et S(x) la somme sur D. L'application S est-elle continue sur D?
- 2. Montrer que $\sum_{n\geq 1} \left(\sin \frac{1}{\sqrt{n}} \sin \frac{1}{\sqrt{n-1}} \right) x^n$ converge normalement sur [-1,1].
- 3. En déduire la valeur de $\lim_{x\to 1^-} (1-x)S(x)$.

Ex 52: Soit $h(x) = \int_0^{+\infty} e^{(-t^2 - \frac{x^2}{t^2})} dt$

- 1. Montrer que $t\mapsto \frac{a}{t^2}\mathrm{e}^{-t^2-\frac{b}{t^2}}$ est intégrable sur $]0;+\infty[$ pour a>0 et b>0.
- 2. Montrer que h est continue sur \mathbb{R} et dérivable sur \mathbb{R}_+^* .
- 3. Montrer que h'(x) = -2h(x), en déduire une expression de h en fonction de x et de h(0).

$$\underline{\mathbf{Ex}} \ \mathbf{53} : \mathrm{Soit} \ f : x \mapsto \int_0^{+\infty} \frac{\mathrm{Arctan}(xt) - \mathrm{Arctan}(t)}{t} \ \mathrm{d}t.$$

- 1. Montrer que f est bien définie sur \mathbb{R}^{+*} .
- 2. Montrer que f est continue sur \mathbb{R}^{+*} , puis que f est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} . En déduire l'expression de f' puis de f.
- 3. Calculer $\int_0^{+\infty} \frac{\operatorname{Arctan}(at) \operatorname{Arctan}(bt)}{t} dt$ pour $(a, b) \in (\mathbb{R}^{+*})^2$.

Ex 54: On pose
$$G: x \mapsto \int_0^{+\infty} \frac{t - \lfloor t \rfloor}{t(x+t)} dt$$
.

- 1. Montrer que G est bien définie pour x > 0.
- 2. Soit $n \in \mathbb{N}^*$. Montrer que $\int_0^y \frac{t \lfloor t \rfloor}{t(n+t)} dt = \frac{1}{n} \left(\int_0^n \frac{t \lfloor t \rfloor}{t} dt \int_y^{y+n} \frac{t \lfloor t \rfloor}{t} dt \right)$.
- 3. On pose H(n) = nG(n). Montrer que la série de terme général $H(n+1) H(n) \frac{1}{2n}$ converge. En déduire un équivalent de G(n).

$$\underline{\mathbf{Ex}\ \mathbf{55}}: \text{On pose}: \forall x \in [0, +\infty[,\ F(x) = \int_0^1 \frac{\mathrm{e}^{-x^2(1+t^2)}}{1+t^2} \,\mathrm{d}t \text{ et } G(x) = \int_0^x \mathrm{e}^{-u^2} \,\mathrm{d}u.$$

- 1. Montrer que F est \mathcal{C}^{∞} sur $[0, +\infty[$ et exprimer F'(x).
- 2. Montrer que $G^2(x) = \frac{\pi}{4} F(x)$.
- 3. En déduire la valeur de $\int_0^{+\infty} e^{-u^2} du$.

$$\underline{\mathbf{Ex 56}}: \text{On recherche les fonctions } x, y, z, u : \mathbb{R} \to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ v\'erifiant le syst\`eme} \begin{cases} x' &= x + 2y - 2z \\ y' &= x - y + u \\ z' &= x - z + u \\ u' &= 2y - 2z + u \end{cases}.$$

On note
$$A = \begin{pmatrix} 1 & 2 & -2 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & 1 \\ 0 & 2 & -2 & 1 \end{pmatrix}$$
 et f l'endomorphisme canoniquement associé à A .

- 1. Déterminer le polynôme caractéristique et le polynôme minimal de f.
- 2. Justifier avec un minimum de calcul que f n'est pas diagonalisable.
- 3. Déterminer une base de \mathbb{R}^4 dans laquelle la matrice de f vaut $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$
- 4. Résoudre le système différentiel.

Ex 57: Soit
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 de classe \mathcal{C}^1 telle que $f(0,0) = 0$ et $\forall (x,y) \in \mathbb{R}^2$, $\frac{\partial f}{\partial y}(x,y) > \left| \frac{\partial f}{\partial x}(x,y) \right|$. On pose : $u: x \longmapsto f(x,x), \ v: x \longmapsto f(x,-x)$ et $w_x: y \longmapsto f(x,y)$.

- 1. Calculer les dérivées de u, v et w_x .
- 2. Montrer que pour tout $x \in \mathbb{R}$, il existe un unique $y_x \in \mathbb{R}$ tel que $|y_x| \leq |x|$ et $w_x(y_x) = 0$.
- 3. On pose $\varphi: x \longmapsto y_x$ (on suppose que φ est dérivable). Exprimer $\varphi'(x)$ en fonction des dérivées partielles de f en $(x, \varphi(x))$. Montrer que φ est de classe \mathcal{C}^1 .

Ex 58: On note, pour tous réels x et $y: f(x,y)=y^2\sin(x/y)$ si $y\neq 0$ et f(x,0)=0.

- 1. On pose $X_0 = (x_0, 0)$ où $x_0 \in \mathbb{R}$.
 - i. Montrer que f est continue en X_0 .
 - ii. Montrer que f est continue sur \mathbb{R}^2 .
- 2. On considère $X_1 = (x_1, y_1) \in \mathbb{R}^2$ avec $y_1 \neq 0$.
 - i. Calculer les dérivées partielles de f en X_1 .
 - ii. f est-elle différentiable en X_1 ? Si oui, donner la différentielle de f en X_1 , puis en (0,1).
- 3. Calculer les dérivées partielles de f en X_0 . Si on suppose que f est différentiable en X_0 , que vaut sa différentielle?

Ex 59 : Soit (Ω, \mathcal{A}, P) un univers probabilisé fini.

Soit X, Y deux variables aléatoires.

Soit $(i, j) \in \{1, \dots, n+1\}^2$.

On définit $a_{i,j} = P(X = i, Y = j) = \frac{1}{2n}$ si |i + j - (n+2)| = 1 et $a_{i,j} = P(X = i, Y = j) = 0$ sinon.

- 1. Montrer que $(a_{i,j})_{(i,j)\in\{1,\dots,n+1\}^2}$ définit une loi de probabilité de couple.
- 2. Expliciter A, la matrice dont les coefficients sont les $a_{i,j}$, et montrer que A est diagonalisable.
- 3. Donner les lois marginales de X et Y.
- 4. On pose $b_{i,j} = P(X = i|Y = j)$ les coefficients de la matrice B.

Exprimer
$$B$$
 et montrer que $v = \begin{pmatrix} P(X=1) \\ P(X=2) \\ \dots \\ P(X=n+1) \end{pmatrix}$ est un vecteur propre de B .

 $\underline{\mathbf{Ex}}$ 60 : Soit $n \in \mathbb{N}^*$ puis X et Y deux variables aléatoires définies sur un même espace probabilisé et à valeurs dans $[\![1,n+1]\!]$ dont la loi de couple est donnée par :

$$\forall (i,j) \in [1, n+1]^2, \ P(X=i, Y=j) = \lambda \binom{n}{i-1} \binom{n}{j-1}.$$

- 1. Montrer que $\lambda = \frac{1}{4^n}$.
- 2. Déterminer les lois marginales de X et Y. Les variables aléatoires X et Y sont-elles indépendantes?
- 3. Déterminer l'espérance et la variance de X.
- 4. Soit $B = (b_{i,j})_{1 \le i,j \le n+1} \in \mathcal{M}_{n+1}(\mathbb{R})$ telle que $b_{i,j} = P(X = i, Y = j)$ pour tout $(i,j) \in [1, n+1]^2$.
 - i. Justifier que B est diagonalisable.
 - ii. En calculant B^2 , déterminer les valeurs propres de B et donner la dimension des sous-espace propres associés.

<u>Ex 61</u>: Soit X une variable aléatoire réelle discrète à valeurs dans \mathbb{N} . On définit le taux de panne de X comme la suite (x_n) telle que : $\forall n \in \mathbb{N}$, $x_n = \mathbb{P}(X = n | X \ge n)$. Soit $Y : \Omega \to \mathbb{N}^*$ telle que : $\forall n \in \mathbb{N}^*$, $\mathbb{P}(Y = n) = \frac{1}{n(n+1)}$.

- 1. Montrer que la loi de Y est bien une loi de probabilité.
- 2. Soit X une variable aléatoire réelle discrète telle que $X(\Omega) = \mathbb{N}^*$.
 - i. Montrer que $\forall n \in \mathbb{N}^*$, $\mathbb{P}(X \ge n) = \prod_{k=0}^{n-1} (1 x_k)$.
 - ii. Pour $n \in \mathbb{N}^*$, exprimer $\mathbb{P}(X = n)$ en fonction des x_k .
- 3. Déterminer les variables aléatoires réelles discrètes ayant un taux de panne constant.
- 4. Déterminer le taux de panne de Y.

<u>Ex 62</u>: On dispose d'une urne contenant $n \in \mathbb{N}$ ($n \ge 2$) boules numérotées de 1 à n dans laquelle on effectue des tirages successifs avec remise. Soit X_n la variable aléatoire égale au rang d'obtention de la première boule différente de la première tirée.

- 1. Donner la loi de X_n .
- 2. Justifier que X_n admet une espérance finie et la calculer.
- 3. On note Y_n la variable aléatoire correspondant au rang où pour la première fois toutes les boules ont été tirées au moins une fois.
 - (a) Donner la loi de Y_2 .
 - (b) Donner la loi de Y_3 .

 $\underline{\mathbf{Ex}}$ 63 : Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 tel qu'il existe $\alpha \in \mathbb{R}$ vérifiant, $\forall (k,\ell) \in \mathbb{N}^2, \mathbf{P}(X=k,Y=\ell) = \frac{\alpha}{2^{k+\ell}}$.

- 1. Trouver α . Les variables X et Y sont-elles indépendantes?
- 2. Calculer $G_X(t)$, $\mathbf{E}(X)$, V(X) et cov(X, Y).
- 3. Calculer $\mathbf{P}(X \ge k)$ pour tout $k \in \mathbb{N}$ et retrouver $\mathbf{E}(X)$.
- 4. On pose $Z = \min(X, Y)$. Déterminer la loi de Z.
- 5. Calculer $\mathbf{P}(X \geqslant Y)$.

Ex 64 : Soit X une variable aléatoire discrète à valeurs dans \mathbb{N} .

- 1. Montrer que : $\sum_{k=1}^{n} kP(X=k) = \sum_{k=0}^{n-1} P(X>k) nP(X>n).$
- 2. Montrer que si la famille $(P(X > k))_{k \ge 0}$ est sommable, alors X admet une espérance finie.
- 3. Étude de la réciproque : montrer que si X admet une espérance finie, alors la suite $(nP(X > n))_{n\geqslant 1}$ converge vers 0 et que $E(X) = \sum_{k=0}^{+\infty} P(X > k)$.
- 4. Application : on considère une urne contenant N boules identiques numérotées de 1 à N. On effectue n tirages avec remise. On note X la variable aléatoire égale au plus grand nombre tiré au cours des n tirages.

- (a) Calculer $P(X \leq k)$ et en déduire la loi de X.
- (b) Montrer, à l'aide d'une somme de Riemann, que la suite $\left(\frac{1}{N}\sum_{k=1}^{N}\left(\frac{k}{N}\right)^n\right)_{N\geqslant 1}$ admet une limite finie et la calculer.
- (c) En déduire que $\lim_{N\to+\infty} \frac{E(X)}{N} = \frac{n}{n+1}$.

IMT 1 MP 2023

Ex 65: Soit S l'ensemble des couples $(P,Q) \in \mathbb{R}[X]^2$ tels que $(X-1)^n Q(X) + X^n P(X) = 1$.

- 1. Montrer l'existence et l'unicité d'un couple $(P_0, Q_0) \in \mathbb{R}_{n-1}[X]^2$ dans \mathcal{S} .
- 2. Déterminer S.

Ex 66: Soient E un espace vectoriel et u un endomorphisme nilpotent de E. Soit $x \in E$ et $k \in \mathbb{N}$ tels que $u^k(x) \neq 0$. Montrer que $(x, u(x), \dots, u^k(x))$ est libre.

 $\underline{\mathbf{Ex}} \ \mathbf{67} : \mathbf{Soit} \ n \in \mathbb{N}, \ p \in \mathbb{N}.$

Soit $A \in M_{n,p}(\mathbb{R}), B \in M_{p,n}(\mathbb{R}).$

Montrer que : $p + \operatorname{rg}(I_n + AB) = n + \operatorname{rg}(I_p + BA)$.

Ex 68:

- 1. Soient $n \in \mathbb{N}^*$, u et v deux endomorphismes nilpotents non nuls de \mathbb{R}^n tels que $u \circ v = v \circ u$. Montrer que $\operatorname{rg}(u \circ v) < \operatorname{rg}(v)$.
- 2. Montrer que la composée de n endomorphismes nilpotents de \mathbb{R}^n qui commutent deux à deux est nulle.

<u>Ex 69</u>: Soient E un espace vectoriel de dimension finie et f un endomorphisme de E. Montrer que $rg(f) + rg(f^3) \ge 2 rg(f^2)$.

Ind. Utiliser le théorème du rang pour les restrictions de f à Im(f) puis $\text{Im}(f^2)$.

Ex 70: Soient E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 = -id$,

- 1. Montrer que $\dim(E)$ est pair.
- 2. Montrer que, pour tout $x \in E$, Vect(x, f(x)) est stable par f.
- 3. Montrer que, si dim(E) = 2n, il existe des vecteurs e_1, \dots, e_n de E tels que la famille $(e_1, f(e_1), \dots, e_n, f(e_n))$ soit une base de E. Donner la matrice de f dans cette base.

Ex 71 : Soit $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$. On suppose que AB est semblable à la matrice diagonale diag (0,9,9). Calculer le rang de BA et déterminer BA.

Ex 72: Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A$.

- 1. Montrer que A est diagonalisable.
- 2. On suppose que $\operatorname{rg}(A) = \operatorname{tr}(A)$. Montrer que A est la matrice d'une projection.

 $\mathbf{\underline{Ex}} \ \mathbf{73} : \mathrm{Soit} \ \Phi : M \in \mathcal{M}_n(\mathbb{R}) \mapsto \mathrm{tr}(M)A - M^T.$

- 1. L'application Φ est-elle un automorphisme?
- 2. L'application Φ est elle diagonalisable? Donner les valeurs propres et les sous-espaces propres associés.

Ex 74 : Soient E un \mathbb{K} -espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$. On pose $\Phi_u : v \in \mathcal{L}(E) \mapsto u \circ v \in \mathcal{L}(E)$.

- 1. Quels sont les éléments propres de ϕ_u ?
- 2. Montrer que ϕ_u est diagonalisable si et seulement si u est diagonalisable.

Ex 75: Soit $M \in \mathcal{M}_2(\mathbb{Z})$ pour laquelle qu'il existe $n \geqslant 1$ telle que $M^n = I_2$. Montrer que $M^{12} = I_2$.

 $\underline{\mathbf{Ex}\ 76}: \text{Soient}\ a,b,c\in\mathbb{R}^{+*}\ \text{et}\ M=\left(\begin{array}{ccc}1&\frac{b}{a}&\frac{c}{a}\\\frac{a}{b}&1&\frac{c}{b}\\\frac{a}{c}&\frac{b}{c}&1\end{array}\right). \ \text{D\'eterminer les valeurs propres et les espaces}$ propres de M.

Ex 77: Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = -I_n$, montrer que det A = 1.

 $\underline{\mathbf{Ex}} \ \mathbf{78} : \mathrm{Soit} \ A \in \mathcal{M}_n(\mathbb{R}) \ \mathrm{et} \ M = \begin{pmatrix} A & 0 \\ A & A \end{pmatrix}.$

- 1. Comparer le spectre de A et celui de M.
- 2. Pour $P \in \mathbb{R}[X]$, exprimer P(M) en fonction de P(A).
- 3. Conclure en donnant une condition nécessaire et suffisante portant sur A quant à la diagonalisabilité de M.

Ex 79:

- 1. Soient $A \in GL_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\det(AB - I_n) = \det(BA - I_n)$.
- 2. Généraliser le résultat avec A non inversible. On pourra considérer la suite $A_p = A \frac{1}{p}I_n$.

 $\underline{\mathbf{Ex}}$ 80 : Soit $n \geq 3, A \in \mathcal{M}_n(\mathbb{R})$ telle que A contient que des 1 sur sa première ligne, première colonne, sur sa diagonale et que des 0 ailleurs.

Montrer que 1 est valeur propre, donner son sous-espace propre. En déduire les autres valeurs propres.

$$\underline{\mathbf{Ex\ 81}}: \text{On note } A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$
 Soit X tel que $X^2 = A$.

- 1. Montrer que X est triangulaire supérieure.
- 2. Donner tous les X.

Ex 82: Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $4A^3 + 4A^2 + A = 0$. Étudier la convergence et la limite éventuelle de la suite $(A^k)_{k\in\mathbb{N}}$.

Ex 83: Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B = A^3 + A + I_n$.

- 1. On suppose que A est diagonalisable, à valeurs propres réelles. Montrer que A est un polynôme en B.
- 2. Est-ce encore vrai si les valeurs propres de A sont complexes?

Ex 84:

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 + A + I_n = 0$. Montrer que n est pair.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Montrer que $\operatorname{rg}(A)$ est pair.

$$\mathbf{\underline{Ex\ 85}} : \text{Soit } A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- 1. Montrer que A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ et admet une unique valeur propre réelle a. Montrer que a > 1.
- 2. Soit $n \in \mathbb{N}$. Montrer que $\sum_{\lambda \in Sp(A)} \lambda^n$ est un entier.
- 3. Montrer que $\sum_{n=0}^{\infty} \sin(\pi a^n)$ converge.

Ex 86: Soit E l'espace des fonctions C^1 sur \mathbb{R} telles que f(0) = 0. Soit $f \in E$, on définit T l'application telle que $\forall x \in \mathbb{R}, T(f)(x) = \int_0^x \frac{f(t)}{t} dt$. Montrer que T est un endomorphisme de E, puis déterminer ses éléments propres.

Ex 87: Soit E un espace euclidien; soit $f \in \mathcal{L}(E)$ et $u = f^* \circ f$.

- 1. Montrer que u est diagonalisable et que ses valeurs propres sont dans \mathbb{R}_+ .
- 2. Montrer que Ker u = Ker f et $\text{Im } u = \text{Im } f^*$.

Ex 88: Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique telle que $A^{2023} = A^{2024}$.

- 1. Montrer que $\sum_{1 \le i,j \le n} a_{i,j}^2 = \operatorname{rg}(A).$
- 2. Le résultat reste-t-il vrai si A est seulement diagonalisable?

Ex 89: On pose $E = \mathcal{C}^{\infty}([0;1])$ que l'on muni de $\|.\|_{\infty}$. On pose $\forall f \in E, \ u(f)(x) = \int_0^1 \inf(x,t)f(t) \, dt$. Montrer que u est un endomorphisme continu de E et calculer $\|u\|$.

Ex 90: On note E l'ensemble des fonctions $f \in \mathcal{C}^1([0,1],\mathbb{R})$ telles que f(0)=0. Pour $f \in E$, on pose $N(f)=\|f+f'\|_{\infty}$ et $N'(f)=\|f\|_{\infty}+\|f'\|_{\infty}$.

- 1. Montrer que N et N' sont des normes sur E.
- 2. Montrer que N et N' sont équivalentes. Ind. Exprimer f en fonction de g = f + f'.

$$\underline{\mathbf{Ex}\ \mathbf{91}}: \mathrm{Soit}\ N\ \mathrm{d\acute{e}finie}\ \mathrm{sur}\ \mathbb{R}[X]\ \mathrm{par}\ N\left(\sum_{i=0}^n a_i X^i\right) = \max_{0\leqslant i\leqslant n} |a_i|.$$

- 1. Montrer que N est une norme.
- 2. Soient $a \in \mathbb{R}$ et $\phi : P \in \mathbb{R}[X] \mapsto P(a)$. Pour quelles valeur de a, l'application ϕ est-elle continue pour la norme N?

$$\underline{\mathbf{Ex}\ \mathbf{92}}: \mathrm{Soit}\ (a,b) \in \mathbb{R}^2. \ \mathrm{D\acute{e}terminer} \lim_{n \to +\infty} \left(\begin{array}{c} \cos\left(\frac{a}{n}\right) & \sin\left(\frac{b}{n}\right) \\ \sin\left(\frac{b}{n}\right) & \cos\left(\frac{a}{n}\right) \end{array} \right)^n.$$

Ex 93 : Soient E un espace euclidien et K l'ensemble des projecteurs orthogonaux de E. Soit p un projecteur.

- 1. Montrer que : $p \in \mathcal{K} \Leftrightarrow \forall x \in E, ||p(x)|| \leq ||x||$.
- 2. Montrer que \mathcal{K} est un compact.

Ex 94 : Soit E un \mathbb{R} -espace vectoriel normé de dimension finie. Soit $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ une suite telle que, pour tout vecteur $x\in E$, la suite $(\|x-u_n\|)_{n\in\mathbb{N}}$ converge.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ a une valeur d'adhérence.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

<u>Ex 95</u>: On définit, pour x réel, $f(x) = \lfloor x \rfloor + (x - \lfloor x \rfloor)^2$.

- 1. Discuter la continuité de f.
- 2. Tracer le graphe de f.
- 3. On définit la suite (x_n) par $x_0 \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$. Étudier la monotonie et la convergence de (x_n) .

<u>Ex 96</u>: On définit la suite (u_n) par $u_0 \in]0, \frac{\pi}{2}$ et $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$.

- 1. Montrer que (u_n) converge vers 0.
- 2. Déterminer $\alpha \in \mathbb{R}$ tel que $(u_{n+1}^{\alpha} u_n^{\alpha})$ converge vers une limite non nulle.
- 3. Déterminer un équivalent de u_n . Quelle est la nature de $\sum u_n$?

 $\underline{\mathbf{Ex}}\ \mathbf{97}$: On pose, pour tout $n\in\mathbb{N}^*, u_n=\prod_{k=1}^n\left(1+\frac{(-1)^{k-1}}{\sqrt{k}}\right)$. Donner un équivalent de u_n lorsque n tend vers $+\infty$. Quelle est la nature de la série $\sum u_n$?

Ex 98: On pose, pour $n \in \mathbb{N}$ tel que $n \ge 2$: $u_n = \sum_{k=2}^n \frac{\ln k}{k}$.

- 1. Montrer que $u_n \sim \frac{1}{2} \ln^2 n$. On note v_n cette dernière quantité.
- 2. Donner un équivalent de $u_n v_n$.

 $\underline{\mathbf{Ex}\ \mathbf{99}} : \text{Justifier la convergence de l'intégrale} \ \int_0^{+\infty} \left(1 - t \operatorname{Arctan} \left(\frac{1}{t}\right)\right) \mathrm{d}t \ \text{puis calculer sa valeur}.$

 $\underline{\mathbf{Ex}\ \mathbf{100}}: \mathrm{Soit}\ I = \int_0^1 \frac{t-1}{\ln(t)} \mathrm{d}t.$

- 1. Étude de la convergence de I.
- 2. Calcul de I.

 $\underline{\mathbf{Ex}} \ \mathbf{101} : \mathbf{Calculer} : \lim_{\alpha \to 0^+} \alpha \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}}.$

<u>Ex 102</u>: Montrer que $\int_0^1 \frac{\mathrm{d}u}{1+u^4} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{1+4k}$.

$$\underline{\mathbf{Ex}} \ \mathbf{103} : \int_{1/2}^{3/2} \frac{dx}{x^n + (1-x)^n} \sim_{n \to +\infty} \frac{\pi}{4} \frac{2^n}{n}.$$

On pourra utiliser le changement de variable $x = \frac{1}{2}(1 + \frac{t}{n})$.

$$\underline{\mathbf{Ex}} \ \mathbf{104} : \text{On pose } u_n(x) = \operatorname{Arctan}(\sqrt{n+x}) - \operatorname{Arctan}(\sqrt{n}) \text{ et } S(x) = \sum_{n=0}^{+\infty} u_n(x).$$

- i. Éudier la convergence simple, puis la convergence normale de S.
- ii. Montrer que S est de classe \mathcal{C}^{∞} et calculer S'.

 $\underline{\mathbf{Ex}} \ \mathbf{105}$: Soit, pour $n \in \mathbb{N}, u_n = (-1)^n \int_0^{\frac{\pi}{2}} \cos(x)^n \, \mathrm{d}x$. Étudier la convergence de $\sum u_n$. Calculer sa somme.

Ex 106: Montrer l'existence de $\int_0^{+\infty} \sum_{n=1}^{+\infty} \frac{(-1)^n}{1+n^2t^2} dt$ et en donner la valeur.

Ex 107: On pose
$$f(x) = \sum_{n=0}^{+\infty} n^{(-1)^n} x^n$$
.

- 1. Donner le rayon de convergence de f.
- 2. Calculer f.

Ex 108: Soit r > 0. On note $\forall n \in \mathbb{N}$:

$$a_n = \begin{cases} r^{\sqrt{n}} & \text{si } n \text{ est un carr\'e} \\ 0 & \text{sinon} \end{cases}$$

Donner le rayon de convergence de $\sum a_n x^n$.

<u>**Ex 109**</u> : Soit q ∈] − 1, 1[.

- 1. Montrer qu'il existe une unique fonction f continue en 0 telle que f(0) = 1 et : $\forall x \in]-1,1[,\ f(x)=\frac{1+x}{1-x}f(qx).$
- 2. Cette fonction est-elle décomposable en série entière et si oui, quel est son rayon de convergence ?

Ex 110: On pose
$$F(x) = \int_0^\infty \ln t \, e^{-xt} \, dt$$
.

- 1. Déterminer le domaine de définition de F.
- 2. Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .

3. Déterminer une équation différentielle dont F est solution sur \mathbb{R}_+^* , puis résoudre cette équation différentielle.

 $\underline{\mathbf{Ex}\ \mathbf{111}}$: Soit $F: t \mapsto \int_0^{+\infty} \frac{\operatorname{Arctan}(xt)}{x(1+x^2)} \mathrm{d}x$. Montrer que F est continue sur \mathbb{R} , puis de classe \mathcal{C}^1 . En déduire F.

$$\underline{\mathbf{Ex}} \ \mathbf{112} : \mathrm{Soit} \ F : x \mapsto \int_0^{\frac{\pi}{2}} \sin(t)^x \ \mathrm{d}t,$$

- 1. Montrer que F est de classe C^{∞} sur $]-1,+\infty[$.
- 2. Montrer que $F(n+2) = \frac{n+1}{n+2}F(n)$. Calculer (n+1)F(n)F(n+1).
- 3. Donner un équivalent de F(x) quand x tend vers $+\infty$.

Ex 113: Trouver toutes les fonctions f continues sur \mathbb{R} telles que :

$$\forall x, y \in \mathbb{R}, \ f(x) = \int_{x-y}^{x+y} f(t) \ dt$$

Ex 114:

- 1. Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telle que $\forall x \in \mathbb{R}, f(x) + f'(x) = e^{-x}$. Montrer que $f(x) \underset{x \to +\infty}{\longrightarrow} 0$.
- 2. Plus généralement, montrer que si $f(x) + f'(x) \xrightarrow[x \to +\infty]{} 0$, alors $f(x) \xrightarrow[x \to +\infty]{} 0$.

<u>Ex 115</u>: On se place dans $A = \{1, ..., n\}$. On choisit F et G deux parties de A de manière équiprobable et indépendante. Soit $i \in A$.

- 1. Montrer que $P(i \in F) = \frac{1}{2}$.
- 2. Montrer que les événements $(i \in F)$ et $(j \in G)$ sont indépendants pour $j \neq i$.

Ex 116: Soit
$$a \in]1, +\infty[$$
 et on pose $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^a}$.

Soit X une variable aléatoire à valeurs dans \mathbb{N}^* telle que : $\forall n \in \mathbb{N}^*$, $P(X = n) = \frac{1}{\zeta(a)n^a}$.

- 1. Montrer que X définit bien une variable aléatoire discrète.
- 2. Est-ce que X admet une espérance? Si oui, la calculer.
- 3. Soit $k \in \mathbb{N}^*$. On pose $A_k = \{kp, p \in \mathbb{N}^*\}$. Calculer $P(X \in A_k)$.
- 4. À quelle condition $(X \in A_i)$ et $(X \in A_j)$ sont indépendants, pour i, j dans \mathbb{N}^* ?

<u>Ex 117</u>: Soient X et Y deux variables aléatoires indépendantes suivant des lois géométriques de paramètres respectifs p et q. On note $Z = \frac{X}{V}$.

- 1. Montrer que $Z \leq X$. Montrer que Z admet une espérance et une variance. Calculer $\mathbf{E}(Z)$
- 2. Donner la loi de Z.

 $\underline{\mathbf{Ex}}$ 118 : Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 dont la loi est donnée par :

$$\forall (j,k) \in \mathbb{N}^2, \ P((X,Y) = (j,k)) = \frac{(j+k)\left(\frac{1}{2}\right)^{j+k}}{e \ j! \ k!}.$$

- 1. Déterminer les lois marginales de X et de Y. Les variables X et Y sont-elles indépendantes?
- 2. Prouver que $E\left[2^{X+Y}\right]$ existe et la calculer.

 $\underline{\mathbf{Ex}}$ 119 : On possède une urne contenant n boules numérotées de 1 à n. On réalise deux tirages successifs sans remise. On note X la variable aléatoire correspondant au numéro de la première boule tirée et Y celle correspondant au numéro de la seconde.

- 1. Donner la loi de X.
- 2. Donner la loi de Y.
- 3. Calculer V(X), V(Y) et V(X+Y).

Ex 120:

1. On note l^2 l'ensemble des suites réells (p_i) telles que la série de terme générale p_i^2 converge. Montrer que l^2 est un espace vectoriel et que l'application :

$$\forall (p_i), (q_i) \in l^2, \langle p_i, q_i \rangle = \sum_{i=0}^{+\infty} p_i q_i$$
 est un produit scalaire.

2. Soit X une variable aléatoire à valeur dans \mathbb{N} , admettant un moment d'ordre 2. On note $\forall i \in \mathbb{N}$, $p_i = P(X = i)$ et $p_{-1} = 0$.

On note
$$I(X) = \sum_{i=0}^{+\infty} \frac{(p_i - p_{i-1})^2}{p_i}$$

- i. Montrer que $I(X) \ge \frac{1}{V(X)}$
- ii. Enfin montrer que $I(X) = \frac{1}{V(X)}$

Ex 121: Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \mathcal{G}\left(\frac{1}{3}\right)$ et $Y \sim \mathcal{G}\left(\frac{2}{3}\right)$. Loi de Z = X + Y?

IMT 2 MP 2023

Ex 122 : Soit E un \mathbb{K} -espace vectoriel tel que $f \circ f = f$.

- 1. Montrer que $\operatorname{Ker}(f) \oplus \operatorname{Im}(f) = E$. Interpréter géométriquement.
- 2. Si E est de dimension finie, que dire de la matrice dans une base bien choisie?

3. Donner un exemple d'un endomorphisme f de E tel que $\operatorname{Ker}(f) \oplus \operatorname{Im}(f) = E$.

Ex 123: Soit $f \in \mathcal{L}(\mathbb{R}^4)$ telle que $f \circ f = 0$. Montrer que $\operatorname{rg}(f) \leqslant 2$.

Ex 124: Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle qu'il existe p dans \mathbb{N}^* vérifiant $A^p = 0$.

- 1. Montrer que $A^n = 0$.
- 2. Calculer $\det(I_n + A)$.
- 3. Montrer que $C(A) = \{M \in \mathcal{M}_n(\mathbb{C}), AM = MA\}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$.
- 4. Soit $M \in C(A) \cap GL_n(\mathbb{C})$. Calculer $\det(A+M)$.
- 5. Montrer que $GL_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$. En déduire de cette preuve que le résultat de la question précédente reste vrai si on a seulement M dans C(A).
- 6. Que permettent de dire les matrices $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ par rapport à l'exercice?

Ex 125: Soit E un espace vectoriel avec dim $E = n \ge 1$.

- 1. Soit u un endomorphisme nilpotent, montrer que : $u^n = 0$.
- 2. Trouver une base \mathcal{B} de E tel que :

$$A = \operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & 0 \\ 1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & 1 & \ddots & & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & & 0 & 1 & 0 & 0 \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

3. Chercher des X tels que : $A = X^2$

Ex 127: Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que: $A^2 = -I_n \implies \det A = 1$.

 $\underline{\mathbf{Ex}} \ \mathbf{128} : \text{La matrice } A = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ est-elle inversible ? Déterminer } A^n \text{ pour tout } n \in \mathbb{Z}.$

Ex 129: Soit E un \mathbb{R} -espace vectoriel et $u \in \mathcal{L}(E)$ tel que $Sp(u) = \{\lambda_1, ..., \lambda_p\}$ avec les λ_k deux à deux distincts et

$$P = \prod_{k=1}^{p} (X - \lambda_k).$$

- 1. Donner une condition nécessaire et suffisante sur P pour que u soit diagonalisable. Prouver le.
- 2. Existe-t-il dans \mathbb{R}^7 un endomorphisme u tel que $(X-1)(X^2+1)$ annule u et tr(u)=0? Soit u un endomorphisme de \mathbb{R}^{7} tel que $(X-1)(X^2+1)$ annule u. Déterminer $\det(u)$.

$$\mathbf{\underline{Ex\ 130}}: \text{Soient } A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \text{ et } C = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

- 1. La matrice A est-elle diagonalisable?
- 2. On veut montrer qu'il n'existe pas de matrice B telle que $B^2 = A$. On suppose l'existence d'une telle matrice. Trouver un polynôme annulateur simple de B. Conclure.
- 3. Montrer que A est semblable à C.

Ex 131: Soient u et v deux endomorphismes de E qui commutent.

- 1. Démontrer que les sous-espaces propres de u sont stables par v.
- 2. Soit $\begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ la matrice associée à l'endomorphisme u. Combien y a-t-il de droites vectorielles stables par u?

Ex 132: Soit E un espace vectoriel sur \mathbb{R} de dimension $n \in \mathbb{N}^*$. Soit $f \in \mathcal{L}(E)$ ayant n valeurs propres distinctes et $g \in \mathcal{L}(E)$ vérifiant $f \circ g = g \circ f$.

- 1. Montrer que f est diagonalisable.
- 2. Soit (e_1, \ldots, e_n) une base de vecteurs propres pour f. Montrer que les e_i sont aussi vecteurs propres de q.

On note μ_1, \ldots, μ_n les valeurs propres associées.

- 3. Les μ_i sont-ils forcément deux à deux distincts?
- 4. L'endomorphisme q est-il forcément diagonalisable?

Ex 133: Soit $A \in \mathcal{M}_n(\mathbb{C})$. On définit f sur $\mathcal{M}_n(\mathbb{C})$ par : $\forall M \in \mathcal{M}_n(\mathbb{C}), f(M) = \text{Tr}(M)A + \text{Tr}(A)M$.

- 1. Montrer que f est un endomorphisme.
- 2. f est-il diagonalisable?

Ex 134: Soient E un \mathbb{C} -espace vectoriel, $u \in \mathcal{L}(E)$ diagonalisable, $e = (e_1, \dots, e_n)$ une base de vecteur propre.

- 1. Montrer que $\chi_u(u) = 0$ sans utiliser le théorème de Cayley-Hamilton.
- 2. On écrit $x = \sum_{i=1}^{n} x_i e_i$. Calculer $\det_e (x, u(x), \dots, u^{n-1}(x))$.

Ex 135:

- 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$. La matrice A admet-elle toujours une valeur propre?
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^2 + A + I_n = 0$. Que dire du spectre réel de A? du spectre complexe?

Ex 136 :

1. Soient E un \mathbb{R} -espace vectoriel de dimension finie et u un endomorphisme de E. On note $\lambda_1, \ldots, \lambda_p$ ses valeurs propres distinctes et $P = \prod_{k=1}^p (X - \lambda_i)$.

Donner une condition nécessaire et suffisante portant sur P pour que u soit diagonalisable et la démontrer.

- 2. Soit $f \in \mathcal{L}(\mathbb{R}^7)$. Est-il possible d'avoir simultanément $Q = (X 1)(X^2 + 1)$ annulateur de f et Tr(f) = 0?
- 3. Soit $g \in \mathcal{L}(\mathbb{R}^7)$ tel que Q(g) = 0. Calculer $\det(g)$.

$\underline{\mathbf{Ex}} \ \mathbf{137} : \mathbf{Soit} \ A \in \mathbb{R}_n[X] \setminus \{0\}.$

- 1. Montrer que l'application $f: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ qui à tout polynôme P associe le reste de la division euclidienne de P par A est un projecteur. Donner son noyau et son image.
- 2. On munit $\mathbb{R}_n[X]$ du produit scalaire : $\langle P, Q \rangle = \int_0^1 PQ$. Donner une condition nécessaire et suffisante pour que f soit un projecteur orthogonal.

Ex 138 : On considère le plan de \mathbb{R}^3 d'équation x + 2y - 3z = 0.

Trouver la matrice dans la base canonique de la projection orthogonale sur ce plan.

Ex 139:

- 1. Rappeler le théorème spectral.
- 2. On munit $\mathcal{M}_{n,1}(\mathbb{R})$ du produit scalaire usuel. Soit $A \in S_n(\mathbb{R})$. Montrer que les sous-espaces propres de A sont deux à deux orthogonaux.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et on suppose que $(A + A^T)$ est nilpotente. Montrer que A est antisymétrique.

<u>Ex 140</u>: On pose $E = \mathcal{C}^1([0,1],\mathbb{R})$. Pour $(f,g) \in E^2$, on pose $\langle f,g \rangle = \int_0^1 (fg + f'g')$.

- 1. Montrer que \langle , \rangle est un produit scalaire. Soient $V = \{ f \in E, f(0) = f(1) = 0 \}$ et $W = \{ f \in E, f'' = f \}$.
- 2. Montrer que V et W sont des sous-espaces vectoriels puis que $\{t \mapsto e^t, t \mapsto e^{-t}\}$ est une base de W.
- 3. Montrer que V et W sont orthogonaux.
- 4. Calculer $p_W(f)$ le projeté orthogonal de $f \in E$ sur W.
- 5. Montrer que V et W sont supplémentaires.

Ex 141: Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = -A$.

- 1. Montrer que rg(A) est pair.
- 2. Que dire si $A = A^T$?

$$\underline{\mathbf{Ex}} \ \mathbf{142} : \mathbf{Soit} \ A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
. Trouver une base orthonormale de diagonalisation de A .

Ex 143: Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 + A^T = I_n$.

- 1. Trouver $P \in \mathbb{R}_4[X]$ tel que P(A) = 0. Que dire sur A et Sp(A)?
- 2. On suppose, pour cette question seulement, que $0 \notin \operatorname{Sp}(A)$. Montrer que $A I_n \in \operatorname{GL}_n(\mathbb{R})$ et que $A \in \mathcal{S}_n(\mathbb{R})$.
- 3. On prend n = 3. Montrer que $tr(A) \neq 0$.

Ex 144: Soit la matrice :
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

Pour quels réels a la suite $(a^n A^n)_{n \in \mathbb{N}}$ converge-t-elle vers une limite non-nulle?

Ex 145 : Soit E un espace de dimension finie. Soit $\varphi \in \mathcal{L}(E)$.

- 1. Rappeler la définition de $\exp(\varphi)$ et montrer son existence.
- 2. On suppose que $\varphi^2 = Id_E$. Exprimer $\exp(\varphi)$.

Ex 146: Montrer la convergence des suites (x_n) , (y_n) , (z_n) définies par leurs premiers termes respectifs x_0, y_0, z_0 et les relations, pour tout $n \in \mathbb{N}$, $x_{n+1} = \frac{x_n}{2} + \frac{y_n}{4} + \frac{z_n}{4}, y_{n+1} = \frac{x_n}{4} + \frac{y_n}{2} + \frac{z_n}{4}, z_{n+1} = \frac{x_n}{4} + \frac{y_n}{4} + \frac{z_n}{2}$.

$$\underline{\textbf{Ex 147}}$$
 : Étudier la convergence de $\sum \frac{(-1)^n}{\sqrt{n^{2\alpha}+(-1)^n}}$

Ex 148 : Nature de la série $\sum \cos \left(\pi \sqrt{n^2 + n + 1}\right)$?

$$\underline{\mathbf{Ex}} \ \mathbf{149}$$
: Nature de la série $\sum \cos \left(n^2 \pi \ln \left(\frac{n-1}{n} \right) \right)$?

Ex 150:

- 1. Rappeler le théorème spécial des séries alternées. Que peut-on dire du reste?
- 2. Étudier la série $\sum_{n\geq 1} \frac{(-1)^n}{n^{\alpha}}$, avec α dans \mathbb{R} .
- 3. Comment peut-on donner une valeur à 10^{-3} près de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^3}$?
- 4. Étudier la convergence de $\sum_{n\geq 1} \ln\left(1 + \frac{(-1)^n}{n^{\alpha}}\right)$, avec α dans \mathbb{R}_+^* .

$$\underline{\mathbf{Ex}\ \mathbf{151}}: \text{On pose } u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} \ \mathrm{d}t, v_n = (-1)^n u_n, w_n = \int_{n\pi}^{(n+1)\pi} \left(\frac{\sin(t)}{t}\right)^2 \ \mathrm{d}t, \text{ pour tout } n \in \mathbb{N},$$

- 1. Justifier l'existence de u_0 et w_0 .
- 2. Déterminer les limites de (u_n) et de (w_n) .
- 3. Nature de $\sum u_n, \sum v_n$ et $\sum w_n$?

$$\underline{\mathbf{Ex}}\ \mathbf{152}$$
: Soit $f: x \in \left[-1/3, +\infty\right[\mapsto \int_x^{3x} \frac{\mathrm{d}t}{\sqrt{1+t^3}}$. Étudier f et donner son graphe.

$$\underline{\mathbf{Ex}} \ \mathbf{153} : \mathrm{Soit} \ f : x \mapsto \int_0^{x^2} \frac{\ln(1+t)}{t} \ \mathrm{d}t.$$

- 1. Montrer que f est dérivable sur]0,1[et exprimer sa dérivée.
- 2. Montrer que f est continue sur [0,1] et dérivable sur [0,1]. Est-elle est dérivable en 1? Pourquoi?
- 3. Donner un développement limité à l'ordre 2 de f en 0 .

Ex 154: Pour
$$x \in \mathbb{R}$$
, on pose $\phi(x) = \int_0^x \frac{\mathrm{d}u}{3 + \cos^2 u}$. Calculer $\phi(x)$. Ind. Utiliser le changement de variable $v = \tan u$.

$$\underline{\mathbf{Ex}} \ \mathbf{155}$$
: Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{e}^{-x}}{\sqrt{n+x}} \mathrm{d}x$.

- 1. Justifier que l'intégrale généralisée I_n est convergente.
- 2. Justifier que la suite $(I_n)_{n\in\mathbb{N}}$ est monotone et en déduire qu'elle converge.
- 3. Déterminer $\alpha \in \mathbb{R}$ tel que $(n^{\alpha}I_n)_{n \in \mathbb{N}}$ converge vers une limite non nulle.
- 4. Préciser la nature des séries $\sum_{n\geqslant 0}I_n$ et $\sum_{n\geqslant 0}(-1)^nI_n$.

Ex 156: On considère la suite $(u_n)_{n\geqslant 0}$ de fonctions définies sur \mathbb{R} par $u_0=\mathrm{id}$ et, pour $n\in\mathbb{N}, u_{n+1}=\mathrm{sin}\circ u_n+u_n$.

- 1. Étudier la convergence simple de (u_n) .
- 2. La convergence est-elle uniforme?

$$\underline{\mathbf{Ex}} \ \mathbf{157} : \mathrm{Soit} \ f : x \in \mathbb{R}^{+*} \mapsto \frac{\sin(x^3)}{x\sqrt{x}}.$$

- 1. Montrer que f admet un prolongement \mathcal{C}^1 sur \mathbb{R}^+ .
- 2. Pour $n \in \mathbb{N}$, on pose $f_n : x \in \mathbb{R}^{+*} \mapsto f\left(\frac{n}{x}\right) f(xn)$. Montrer que $\sum f_n$ converge normalement sur \mathbb{R}^{+*} .

$$\underline{\mathbf{Ex}\ \mathbf{158}} : \mathrm{Soit}\ f : x \mapsto \sum_{n=0}^{+\infty} \frac{e^{-nx}}{1+n^2}.$$

- 1. Montrer que f est définie sur \mathbb{R}^+ et de classe C^{∞} sur \mathbb{R}^{+*} .
- 2. Montrer que : $\forall x \in [0, 1], 1 e^{-x} \ge \left(1 \frac{1}{e}\right) x$.
- 3. La fonction f est-elle dérivable en 0? Quelle est sa limite en $+\infty$?
- 4. Dresser le tableau de variation de f.

$$\underline{\mathbf{Ex}} \ \mathbf{159} : \mathrm{Soit} \ \alpha \in]-1; 1[; \mathrm{pour} \ x \in \mathbb{R} \ \mathrm{et} \ n \in \mathbb{N}^*, \ \mathrm{on} \ \mathrm{pose} \ w_n(x) = \frac{\alpha^n}{n} \cos nx. \ \mathrm{Soit} \ W : x \longmapsto \sum_{n=1}^{+\infty} w_n(x)$$

- 1. Montrer que W est de classe \mathcal{C}^1 sur \mathbb{R} ; exprimer W' à l'aide des fonctions usuelles.
- 2. Calcular $\int_{-\pi}^{\pi} \ln \left(1 2\alpha \cos(x) + \alpha^2\right) dx.$

Ex 160: Pour
$$n \in \mathbb{N}$$
, $n \geq 2$, et $x \in \mathbb{R}$, on pose $f_n(x) = \frac{xe^{-nx}}{\sqrt{\ln(n)}}$.

1. Déterminer le domaine de convergence simple D de

$$\sum_{n\geq 2} f_n(x).$$

On note f sa somme et $\forall n \geq 2, \forall x \in \mathbb{R}_+,$

$$R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x).$$

2. Montrer que $\forall n \geq 2, \, \forall x > 0$,

$$0 \leqslant R_n(x) \leqslant \frac{1}{\sqrt{\ln(n+1)}} \frac{x}{e^x - 1}$$

3. Montrer que la fonction $g: x \longmapsto \begin{cases} \frac{x}{e^x - 1} & \text{si } x > 0 \\ 1 & \text{si } x = 0 \end{cases}$ est bornée sur \mathbb{R}_+ .

- 4. Montrer que f est continue sur \mathbb{R}_+ et donner sa limite en $+\infty$.
- 5. Montrer que f est C^1 sur \mathbb{R}_+^* .
- 6. f est-elle dérivable en 0?

Ex 161: Montrer que
$$\int_0^{+\infty} \frac{x}{e^{2x} - e^{-x}} dx = \sum_{n=0}^{+\infty} \frac{1}{(3n+2)^2}$$

Ex 162: On pose
$$I_n = \int_0^{+\infty} \frac{\sin(nt)}{1 + n^4 t^3} dt$$
 pour $n \geqslant 1$

- 1. Montrer que I_n est bien définie.
- 2. Déterminer $\lim_{n\to+\infty} I_n$.
- 3. Nature de la série $\sum I_n$?

Ex 163: On pose, pour
$$n \in \mathbb{N}$$
, $I_n = \int_0^{\frac{\pi}{4}} \tan^{2n}(x) dx$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $I_{n+1} + I_n = \frac{1}{2n+1}$.
- 2. Donner un équivalent simple de I_n .
- 3. Nature et somme éventuelle de $\sum_{n\geqslant 0} \frac{(-1)^n}{2n+1}$?

Ex 164: Déterminer le rayon de convergence de la série entière
$$\sum_{n=0}^{+\infty} n^{(-1)^n} x^n$$
 et calculer sa somme.

Ex 165: Soit la fonction
$$f$$
 définie par : $f(x) = \frac{1}{(1+x)(2-x)}$.

- 1. f est-elle développable en série entière au voisinage de 0? Si oui, expliciter ce développement et donner son domaine d'existence.
- 2. Donner le développement limité de f à l'ordre 3 au voisinage de 0.

Ex 166: Calculer, pour
$$x \in \mathbb{R}$$
, $\phi(x) = \int_0^{+\infty} e^{-t^2} \cos(tx) dt$ par deux méthodes :

- i. à l'aide d'un développement en série entière de la fonction cosinus;
- ii. à l'aide d'une équation différentielle d'ordre 1.

Ex 167: On considère
$$f: t \mapsto \int_0^1 \frac{x^t}{\sqrt{1-x^2}} dx$$

- 1. Donner l'ensemble de définition de f noté D.
- 2. Montrer que f est continue sur $[0; +\infty[$.

3. Trouver une relation entre f(t) et f(t-2) en supposant que t et t-2 sont dans D.

$$\underline{\mathbf{Ex}} \ \mathbf{168} : \text{Soient } I = \int_0^{+\infty} \frac{\tanh(3x) - \tanh(2x)}{x} dx \text{ et } F(t) = \int_0^{+\infty} \frac{\tanh(x) - \tanh(tx)}{x} dx$$

- 1. Montrer que I est bien définie.
- 2. Montrer que F est de classe C^1 sur [2,3].

$$\underline{\mathbf{Ex}} \ \mathbf{169} : \mathrm{Soit} \ F : x \mapsto \int_0^{+\infty} \frac{e^t - e^{-2t}}{t} \cos(xt) \mathrm{d}t.$$

- 1. Donner le domaine de définition de F.
- 2. Montrer que F est de classe \mathcal{C}^1
- 3. Exprimer F à l'aide de fonctions usuelles.

Ex 170: On considère
$$f: x \mapsto \int_0^{+\infty} \frac{1 - \cos(tx)}{t^2} e^{-t} dt$$
.

- 1. Donner le domaine de définition de f.
- 2. Montrer que f est de classe \mathcal{C}^2 sur \mathbb{R} .
- 3. Exprimer f''.
- 4. En déduire des expressions de f' et f avec des fonctions usuelles.

Ex 171: On pose
$$f: x \mapsto \int_0^{+\infty} e^{-xt} \sqrt{t} \, dt$$
.

- 1. Trouver une équation différentielle du premier ordre vérifiée par f.
- 2. Expliciter f.

$$\mathbf{\underline{Ex}} \ \mathbf{172} : \mathbf{Soit} \ I = \int_0^1 \frac{\mathbf{Arctan} \ (t^2)}{t} \ \mathrm{d}t$$

- 1. Montrer que I est bien définie.
- 2. Montrer que $I = -2 \int_0^1 \frac{t \ln(t)}{1 + t^4} dt$
- 3. Calcular $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}.$

Ex 173 : On recherche les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant (1) :

$$\forall x \in \mathbb{R}, f(x) + \int_0^x (x - t)f(t)dt = 1 + x.$$

- 1. Trouver toutes les solutions de (1) développables en série entière au voisinage de 0.
- 2. Montrer que, si f vérifie (1), alors elle est de classe C^2 et vérifie (E): y'' + y = 0.
- 3. Résoudre (E).

4. Trouver toutes les solutions de (1).

Ex 174: Soit (1) l'équation différentielle $xy' + y = e^x$.

- 1. Trouver les solutions de (1) développables en série entière au voisinage de 0 .
- 2. Les solutions de (1) sur $]0, +\infty[$ sont-elles toutes développables en série entière au voisinage de 0?
- 3. Résoudre (1) sur un intervalle I de \mathbb{R} . Discuter suivant I.
- 4. On ajoute à l'équation (1) la condition $y(x_0) = y_0$ (avec $x_0, y_0 \in \mathbb{R}$) pour obtenir un problème numéroté (2). Que dit le théorème de Cauchy à propos du problème (2) si on travaille sur $]0, +\infty[$? Résoudre (2).
- 5. Représenter graphiquement la ou les solutions développables en série entière.

Ex 175:

- 1. Énoncer le théorème de Cayley-Hamilton.
- 2. Soit $A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$. Déterminer χ_A .
- 3. Calculer A^n .
- 4. Résoudre le système différentiel : $\begin{cases} x' = x + y \\ y' = -2x + 4y \end{cases}$

Ex 176: Soit
$$A = \frac{1}{4} \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
.

- 1. La matrice A est-elle diagonalisable?
- 2. Calculer les valeurs propres de A.
- 3. On pose l'application

$$W: \begin{cases} \mathbb{R} \to \mathcal{M}_{3,1}(\mathbb{R}) \\ t \mapsto W(t) \end{cases}$$

telle que W' = AW.

Exprimer W en fonction de t et de d'autres paramètres que l'on précisera.

Ex 177 : Soient X et Y deux variables aléatoires independantes suivant la meme loi géométrique de paramètre $p \in]0,1]$. Soient $I = \min(X,Y), M = \max(X,Y)$ et D = M - I.

- 1. Montrer que $P(X = Y) = \sum_{k=1}^{+\infty} P(X = k)^2$.
- 2. Montrer que I et D sont indépendantes.

<u>Ex 178</u>: Soit $n \in \mathbb{N}$ et X et Y deux variables aléatoires discrètes. On suppose que X suit une loi binomiale de paramètres n et p; et que, pour tout $i \in \{1, 2, ..., n\}$, la loi de Y conditionnée à X = i

est la loi binomiale de paramètres n-i et p.

Montrer que Z = X + Y suit une loi binomiale et déterminer ses paramètres.

 $\underline{\mathbf{Ex}}$ 179 : Soit X une variable aléatoire suivant la loi binomiale de paramètres n et p. Calculer l'espérance de X de trois manières différentes :

- 1. directement à partir de la loi de X;
- 2. en utilisant la fonction génératrice de X;
- 3. sans calcul, en interprétant la loi de X.

 $\underline{\mathbf{Ex}}$ 180 : Soient I un intervalle de \mathbb{R} , $f:I\to\mathbb{R}$ une fonction continue et convexe. Soit X une variable aléatoire à valeurs dans I admettant une espérance. On suppose que f(X) admet une espérance. Montrer que l'on a $f(\mathbf{E}(X)) \leq \mathbf{E}(f(X))$.

Ex 181: Soient X et Y deux variables aléatoires indépendantes. On pose S = X + Y.

- 1. Donner G_S en fonction de G_X et de G_Y .
- 2. On suppose que $X \sim \mathcal{B}(n, p)$ et $Y \sim \mathcal{B}(m, p)$. Loi de S?
- 3. On suppose que $X \sim \mathcal{P}(\lambda_1)$ et $Y \sim \mathcal{P}(\lambda_2)$. Loi de S?

ENSEA MP 2023

 $\underline{\mathbf{Ex}} \ \mathbf{182}$: Factoriser dans $\mathbb{R}[X]: P = X^6 + 1$.

 $\underline{\mathbf{Ex}}$ 183 : Factoriser dans $\mathbb C$ les polynômes X^2+X+1 et X^2-X+1 . Montrer que X^2-X+1 divise $(X-1)^{n+2}+X^{2n+1}$.

Ex 184: $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Soient $n, k \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$ telle que : $A^k = I_n$.

- 1. Montrer que A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.
- 2. Donner un exemple d'une matrice M de $\mathcal{M}_3(\mathbb{R})$ telle que $M^4 = I_3$ et qui ne soit pas diagonalisable sur $\mathcal{M}_3(\mathbb{R})$. Réduire cette matrice dans $\mathcal{M}_3(\mathbb{C})$.
- 3. Quelles sont les matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que $A^k = I_n$ diagonalisables sur $\mathcal{M}_n(\mathbb{R})$?

$$\underline{\mathbf{Ex}\ \mathbf{185}}: \text{ Déterminer les valeurs propres de la matrice } M = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & \vdots \\ 1 & \cdots & \cdots & 1 \end{pmatrix}.$$

Ex 186: Soit $n \in \mathbb{N}$ et on note $\varphi_n : \left\{ \begin{array}{l} \mathbb{R}_n[X] \to \mathbb{R}_n[X] \\ P \mapsto (X-1)^2 P' - nXP \end{array} \right.$

- 1. Montrer que φ_n est bien un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Déterminer les valeurs propres et les vecteurs propres de φ_n .

 $\underline{\mathbf{Ex}}$ 187 : Soit E un espace euclidien de dimension d>0. Soient a et b deux vecteurs unitaires et linéairement indépendants de E.

Soit u l'endomorphisme de E défini par u(x) = (a|x)a + (b|x)b pour tout x.

- 1. Montrer que u est un endomorphisme autoadjoint.
- 2. Déterminer Ker(u) et Im(u).
- 3. Déterminer les valeurs propres et les vecteurs propres de u.

 $\underline{\mathbf{Ex}}\ \mathbf{188}$: Donner un développement limité à l'ordre 5 en 0 de $e^{\cos(x)}$

Ex 189: Pour tout $n \in \mathbb{N}$, soit $S_n = \sum_{k=0}^n \frac{1}{(k+1)(2k+1)}$.

- 1. Montrer que la suite (S_n) converge.
- 2. Montrer que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$, où γ est une constante que l'on ne cherchera pas à exprimer.
- 3. Calculer la limite de (S_n) .

Ex 190: Pour $n \in \mathbb{N}$, on pose $a_n = \frac{(-1)^n}{n+1}$.

1. Donner le rayon de convergence de $\sum_{n>1} a_{n-1}x^n$.

On note f la somme de cette série entière

- 2. Donner l'expression de f(x) pour x dans]-1,1[.
- 3. f est-elle définie en -1? Que dire alors de f sur] -1,1[?
- 4. Montrer que : $\forall n \in \mathbb{N}^*$, $\sum_{k=0}^{n-1} a_k = \sum_{k=0}^{n-1} (-1)^k \int_0^1 t^k dt$.
- 5. Calculer f(1).

Ex 191 : Résoudre l'équation différentielle :

$$t\frac{d\theta}{dt} - (1+t)\theta = \frac{t^2}{\operatorname{ch}(t)}$$

Ex 192 : Étudier les extrema de la fonction :

$$f: \left\{ \begin{array}{ccc}]0; +\infty[\times\mathbb{R} & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & x(y^2 + \ln(x)^2) \end{array} \right.$$

Navale, Saint-Cyr MP 2023

Ex 193: [St Cyr] Soit $P \in \mathbb{C}[X]$ un polynôme unitaire de degré 3 dont les racines z_1, z_2, z_3 sont les affixes de points M_1, M_2, M_3 d'un plan affine euclidien. Montrer que P' a une racine double si et seulement si le triangle $M_1M_2M_3$ est équilatéral.

$$\underline{\mathbf{Ex} \ \mathbf{194}} : [St \ Cyr] \ Soit \ A = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{array} \right).$$

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $\alpha_n, \beta_n \in \mathbb{R}$ tels que $A^n = \alpha_n A + \beta_n A^2$.
- 2. Programmer une fonction Python puissance(n) renvoyant A^n .
- 3. Déterminer α_n et β_n grâce à cette fonction.
- 4. Tracer $n \mapsto \frac{\alpha_n}{\beta_n}$. Conjecture?
- 5. Prouver cette conjecture.

Ex 195: [St Cyr] Soit $\phi: \mathcal{M}_2(\mathbb{C}) \to \mathbb{C}$ vérifiant :

- i. $\forall A, B \in \mathcal{M}_2(\mathbb{C}), \phi(AB) = \phi(A)\phi(B);$
- ii. $\forall \lambda \in \mathbb{C}, \phi\left(\left(\begin{array}{cc} \lambda & 0 \\ 0 & 1 \end{array}\right)\right) = \lambda.$

Montrer que $\phi = \det$

Ex 196: [St Cyr] Soit $n \in \mathbb{N}$, avec $n \geq 3$. On note U l'application qui à un polygone P constitué de n points M_1, \ldots, M_n du plan complexe associe le polygone : $\frac{M_1 + M_2}{2}, \ldots, \frac{M_{n-1} + M_n}{2}, \frac{M_n + M_1}{2}$.

$$\frac{M_1+M_2}{2},\ldots,\frac{M_{n-1}+M_n}{2},\frac{M_n+M_1}{2}.$$

- 1. Exercise une fonction Python calculant U(P).
- 2. L'application U est visiblement linéaire. Donner sa matrice dans la base canonique. C'est une matrice stochastique que l'on notera M.
- 3. Montrer que les valeurs propres de M sont de module au plus égal à 1.
- 4. Montrer que 1 est la seule valeur propre de M de module 1.

Ex 197: [Navale] Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $\phi : M \in \mathcal{M}_n(\mathbb{C}) \mapsto AM$.

- 1. Donner une condition nécessaire et suffisante portant sur A pour que ϕ soit diagonalisable.
- 2. Décrire les éléments propres de ϕ .

 $\underline{\mathbf{Ex}}$ 198 : [St Cyr] On munit \mathbb{R}^n de sa structure euclidienne canonique. Soit (e_1, \ldots, e_n) une base orthonormée de \mathbb{R}^n et (f_1, \ldots, f_n) une famille de vecteurs telle que :

$$\forall k \in [1, n], ||f_k - e_k|| < \frac{1}{\sqrt{n}}.$$

- 1. Montrer que (f_1, \ldots, f_n) est une base de \mathbb{R}^n .
- 2. Montrer que le résultat précédent serait en défaut en remplaçant l'inégalité stricte par une inégalité large.

Ex 199 : [St Cyr] Soient $(E, \langle ..., .\rangle)$ un espace euclidien et $x_1, ..., x_n$ des éléments de E. On note $G = (\langle x_i, x_j \rangle)_{1 \le i,j \le n}$.

- 1. Montrer que $G \in \mathcal{S}_n^+(\mathbb{R})$.
- 2. Montrer l'existence d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que $G = A^T A$.
- 3. En déduire que le rang de G et égal à celui de la famille (x_1, \ldots, x_n) .

Ex 200: [Navale] Soit E un espace euclidien et $u \in \mathcal{L}(E)$:

- 1. Montrer que si $\operatorname{Im} u = \operatorname{Ker} u$, alors $u + u^*$ est inversible.
- 2. Montrer la réciproque si $u \circ u = 0$.

 $\underline{\mathbf{Ex}}\ \mathbf{201}$: [Navale] On munit $E = \mathbb{R}_n[X]$ du produit scalaire défini par : $\forall P, Q \in \mathbb{R}_n[X]$, $(P|Q) = \int_0^1 PQ$.

- 1. Montrer que l'application u définie sur E par : $u(P) = \int_0^1 (X+t)^n P(t) dt$ est un endomorphisme autoadjoint de E.
- 2. En déduire qu'il existe une base orthonormée $(P_0, ..., P_n)$ formée de vecteurs propres de u. On note $\lambda_1, ..., \lambda_n$ les valeurs propres associées.
- 3. Montrer que : $\forall x, y \in \mathbb{R}^2$, $(x+y)^n = \sum_{k=0}^n \lambda_k P_k(x) P_k(y)$. En déduire tr(u).

 $\underline{\mathbf{Ex}\ 202} : [\mathrm{St}\ \mathrm{Cyr}] \ \mathrm{Soit}\ E = \mathcal{C}^0([0,1],\mathbb{R}). \ \mathrm{On\ munit}\ E \ \mathrm{du\ produit\ scalaire}\ \langle\ .\ ,\ .\rangle\ \mathrm{d\acute{e}fini\ par}: \\ \langle f,g\rangle = \int_0^1 f(t)g(t)\mathrm{d}t. \ \mathrm{Soit}\ K: [0,1]^2 \to \mathbb{R}\ \mathrm{une\ fonction\ continue\ et\ sym\acute{e}trique\ c'est-\grave{a}dire\ telle\ \mathrm{que}\ \forall (x,t)\in [0,1]^2, K(x,t) = K(t,x). \ \mathrm{Soit}\ u\ \mathrm{l'application\ qui\ \grave{a}}\ f\in E\ \mathrm{associe\ la\ fonction\ } u(f): x\in [0,1]\mapsto \int_0^1 K(x,t)f(t)\mathrm{d}t.$

On admet le théorème de Fubini : $\forall \phi \in \mathcal{C}^0\left([0,1]^2,\mathbb{R}\right), \int_0^1 \left(\int_0^1 \phi(x,t) dt\right) dx = \int_0^1 \left(\int_0^1 \phi(x,t) dt\right) dt.$

- 1. Montrer que u est un endomorphisme de E.
- 2. Montrer que u est autoadjoint.
- 3. Montrer que u est continu.

 $\underline{\mathbf{Ex}} \ \mathbf{203} : [\mathrm{St} \ \mathrm{Cyr}] \ \mathrm{Pour} \ t \in \mathbb{R}, \ \mathrm{on \ note} \ M_t = \left(\begin{array}{cc} \mathrm{ch}(t) & \mathrm{sh}(t) \\ \mathrm{sh}(t) & \mathrm{ch}(t) \end{array} \right).$

- 1. Montrer que les matrices M_t sont diagonalisables et trouver une base de vecteurs propres indépendante de t.
- 2. Montrer que l'application $\theta : \mathbb{R} \to \mathcal{M}_2(\mathbb{C})$ définie par $\theta(t) = M_t$ est injective. Montrer que $\theta(t + t') = \theta(t)\theta(t')$.
- 3. Soient $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E = \mathbb{R}^2$, \mathfrak{b} sa base canonique, $f \in \mathcal{L}(E)$ et $q : (x,y) \in \mathbb{R}^2 \mapsto x^2 y^2$. Montrer que, si $q \circ f = q$, alors $M = \operatorname{Mat}_{\mathfrak{b}}(f)$ vérifie $(*) : M^T J M = J$. Montrer que les matrice M_t , avec $t \in \mathbb{R}$, vérifient (*) et trouver toutes les matrices vérifiant (*).

Ex 204 : [Navale]

- 1. Rappeler l'algorithme de Gram-Schmidt.
- 2. On note $T_n^+(\mathbb{R})$ l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ triangulaires supérieures, à coefficients diagonaux strictement positifs. Soit $A \in \mathrm{GL}_n(\mathbb{R})$. Montrer qu'il existe un unique couple $(O,T) \in \mathcal{O}_n(\mathbb{R}) \times T_n^+(\mathbb{R})$ tel que A = OT.

- 1. Que dire de I si F est de dimension 1?
- 2. Dans le cas général, montrer que I est un intervalle inclus dans $[1, +\infty[$.
- 3. On suppose ${\cal F}$ de dimension finie. Montrer que ${\cal I}$ est fermé.

Ex 206 : [Navale] Montrez que toute suite réelle admet une sous suite monotone.

Ex 207: [St Cyr] Pour $n \in \mathbb{N}^*$, soit l'équation $(E_n): x^n + x - 1 = 0$.

- 1. Montrer que (E_n) a une solution unique dans $]0, +\infty[$. On la note x_n .
- 2. Montrer que la suite (x_n) est croissante et majorée.
- 3. (Python) écrire un programme qui renvoie une valeur approchée de x_n à ε près obtenue par dichotomie.
- 4. (Python) Afficher les 100 premières valeurs de x_n et conjecturer la limite de la suite.
- 5. Démontrer la conjecture.

<u>Ex 208</u>: [St Cyr] Pour $n \in \mathbb{N}^*$, on note $P_n = X^n + X^{n-1} + \cdots + X - 1$.

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, P_n a une unique racine réelle positive que l'on notera a_n .
- 2. Écrire une fonction Python qui renvoie une valeur approchée de a_n .

- 3. Afficher un graphe représentant les 20 premières valeurs de la suite (a_n) . Conjecturer la nature de (a_n) .
- 4. Montrer la convergence de (a_n) et déterminer sa limite.

Ex 209 : [Navale]

- 1. Pour m > 1, montrer qu'il existe un unique $x_m \in]-1, -2[$ tel que $m \ln \left(1 + \frac{x_m}{m+1}\right) = x_m$.
- 2. Étudier la suite $(x_m)_{m>1}$,

Ex 210: [St Cyr] Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^3)^n}$.

- 1. Justifier l'existence de I_n pour $n \in \mathbb{N}^*$. Montrer que, pour $n \in \mathbb{N}^*$, $I_{n+1} = \left(1 \frac{1}{3n}\right)I_n$.
- 2. Programmer sur Python la méthode des trapèzes pour calculer une valeur approchée de I_1 .
- 3. Programmer une fonction Python qui calcule les 20 premières sommes partielles des séries $\sum I_n^{\alpha}$ pour $\alpha = 1, 2, 3, 4$.
- 4. Soit $\sum x_n$ une série à termes strictement positifs et $\sum y_n$ une série absolument convergente. On suppose qu'il existe λ tel que $\frac{x_{n+1}}{x_n} = 1 \frac{\lambda}{n} + y_n$.
 - (a) Montrer que $\ln\left(\frac{x_{n+1}}{x_n}\right) = -\frac{\lambda}{n} + z_n$, où z_n est le terme général d'une série absolument convergente.
 - (b) Montrer l'existence d'une constante C telle que $\ln(x_n) = -\lambda \ln n + C + o(1)$ quand $n \to +\infty$ et en déduire un équivalent de x_n .
 - (c) Étudier la nature de la série $\sum I_n^{\alpha}$ en fonction de α .

Ex 211 : [St Cyr] Pour un entier n, on note r_n le reste de la division euclidienne de n par 5 .

- 1. Montrer que la série de terme général $\frac{r_n}{n(n+1)}$ converge.
- 2. On note $S_n = \sum_{k=1}^n \frac{r_k}{k(k+1)}$. Déterminer S_{5n} en fonction de termes de la suite (H_p) , où $H_p = \sum_{k=1}^p \frac{1}{k}$.
- 3. En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{r_n}{n(n+1)}.$

Ex 212 : [St Cyr] Soient $\alpha \in \mathbb{R}^{+*}$ et $f : \mathbb{R}^+ \to \mathbb{R}^+$ une fonction deux fois dérivable et majorée. On suppose que $\forall t \in \mathbb{R}^+, f''(t) \geqslant \alpha^2 f(t)$.

1. Montrer que f est convexe.

- 2. Montrer que f' est négative.
- 3. Montrer que f admet une limite finie en $+\infty$, déterminer sa valeur.
- 4. Montrer que f' admet une limite finie en $+\infty$, déterminer sa valeur.
- 5. Montrer que $\alpha^2 f^2 f'^2$ est négative.
- 6. En déduire que $\forall t \in \mathbb{R}^+, f(t) \leqslant f(0)e^{-\alpha t}$.

Ex 213: [St Cyr] Soit $f:[0,1] \to \mathbb{R}$ une fonction continue et concave.

- 1. Montrer que $\forall x \in [0, 1], x f(x) \leq \int_0^x f(t) dt x$.
- 2. En déduire $\int_0^1 x f(x) dx \le \frac{2}{3} \int_0^1 f(x) dx$.

Ex 214: [St Cyr] On définit une suite de fonctions $f_n: I = [1, +\infty [\to \mathbb{R} \text{ par } f_n(x) = \frac{(-1)^n}{\sqrt{1+nx}}]$.

- 1. Étudier la convergence simple de $\sum f_n$.
- 2. La série converge-t-elle normalement sur I? uniformément sur I?
- 3. Déterminer $\lim_{x \to +\infty} \sum_{n=0}^{+\infty} f_n(x)$.

Ex 215: [St Cyr] Soit $f:[0,1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit une suite de fonctions (f_n) sur [0,1] par $f_n(x) = f\left(x + \frac{x(1-x)}{n}\right)$ pour $n \ge 1$ et $f_0(x) = 0$.

- 1. Étudier la convergence simple et la convergence uniforme de (f_n) .
- 2. Montrer que les résultats restent valides pour une fonction f seulement lipschitzienne.

 $\underline{\mathbf{Ex}\ 216}$: [Navale] Étudier la convergence simple et la convergence uniforme des séries de fonctions $\sum u_n$ et $\sum u_n'$ définies sur \mathbb{R}^+ par $u_n(x) = \frac{x}{(1+n^2x)^2}$.

Ex 217: [St Cyr] Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^+$, on pose $f_n(x) = \frac{x}{n(1+n^2x^2)}$.

Ex 218: [Navale] Soit la fonction G définie sur \mathbb{R} par $G(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$

- 1. Étudier la convergence simple de $\sum f_n$ -
- 2. Étudier la continuité de la somme $f = \sum_{n=1}^{+\infty} f_n$.
- 3. Donner un équivalent de f en 0^+ .

- 1. Exprimer G(x) en fonction en fonction de $F: x \mapsto \int_0^x e^{-u^2} du$.
- 2. En déduire la valeur de $\int_0^{+\infty} e^{-u^2} du$.

 $\underline{\mathbf{Ex}}$ 219 : [St Cyr] On note (E) l'équation différentielle $t^2y''-2y=3t^2$.

- 1. Déterminer les solutions de l'équation homogène associée à (E) de la forme $t \mapsto t^{\alpha}$ (avec $\alpha \in \mathbb{R}$) sur \mathbb{R}^{+*} . En déduire une base de l'espace des solutions de l'équation homogène sur \mathbb{R}^{+*} .
- 2. Résoudre (E) sur \mathbb{R}^{+*} .

 $\underline{\mathbf{Ex}\ 220}: [\text{Navale}] \text{ On considère une suite } (X_n)_{n\geqslant 1} \text{ i.i.d. suivant la loi de Bernoulli de paramètre } p\in]0,1 [.$ On note q=1-p. On note $L_1=\sup\{n\in\mathbb{N}^*, X_1=X_2=\cdots=X_n\}$ la longueur de la première séquence et $L_2=\sup\{n\in\mathbb{N}^*, X_{L_1+1}=\cdots=X_{L_1+n}\}$ la longueur de la seconde séquence. Montrer que $\mathrm{Cov}\,(L_1,L_2)=-\frac{(p-q)^2}{pq}.$

 $\underline{\mathbf{Ex}\ \mathbf{221}}$: [Navale] Soient X_1,\ldots,X_n des variables aléatoires i.i.d. ayant une variance. On pose, pour $i\in [\![1,n]\!], Y_i=X_1+\cdots+X_i$. On note $M=(\mathrm{Cov}\,(Y_i,Y_j))_{1\leqslant i,j\leqslant n}$.

- 1. Relier M à la matrice A^TA , où $A=\left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{array}\right)$.
- 2. Encadrer les valeurs propres de M.

Ex 222 : [St Cyr] On considère une répétition d'expériences de Bernoulli indépendantes et de même probabilité de succès $p \in]0,1$ [. Soient $r \in \mathbb{N}^*$ et X la variable aléatoire comptant le nombre de répétitions avant d'obtenir le r succès.

- 1. Écrire une fonction pascal (p, r) qui simule X et renvoie le nombre d'épreuves avant le $r^{\rm e}$ succès.
- 2. Écrire une fonction moyenne (p, r, k) qui renvoie une valeur moyenne pour k répétitions de la fonction précédente.
- 3. Calculer la loi de X.
- 4. Calculer l'espérance de X.

<u>Ex 223</u>: [St Cyr] On considère une urne contenant N_1 boules blanches et N_2 boules rouges. On tire simultanément dans l'urne n boules, avec $1 \le n \le N_1 + N_2$. On note X le nombre de boules blanches tirées.

- 1. Déterminer la loi de X,
- 2. Retrouver l'identité de Vandermonde : $\sum_{k=0}^{n} \binom{N_1}{k} \binom{N_2}{n-k} = \binom{N_1+N_2}{n}.$
- 3. (Python) Définir une fonction $\texttt{Hypergeom(N_{1}, N_{2}, n)}$ qui reproduit l'expérience et renvoie une valeur de X.

- 4. Exprimer l'espérance de X en fonction de N_1, N_2 et n,
- 5. (Python) Définir une fonction Moyenne(N_{1}, N_{2}, n, k) qui reproduit k expériences et renvoie la moyenne des valeurs de X obtenues.
- 6. On choisit $N_1 = 10, N_2 = 13, n = 5$, et k = 100. Comparer la moyenne empirique et l'espérance théorique.

Dauphine, ISUP MP 2023

Ex 224: [Dauphine] Soient $P, Q \in \mathbb{R}[X]$ non nuls tels que $P = \prod_{i=1}^{n} (X^2 + a_i X + b_i)$ et

$$Q = \prod_{i=1}^{n} (X^2 + c_i X + d_i), \text{ avec les } X^2 + a_i X + b_i \text{ et } X^2 + c_i X + d_i \text{ irréductibles dans } \mathbb{R}[X].$$

On suppose que $\frac{P(X)}{Q(X)} = \frac{P(0)}{Q(0)}$.

- 1. Montrer que P et Q ont les mêmes racines complexes.
- 2. Montrer qu'il existe $\sigma \in S_n$ tel que : $\forall \in [1, n]$, $c_i = a_{\sigma(i)}$ et $d_i = b_{\sigma(i)}$.

Ex 225 : [Dauphine]

- 1. Montrer que : $\forall x \in E, \|p(x)\| \le \|x\|$.
- 2. En déduire que toute valeur λ propre de $p \circ q$ vérifie : $|\lambda| \leq 1$.
- 3. Montrer que : $\forall x \in E, \ (x|p(x)) = \|p(x)\|^2$. En déduire que toute valeur λ propre de $p \circ q$ vérifie : $\lambda \geq 0$.
- 4. Soit $f = p \circ q \circ p$.
 - (a) Montrer que f est un endomorphisme autoadjoint, puis que $\operatorname{Im}(p)$ est stable par f.
 - (b) Soient G et H des sous-espaces vectoriels de E. Montrer que $(G+H)^{\perp}=G^{\perp}\cap H^{\perp}$. En déduire $(\operatorname{Im}(p)+\operatorname{Ker}(q))^{\perp}$.
 - (c) Soit $x \in [\text{Ker}(q) + (\text{Ker}(p) \cap \text{Im}(q))]$. Déterminer pq(x).
 - (d) Montrer que $p \circ q$ est diagonalisable.

Ex 226: [ISUP] Soit f une application continue de [-1,1] dans \mathbb{R} .

On pose:
$$\forall n \in \mathbb{N}, \ U_n = \inf_{P \in \mathbb{R}_n[X]} \int_{-1}^{1} (f(t) - P(t) - P(-t))^2 dt.$$

- 1. Montrer que la suite (U_n) est bien définie.
- 2. Déterminer la monotonie de la suite (U_n) .

 $\underline{\mathbf{Ex}}\ \mathbf{227}$: [Dauphine] Trouver la limite de la suite de terme général $\sum_{k=1}^n \tan\left(\frac{1}{k+n}\right)$.

 $\underline{\mathbf{Ex}}$ 228 : [Dauphine] Soit (x_n) une suite de réels strictement positifs qui tend vers 0 .

- 1. Montrer qu'il existe une infinité de n tels que $x_n = \min(x_0, \dots, x_n)$.
- 2. Montrer qu'il existe une infinité de n tels que $x_n = \max\{x_k, k \ge n\}$.

 $\underline{\mathbf{Ex}\ \mathbf{229}}$: [Dauphine] Pour $n \in \mathbb{N}$, on pose $P_n = \sum_{k=0}^n \frac{X^k}{k!}$. Soit R > 0. Montrer qu'il existe $N \in \mathbb{N}^*$ tel que, pour tout $n \geqslant N$, toutes les racines complexes de P_n sont de module supérieur ou égal à R.

Ex 230 : [ISUP] Soit X une variable aléatoire telle que $X(\Omega) \subset [a,b]$ avec 0 < a < b.

- 1. Majorer la variance V(X). Cette valeur peut-elle être atteinte?
- 2. Dans quel cas V(X) est-elle maximale? Quelle est sa valeur?

CCINP MP 2022

Ex 231: Soit $a \in \mathbb{R}$. Pour tout $i \in [0, n]$, on note $P_i = (X - a)^i$.

- 1. Montrer que $(P_0, ..., P_n)$ est une base de $\mathbb{R}_n[X]$.
- 2. Soit $f: P \mapsto (X-a)(P'(X)-P'(a))-2(P(X)-P(a))$. Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$. Trouver son noyau et son image.

Ex 232: Soient E et F deux espaces de dimension finie et $u, v \in \mathcal{L}(E, F)$. Montrer que $\dim(\operatorname{Ker}(u+v) \leq \dim(\operatorname{Ker}(u) \cap \operatorname{Ker}(v)) + \dim(\operatorname{Im}(u) \cap \operatorname{Im}(v))$

 $\underline{\bf Ex~233}$: Soit E un espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E).$ Montrer que :

$$\frac{1}{\operatorname{rg}(f+g)} = \operatorname{rg} f + \operatorname{rg} g \iff \begin{cases}
\operatorname{Im} f \cap \operatorname{Im} g = \{0\} \\
\operatorname{Ker} f + \operatorname{Ker} g = E
\end{cases}$$

Ex 234 : Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- 1. Soit p un projecteur (p linéaire et $p^2 = p$). Montrer que $\operatorname{Ker} p \oplus \operatorname{Im} p = E$ et que p est la projection sur $\operatorname{Im} p$ de direction $\operatorname{Ker} p$.
- 2. Soit $f \in \mathcal{L}(E)$. Montrer qu'il existe $g \in \mathcal{L}(E)$ tel que $f \circ g = 0$ et $f + g \in GL(E)$ si et seulement si $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

Ex 235 : On note f l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $f: M \mapsto aM + bM^T$ où a et b sont des réels.

- 1. Montrer que $\mathcal{M}_n(\mathbb{R})$ est somme directe de l'espace S des matrices symétriques et de l'espace A des matrices antisymétriques.
- 2. Exprimer f en fonction de p et q, avec p la projection sur S parallélement à A et q la projection sur A parallélement à S.
- 3. Exprimer f^2 en fonction de f et Id.

4. Donner une CNS sur a et b pour que f soit un automorphisme et exprimer f^{-1} en fonction de f et Id.

Ex 236: Soient E un \mathbb{R} -espace vectoriel de dimension $n \geq 2$ et $f \in \mathcal{L}(E)$.

- 1. Donner un exemple d'endomorphisme pour lequel le noyau et l'image ne sont pas supplémentaires.
- 2. Montrer que si f est diagonalisable, alors Im(f) et Ker(f) sont supplémentaires. Que dire de la réciproque?
- 3. (a) Montrer que la suite $(\dim \operatorname{Ker}(f^k))_{k\in\mathbb{N}}$ est croissante.
 - (b) Montrer qu'il existe $k_0 \in \mathbb{N}$ tel que : $\forall k > k_0$, $\operatorname{Ker}(f^k) = \operatorname{Ker}(f^{k_0})$.
 - (c) Montrer que Ker (f^{k_0}) et Im (f^{k_0}) sont supplémentaires dans E.

Ex 237 : Soit E un \mathbb{R} -espace vectoriel de dimension finie n et f un endomorphisme de E vérifiant : $f^2 = -\mathrm{Id}_E$.

- 1. Montrer que f n'admet pas de valeur propre réelle et montrer que f est bijectif.
- 2. En déduire que la dimension de E est paire.
- 3. Soit u un vecteur non nul. Montrer que Vect(u, f(u)) est stable par f.
- 4. On prend n = 4. Montrer l'existence de deux vecteurs u, v tels que (u, f(u), v, f(v)) soit une base de E.
- 5. Généraliser ce résultat.

Ex 238: $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Soient E un \mathbb{K} -espace vectoriel de dimension 3, $f \in \mathcal{L}(E)$ tel que $f^2 \neq 0$ et $f^3 = 0$. Montrer que dans une certain base \mathcal{B} de E, on a $Mat_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Ex 239: Soit
$$n \ge 2$$
, $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$.

- 1. A est-elle diagonalisable?
- 2. Cas n=2: Calculer les éléments propres de A.
- 3. Cas $n \neq 2$:
 - (a) Montrer que 1 est une valeur propre de A.
 - (b) Montrer que si λ est une valeur propre de A autre que 1, alors $(\lambda 1)^2 = n 1$. Expliciter les éléments propres de A.
 - (c) Calculer le déterminant de A en fonction de n.

$$\mathbf{\underline{Ex\ 240}}: \text{Soient } a,b,c,d \in \mathbb{C} \text{ tels que } a^2+b^2 \neq 0 \text{ et } M = \begin{pmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{pmatrix}.$$

- 1. Calculer MM^T . En déduire $\det(M)$.
- 2. Si $a^2 + b^2 + c^2 + d^2 \neq 0$, montrer que : rg (M) = 4. Si $a^2 + b^2 + c^2 + d^2 = 0$, montrer que : rg (M) = 2.
- 3. On pose $w \in \mathbb{C}$ tel que : $w^2 = b^2 + c^2 + d^2$. Quelles sont les valeurs propres de M? La matrice M est-elle diagonalisable?

Ex 241: On note E l'ensemble $C^0(\mathbb{R}^+, \mathbb{R})$ et on définit l'application u telle que pour tout $f \in E$, $u(f)(x) = \frac{1}{x} \int_0^x f(t) dt$ si x > 0 et u(f)(0) = f(0).

- 1. (a) Montrer que pour tout $f \in E$, u(f) est continue sur \mathbb{R}^+ et dérivable sur \mathbb{R}^{+*}
 - (b) Pour tout $f \in E$, déterminer u(f)'
- 2. (a) Montrer que $u \in L(E)$
 - (b) Montrer que u est injective
 - (c) u est-elle surjective?
- 3. Déterminer les valeurs propres et les vecteurs propres associés de u

 $\underline{\mathbf{Ex}\ \mathbf{242}}$: Soit n>1. On considère la matrice de $\mathfrak{M}_n(\mathbb{R})$ définie par $A=\begin{pmatrix} 1 & 1 & \dots & 1 \\ \vdots & & & \\ \vdots & & & (0) \\ 1 & & & \end{pmatrix}$

- 1. Déterminer χ_A .
- 2. A est-elle diagonalisable?
- 3. Calculer $\det A$.

Ex 243: Soient $U, V \in \mathcal{M}_{n,1}(\mathbb{C})$. On pose $A = UV^T$ et a = tr(A).

- 1. Que vaut le rang de A?
- 2. Calculer $V^T U$ et A^2 .
- 3. La matrice A est-elle diagonalisable?
- 4. On suppose $a \neq 0$. Déterminer les sous-espaces propres de A.

Ex 244 :

- 1. Soit $A = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ si et seulement si ab > 0 ou a = b = 0.
- 2. Soit $n \in \mathbb{N}$ pair et $A = \begin{pmatrix} 0 & \cdots & 0 & a_n \\ \vdots & & \ddots & 0 \\ 0 & a_2 & & \vdots \\ a_1 & 0 & \cdots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$. Déterminer un espace de dimension

deux stable par A. Donner une condition nécessaire et suffisante sur $(a_1, ..., a_n)$ pour que A soit diagonalisable.

Ex 245: Soient $a, b \in \mathbb{R}$ et $n \in \mathbb{N}^*$. On note

$$u: \mathbb{C}_n[X] \longrightarrow \mathbb{C}[X]$$

 $P \longmapsto (X-a)(X-b)P' - nXP$

- 1. Montrer que u est un endomorphisme de $\mathbb{C}_n[X]$.
- 2. Prouver que u est diagonalisable et trouver ses sous-espaces propres.

Ex 246: Soit $A \in GL_6(\mathbb{R})$ telle que $A^3 - 3A^2 + 2A = 0$, et tr(A) = 8.

- 1. Quelles sont les valeurs propres possibles de A?
- 2. A est-elle diagonalisable?
- 3. Déterminer le polynôme caractéristique de A.

<u>Ex 247</u>: Soit E un espace vectoriel de dimension finie n. Soit $u \in \mathcal{L}(E)$ admettant n valeurs propres distinctes.

- 1. Soit $v \in \mathcal{L}(E)$. Montrer que $v \circ u = u \circ v$ si et seulement si u et v admettent une base commune de vecteurs propres.
- 2. Soient \mathcal{B} une base de E et A la matrice de u dans \mathcal{B} . Discuter du nombre de solutions de l'équation $X^2 = A$ d'inconnue $X \in \mathcal{M}_n(\mathbb{R})$.

Ex 248: Soit E un \mathbb{C} -espace vectoriel de dimension finie et f un endomorphisme de E.

- 1. On suppose que f est diagonalisable. Montrer que f^2 est diagonalisable et que Ker $f = \text{Ker } f^2$.
- 2. On suppose que f^2 est diagonalisable et que f est inversible.
 - (a) On note $\lambda_1,\ldots,\lambda_p$ les valeurs propres distinctes de f^2 . Montrer que le polynôme $\prod_{i=1}^p (X^2-\lambda_p)$ est un polynôme annulateur de f.
 - (b) En déduire que f est diagonalisable.
- 3. On suppose que f^2 est diagonalisable et que $\operatorname{Ker} f = \operatorname{Ker} f^2$. Montrer que f est diagonalisable.
- 4. Montrer que si f^2 est diagonalisable, alors f n'est pas nécessairement diagonalisable.

Ex 249 : Soit E l'espace vectoriel des polynômes réels de degré inférieur ou égal à n et u l'endomorphisme de E qui à P(X) associe P(1-X).

- 1. Calculer $u \circ u$. En déduire les valeurs propres de u. Que peut-on dire de u?
- 2. Soit f une fonction continue de \mathbb{R} dans \mathbb{R} . Que peut-on dire sur le graphe de f si f(1-x)=-f(x) pour tout $x\in\mathbb{R}$?
- 3. En déduire les espaces propres de u. Est-ce que u est diagonalisable?

Ex 250: Soit $n \in \mathbb{N}^*$ et une matrice $A \in \mathcal{M}_n(\mathbb{C})$.

$$\overline{\text{On pose } B = \begin{pmatrix} A & A \\ 0_n & A \end{pmatrix}} \in \mathcal{M}_{2n}(\mathbb{C}).$$

- 1. Justifier que pour tout $P \in \mathbb{C}[X]$, $P(B) = \begin{pmatrix} P(A) & AP'(A) \\ 0_n & P(A) \end{pmatrix}$.
- 2. (a) Énoncer des propriétés polynomiales de diagonalisation de matrices.
 - (b) On suppose que B est diagonalisable. Montrer que A est diagonalisable, puis montrer que A=0.
- 3. Trouver une CNS sur A pour avoir : A est diagonalisable si et seulement si B est diagonalisable.

Ex 251 : Soit E un espace euclidien, $p \in \mathbb{N}$ et $(e_i)_{1 \leq i \leq p}$ une famille de E telle que : $\forall i, j \in [1, n], \langle e_i, e_j \rangle < 0$.

- 1. Comparer $\lambda_i \lambda_j \langle e_i, e_j \rangle$ et $|\lambda_i| . |\lambda_j| \langle e_i, e_j \rangle$.
- 2. Comparer $\left\| \sum_{k=1}^{p-1} |\lambda_k| e_k \right\|^2$ et $\left\| \sum_{k=1}^{p-1} \lambda_k e_k \right\|^2$.
- 3. Montrer que $(e_1, ..., e_{p-1})$ est libre.

Ex 252: Soit E un \mathbb{R} espace vectoriel de dimension $n \geq 2$. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On note $\mathcal{B}' = (\varepsilon_1, \dots, \varepsilon_n)$ la base \mathcal{B} orthonormalisée selon le procédé d'orthonormalisation de Schmidt.

- 1. Rappeler le procédé de Schmidt ainsi que l'expression des ε_i en fonction des e_i .
- 2. On note $\mathcal{M}_{\mathcal{B}'}(\mathcal{B}) = Mat_{\mathcal{B},\mathcal{B}'}(\mathrm{Id}_E)$.

Prouver que det $\mathcal{M}_{\mathcal{B}'}(\mathcal{B}) = \prod_{i=1}^{n} (e_i \mid \varepsilon_i).$

3. Montrer que pour toute base \mathcal{B}'' orthonormale de E, on a :

 $\left| \det \left(\mathcal{M}_{\mathcal{B}''} \left(\mathcal{B} \right) \right) \right| \leqslant \prod_{i=1}^{n} \left\| e_i \right\| \quad (*)$

4. Prouver que : (*) devient une égalité si et seulement si $\mathcal{M}_{\mathcal{B}''}(\mathcal{B})$ est diagonale .

 $\underline{\mathbf{Ex}\ 253}$: On note $E = \mathcal{C}^0([-1,1],\mathbb{R})$ et φ définie sur E^2 par $\varphi(f,g) = \int_{-1}^1 fg$. On note \mathcal{P} le sousespace vectoriel des fonctions paires et \mathcal{I} celui des fonctions impaires.

- 1. Montrez $\mathcal{P} \oplus \mathcal{I} = E$.
- 2. Montrez que φ est un produit scalaire sur E.
- 3. Montrez $\mathcal{P}^{\perp} = \mathcal{I}$.
- 4. Exprimez \hat{f} l'image de $f \in E$ par la symétrie orthogonale par rapport à $\mathcal{P}.$

Ex 254: Soit E un espace euclidien de dimension non nulle.

- 1. Montrer que si p est un projecteur orthogonal, alors p est un endomorphisme autoadjoint.
- 2. Soient p et q deux projecteurs orthogonaux.
 - (a) Montrer que $p \circ q \circ p$ est un endomorphisme autoadjoint.
 - (b) Montrer que $(\operatorname{Ker} q + \operatorname{Im} p)^{\perp} = \operatorname{Im} q \cap \operatorname{Ker} p$.
 - (c) Montrer que $p \circ q$ est diagonalisable.

 $\underline{\mathbf{Ex}\ 255}$: Soit $E = \mathbb{R}_2[X]$. Pour $P = \sum_{i=0}^2 a_i X^i$ et $Q = \sum_{i=1}^2 b_i X^i$, on pose $(P|Q) = \sum_{i=1}^2 a_i b_i$. On admet que (.|.) définit un produit scalaire sur E. On pose $F = \{P \in E,\ P(1) = 0\}$.

- 1. F est-il un sous-espace vectoriel de E? Si oui, donner une base de F.
- 2. Soit P = X. Déterminer d(P, F) (on pourra chercher une base orthonormée de F).

<u>Ex 256</u>: On note E l'ensemble des fonctions f continues sur]0,1[telles que $t\mapsto (tf(t))^2$ soit intégrable sur]0,1[.

- 1. Montrer que $(f,g) \mapsto \int_0^1 t^2 f(t)g(t)dt$ définit une produit scalaire noté $\langle .,. \rangle$.
- 2. On pose $f_0: t \mapsto 1, f_1: t \mapsto t$ et $F = vect(f_0, f_1)$. Donner une base orthonormée de F.
- 3. Déterminer pour quels réels a, b l'intégrale $\int_0^1 t^2 (\ln(t) at b)^2 dt$ est minimale.

 $\underline{\mathbf{Ex}\ 257}$: Soit $n \in \mathbb{N}^*$. On note $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid M^T = -M \}$ l'ensemble des matrices antisymétriques. On définit le produit scalaire : $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \ (A|B) = tr(A^TB)$.

- 1. Montrer que $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que $\mathcal{S}_n(\mathbb{R}) = \mathcal{A}_n(\mathbb{R})^{\perp}$.
- 3. On note $M=\begin{pmatrix}0&2&1\\2&0&1\\-1&-1&0\end{pmatrix}$. Calculer la distance de M à $\mathcal{S}_3(\mathbb{R})$.
- 4. Soit $H = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{tr}(M) = 0 \}.$
 - (a) Montrer que H est un espace vectoriel de dimension à déterminer.
 - (b) On note J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont 1. Calculer la distance de J à H.

Ex 258: Pour $A, B \in \mathcal{M}_n(\mathbb{R})$, on pose $(A|B) = tr(A^T B)$.

- 1. Montrer que $(\cdot|\cdot)$ définit un produit scalaire.
- 2. Trouver une base orthonormée pour ce produit scalaire.
- 3. Montrer que : $\forall A \in \mathcal{M}_n(\mathbb{R}), |tr(A)| \leq \sqrt{n} ||A||$.
- 4. Soient $M \in \mathcal{M}_n(\mathbb{R})$ et $G = \text{Vect}(I_n)$. Déterminer G^{\perp} et d(M, G).

 $\underline{\mathbf{Ex}}$ 259 : Soit E un espace euclidien, F un sous-espace vectoriel de E et p le projecteur orthogonal sur F.

- 1. (a) Montrer que $F = \{x \in E, \|p(x)\| = \|x\|\}.$
 - (b) Montrer que : $\forall x \in E, \|p(x)\| \le \|x\|$.
 - (c) Montrer que : $\forall x, y \in E$, (x|p(y)) = (p(x)|y). Que signifie ce résultat?

- 2. On considère p_F et p_G deux projecteurs orthogonaux sur deux sous-espaces vectoriels F et G respectivement. On suppose que H est un sous-espace vectoriel tel que $p_F \circ p_G$ est le projecteur orthogonal sur H.
 - (a) Montrer que $F \cap G = H$.
 - (b) Montrer que $p_G \circ p_F = p_F \circ p_G$.
 - (c) On suppose réciproquement que F et G sont des sous-espaces vectoriels de E tels que $p_F \circ p_G = p_G \circ p_F$. Montrer qu'il existe H sous-espace vectoriel de E tel que $p_H = p_F \circ p_G$.

Ex 260:

- 1. Montrer que pour toutes matrices A et B de $\mathcal{M}_n(\mathbb{R})$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. En déduire que deux matrices semblables ont la même trace.
- 2. Soit p un projecteur orthogonal de rang r, montrer que tr p = r.
- 3. Montrer que pour tout vecteur x, $\langle x, p(x) \rangle = \langle p(x), p(x) \rangle$.

Ex 261 : Soit E un espace euclidien et F le sous-espace vectoriel de E engendré par u, où $u \in E$. Soit \mathcal{B} une base orthonormale de E. Soit p la projection orthogonale sur F.

- 1. (a) Soit $x \in E$, montrer que $p(x) = \frac{\langle x, u \rangle}{\|u\|^2} . u$.
 - (b) Montrer que $\operatorname{Mat}_{\mathcal{B}}(p) = \frac{UU^T}{U^T.U}$ où $U = \operatorname{Mat}_{\mathcal{B}}(u)$.
- 2. Soit $A = UU^T$.
 - (a) Montrer que A est diagonnalisable.
 - (b) Déterminer les sous-espaces propres de A.
- 3. En posant $M = I_n UU^T$ et par observation de la matrice, déterminer des caractéristiques sur M.

Ex 262 : Soit E un espac euclidien et $u \in \mathcal{L}(E)$.

- 1. On suppose que u possède deux valeurs propres réelles non nulles de signes opposés. Montrer qu'il existe $z \in E \setminus \{0\}$ tel que u(z) et z soient orthogonaux.
- 2. On suppose u autoadjoint de trace nulle. Montrer qu'il existe $z \in E \setminus \{0\}$ tel que u(z) et z soient orthogonaux.
- 3. On suppose que u est simplement de trace nulle, montrer que la conclusion précédente deumeure. On pourra introduire la matrice A canoniquement associée à u et l'endomorphisme v canoniquement associé à $B = A + A^T$.

$$\underline{\mathbf{Ex} \ \mathbf{263}} : \mathrm{Soit} \ U_n = \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 1 & \cdots & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

1. Sans calculer aucun déterminant, déterminer les valeurs propres de U_n et leur multiplicité.

2. Soit $(e_i)_{1 \leq i \leq n}$ la base canonique de \mathbb{R}^n .

On pose:
$$\forall i \in [2, n], f_i = \frac{1}{i-1} \sum_{k=1}^{i-1} e_k - e_i.$$

Montrer que $(f_i)_{2 \le i \le n}$ est une base orthogonale de l'espace propre associé à 0 de U_n .

- 3. (a) Déterminer une base orthonormale de cet espace propre.
 - (b) Donner la formule de diagonalisation de U_n .

Ex 264: Soient (E, \langle, \rangle) un espace euclidien et $f \in \mathcal{L}(E)$ tel que : $\forall x \in E, \langle f(x), y \rangle = -\langle x, f(y) \rangle$. Un tel endomorphisme est dit antisymétrique.

- 1. Que dire de f^2 ? Montrer que : $\forall x \in E, \langle f(x), x \rangle = 0$ et $\langle f^2(x), x \rangle \leq 0$.
- 2. Soit \mathcal{B} une base orthonormée de E. Que peut-on dire de $A = Mat_{\mathcal{B}}(f)$?
- 3. Déterminer une relation entre det(A) et $det(A^T)$. Montrer que si f est bijective, alors la dimension de E est paire.
- 4. Montrer que f^2 est diagonalisable et que son spectre est inclus dans \mathbb{R}_- .

 $\underline{\mathbf{Ex}}$ 265 : Une matrice $A = [a_{i,j}]_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ est dite stochastique si tous ses coefficients sont positifs et : $\forall i \in [1,n]$, $\sum_{j=1}^n a_{i,j} = 1$.

- 1. Montrer que 1 est valeur propre de A.
- 2. On considère la norme infinie $\|.\|_{\infty}$ standard sur \mathbb{C}^n . Montrer que : $\forall X \in \mathbb{C}^n$, $\|AX\|_{\infty} \leq \|X\|_{\infty}$.
- 3. En déduire que pour toute valeur propre complexe λ de A, on a : $|\lambda| \leq 1$.
- 4. Montrer que l'ensemble des matrices stochastiques de $\mathcal{M}_n(\mathbb{R})$ est convexe et stable par produit matriciel.

 $\underline{\mathbf{Ex}}$ 266 : Soient $(E, \|.\|)$ un espace vectoriel normé et F un sous-espace vectoriel de E.

- 1. Montrer que \overline{F} est un sous-espace vectoriel de E.
- 2. On suppose qu'il existe $r \in \mathbb{R}_+^*$ et $x_0 \in E$ tels que $B(x_0, r) \subset F$. Montrer que : $\forall y \in E, \exists \alpha, \beta \in \mathbb{R}^*, \ \alpha x_0 + \beta y \in B(x_0, r)$. En déduire que F = E.
- 3. On suppose ici que $E = \mathcal{M}_n(\mathbb{R})$. On note \mathcal{N} l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$. Montrer que \mathcal{N} est un fermé de E. Montrer que $vect(\mathcal{N})$ est d'intérieur vide (on pourra considérer I_n), puis que \mathcal{N} est aussi d'intérieur vide.

$\underline{\mathbf{Ex}}$ 267 : Soit E un espace vectoriel normé.

- 1. Montrer que E est connexe par arcs.
- 2. Soit F un autre espace vectoriel normé, et $f: E \to F$ une fonction continue. Montrer que f(A) est connexe par arcs pour tout connexe par arcs A de E.
- 3. Montrer que \mathbb{C}^* est connexe par arcs. En déduire qu'il n'existe pas de bijection continue de \mathbb{C} dans \mathbb{R} .
- 4. Soit U une partie de E. Montrer que la fonction $\mathbf{1}_U$ est continue sur E si U est à la fois ouvert et fermé dans E. En déduire les parties de E qui sont à la fois ouvertes et fermée dans E.

 $\underline{\mathbf{Ex}}$ 268 : Soit $P \in \mathbb{R}[X]$. Montrer que si P est scindé, alors P' est scindé aussi. Pour cela :

- 1. Énoncer le théorème de Rolle.
- 2. Si a est une racine d'ordre k de P, quel est son ordre dans P'?
- 3. Montrer le résultat voulu.

Ex 269: Soient $\alpha > 0, u_1 > 0$, puis : $\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{(-1)^{n+1}}{(n+1)^{\alpha}} \sum_{k=1}^n u_k$ et on note $S_n = \sum_{k=1}^n u_k$.

- 1. Jusitifier l'existence de $\ln(S_{n+1})$ pour tout n de \mathbb{N} , et l'exprimer à l'aide de $\ln(S_n)$.
- 2. Donner un développement asymptotique à deux termes de $\ln \left(1 + \frac{(-1)^n}{n^{\alpha}}\right)$.
- 3. En déduire que la série $\sum u_n$ converge si $\alpha > 1/2$.
- 4. Pour $\alpha \leq 1/2$, déterminer la limite de $(\ln(S_{n+1}))_{n \in \mathbb{N}}$; conclure sur la nature de la série $\sum u_n$.

 $\underline{\mathbf{Ex}}\ \mathbf{270}$: Soit $u \in \mathbb{R}^{\mathbb{N}}$ définie par $u_0 = 1$ et : $\forall n \in \mathbb{N}, \ u_{n+1} = \sin(u_n)$. Pour $k \in \mathbb{Z}$, déterminer la nature de la série $\sum (u_n)^k$.

Ex 271: Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^4)^n}$.

- 1. Montrer que I_n existe pour tout $n \in \mathbb{N}^*$.
- 2. Montrer que (I_n) converge et déterminer sa limite.
- 3. (a) Pour $n \in \mathbb{N}^*$, trouver une relation de récurrence entre I_n et I_{n+1} .
 - (b) Trouver d'une autre manière la limite de (I_n) .

Ex 272:

- 1. Soit $\alpha \in \mathbb{R}_+^*$. Montrer que $\int_1^{+\infty} \frac{e^{it}}{t^{\alpha}} dt$ converge.
- 2. En déduire la nature de $\int_{1}^{+\infty} \sin(t^2) dt$.
- 3. Montrer que $\int_{1}^{+\infty} \frac{\sqrt{t}\sin(t)}{t+\cos(t)} dt$ converge.

Ex 273:

- 1. Montrer que : $\forall n \in \mathbb{N}^*, \ \frac{1}{\sqrt{n}} \int_0^{\sqrt{n}} \left(1 \frac{t^2}{n}\right)^n dt = \int_0^{\pi/2} \sin^{2n+1}(t) dt.$
- 2. Montrer que $\lim_{n\to+\infty}\int_0^{\sqrt{n}} \left(1-\frac{t^2}{n}\right)^n dt = \int_0^{+\infty} e^{-t^2} dt$.

- 3. On pose $I_p = \int_0^{\pi/2} \sin^p(t) dt$ et $u_p = (p+1)I_pI_{p+1}$, pour $p \in \mathbb{N}$. Montrer que la suite $(u_p)_{p \in \mathbb{N}}$ est constante et que $I_p \sim \sqrt{\frac{\pi}{2p}}$.
- 4. Calculer $\int_0^{+\infty} e^{-t^2} dt$.

Ex 274:

- 1. Donner le développement en série de Taylor de l'exponentielle sur [0; 1].
- 2. On pose $I_n = \int_0^1 (1-t)^n e^t dt$. Montrer que la suite $(I_n)_n$ converge et qu'elle est de limite nulle.
- 3. Donner un équivalent de I_n en partant d'une intégration par parties
- 4. (a) Exprimer $\sum_{k=0}^{n} \frac{1}{k!}$ en fonction de I_n
 - (b) Montrer la convergence de la suite $u_n = n \sin(2\pi n! e)$

$$\mathbf{\underline{Ex\ 275}} : \text{Soit } I = \int_0^{+\infty} \frac{t \sin t}{t^2 + 1} \, \mathrm{d}t.$$

- 1. Montrer que I existe.
- 2. On considère : $\forall x \in \mathbb{R}$, $J(x) = \int_0^x \frac{t|\sin t|}{t^2 + 1} dt$. Montrer que : $\forall n \in \mathbb{N}^*$, $J(n\pi) = \sum_{k=0}^{n-1} \int_0^\pi (u + k\pi) \frac{\sin u}{(u + k\pi)^2 + 1} du$.
- 3. I est-elle absolument convergente?

Ex 276 : On définit pour tout
$$t > 0, f(t) = \frac{\ln t}{(1+t)^2}$$
.

- 1. Montrer que f est intégrable sur]0,1], puis sur $[1,+\infty[$.
- 2. Calcular $\int_0^1 f(t) dt$ et $\int_1^{+\infty} f(t) dt$.

Ex 277: Pour $n \in \mathbb{N}$, on pose $f_n : x \mapsto n \cos^n(x) \sin(x)$.

- 1. Montrer que (f_n) converge simplement sur $[0, \pi/2]$.
- 2. (f_n) converge-t-elle uniformément sur $[0, \pi/2]$? (on pourra considérer $\lim_{n \to +\infty} \int_0^{\pi/2} f_n$).
- 3. Soient 0 < a < b. (f_n) converge-t-elle uniformément sur $[a, \pi/2]$? Et sur $[a, b] \subset [0, \pi/2]$?
- 4. Soit $g \in \mathcal{C}^0([0, \pi/2], \mathbb{R})$. Montrer que $\lim_{n \to +\infty} \int_0^{\pi/2} f_n(t)g(t)dt = g(0)$.

Ex 278: Soit
$$S(x) = \sum_{n=0}^{+\infty} e^{-x^2n^2}$$
, pour $x \in \mathbb{R}$.

- 1. Quel est l'ensemble de définition de S?
- 2. Montrer la continuité de S sur celui-ci (on pourra travailler sur un segment).
- 3. Déterminer $\lim_{x \to +\infty} S(x)$.
- 4. (a) Calculer $\int_0^{+\infty} e^{-x^2t^2} dt$, pour x dans \mathbb{R}_+^* (on rappelle que $\int_0^{+\infty} e^{-t^2/2} dt = \sqrt{\frac{\pi}{2}}$).
 - (b) Donner un équivalent de S en 0.

Ex 279: Pour $n \in \mathbb{N}$, on pose $f_n : x \mapsto \frac{e^{-x}}{(1+x)^n}$ et $J_n = \int_0^{+\infty} f_n$.

- 1. Jusitifer l'existence de J_n et déterminer $\lim_{n\to+\infty} J_n$.
- 2. Calculer f'_n . Trouver une relation entre J_n et J_{n+1} . En déduire un équivalent de J_n .
- 3. Donner le rayon de convergence de la série entière $\sum J_n x^n$.
- 4. Exprimer sa somme sous forme d'intégrale.

<u>**Ex 280**</u>: Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = (-1)^n \frac{\mathrm{e}^{-nx}}{n}$. On note f la somme de cette série de fonctions.

- 1. Montrer que f est définie sur \mathbb{R}_+ .
- 2. Montrer la convergence uniforme de $\sum u_n$ sur \mathbb{R}_+ et en déduire que f est continue sur \mathbb{R}_+ .
- 3. Y a-t-il convergence normale sur \mathbb{R}_+ ?
- 4. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et en déduire, pour x > 0, une expression explicite de f'(x).
- 5. Déterminer f puis en déduire la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.

Ex 281: On pose $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$ pour tout x > 0.

- 1. Justifier l'existence et le caractère \mathcal{C}^1 de S, puis donner une expression de S'(x).
- 2. En déduire la monotonie de S.
- 3. Montrer que $S(x+1) + S(x) = \frac{1}{x}$ pour tout x > 0 et en déduire un équivalent simple de S en 0^+ .

Ex 282: Soient $p, n \in \mathbb{N}$ et on pose $S_n = \int_0^{+\infty} \frac{x^{p+1}}{e^x - 1} e^{-nx} dx$.

- 1. Montrer que S_n existe.
- 2. Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$ et $T_{a,b} = \int_0^{+\infty} x^a e^{-bx} dx$. Montrer que $T_{a,b}$ existe et en donner une expression (on montrera que $\int_0^{+\infty} t^n e^{-t} dt = n!$).

3. Montrer que
$$S_0 = (p+1)! \sum_{k=1}^n \frac{1}{k^{p+2}} + S_n$$
.

4. En déduire que (S_n) converge.

5. Montrer que
$$(p+1)! \sum_{k=1}^{+\infty} \frac{1}{k^{p+2}} = \int_0^{+\infty} \frac{x^{p+1}}{e^x - 1} dx$$
.

Ex 283: Pour
$$p, q \in \mathbb{N}$$
, on pose $I_{p,q} = \int_0^1 x^p (\ln(x))^q dx$.

- 1. (a) Étudier la convergence de cette intégrale.
 - (b) Calculer cette intégrale.
- 2. Calculer $\int_0^1 \exp(x \ln(x)) dx$.

Ex 284:

- 1. Montrer que la fonction $x \mapsto \frac{\ln^2(x)}{1+x^2}$ est intégrable sur]0,1].
- 2. Montrer que pour tout $n \in \mathbb{N}$, la fonction $x \mapsto x^{2n} \ln^2(x)$ est intégrable sur]0,1] et calculer son intégrale.
- 3. On note $I = \int_0^1 \frac{\ln^2(x)}{1+x^2} dx$. Écrire I comme somme d'une série.
- 4. Comment calculer I à 10^{-N} près? Donner le résultat pour N=3.

Ex 285: Pour
$$n \in \mathbb{N}$$
, on pose $a_n = \int_0^1 \frac{t^n}{1+t^2} dt$.

- 1. Quel est le rayon de convergence R de la série entière $\sum a_n x^n$?
- 2. Calculer la somme de cette série.

Ex 286: Pour
$$n \in \mathbb{N}$$
, on pose $a_n = \int_0^1 \frac{1}{(2+t^2)^{n+1}} dt$.

- 1. Montrer le rayon de convergence R de la série entière $\sum a_n x^n$ vaut au moins 2.
- 2. Soit $S_n(x) = \sum_{k=0}^n a_k x^k$. Pour $x \in]-2,2[$, montrer que la suite $(S_n(x))_{n \in \mathbb{N}}$ converge et calculer sa limite.
- 3. En déduire la somme de la série entière $\sum a_n x^n$ et montrer que R=2.

$$\underline{\mathbf{Ex}\ \mathbf{287}}: \text{Calculer } \int_0^1 \frac{\ln(1+u)}{u} du, \text{ sachant que } \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

<u>Ex 288</u>: Donner les rayons de convergence et calculer les sommes des séries entière $\sum nx^n$, $\sum 2nx^{2n}$ et $\sum n^{(-1)^n}x^n$.

Ex 289:

1. Soit
$$f(x) = \sum_{n=1}^{+\infty} \ln n \, x^n$$
.

Pour quels x la quantité f(x) est-elle définie? On note I le domaine de définition de f.

2. Soit
$$g(x) = \sum_{n=1}^{+\infty} a_n x^n$$
 avec $a_1 = -1$ et : $\forall n \ge 2$, $a_n = -\ln(1 - \frac{1}{n}) - \frac{1}{n}$.

Pour quels x la quantité g(x) est-elle définie? On note J le domaine de définition de g.

- 3. (a) Montrer que $g(x) = (1-x)f(x) + \ln(1-x)$.
 - (b) Montrer que $f(x) \sim -\frac{\ln(1-x)}{1-x}$ quand $x \to 1^-$.
 - (c) Déterminer un équivalent de f en $(-1)^+$.

 $\underline{\mathbf{Ex}} \ \mathbf{290}$: On considère la suite définie par $u_0 = 3$ et : $\forall n \in \mathbb{N}, \ u_{n+1} = \sum_{k=0}^{n} \binom{n}{k} u_k u_{n-k}$.

- 1. Montrer que : $\forall n \in \mathbb{N}, \ 0 \le u_n \le 4^n n!$.
- 2. Soit $f: x \mapsto \sum_{n=0}^{+\infty} \frac{u_n}{n!} x^n$. Montrer que f est définie sur un intervalle à préciser. Montrer que f est solution de $y' = y^2$.
- 3. Déterminer f.
- 4. En déduire explicitement l'expression de $(u_n)_{n\in\mathbb{N}}$.

 $\underline{\mathbf{Ex}} \ \mathbf{291} : \mathrm{Soit} \ n \in \mathbb{N}^* \ \mathrm{et} \ \mathrm{on} \ \mathrm{pose} \ f_n : x \mapsto \frac{e^{i2^nx}}{n^n}. \ \mathrm{Soit} \ S : x \mapsto \sum_{n=1}^{+\infty} f_n(x).$

- 1. Montrer que S est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. (a) Quel est le rayon de convergence de la série entière $\sum_{k\geq 0} \frac{2^{k^2}}{k!k^k} x^k$.
 - (b) Quel est le rayon de convergence de la série de Taylor de S en 0?
- 3. Rappeler la formule de Taylor-Lagrange avec reste intégrale.

Montrer que :
$$\forall z \in \mathbb{C}, \ e^z = \sum_{k=0}^{+\infty} \frac{z^k}{k!}.$$

$\underline{\mathbf{Ex}} \ \mathbf{292}$:

- 1. Calculer $I_{2n} = \int_0^{\pi} \sin^{2n}(x) dx$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que $\frac{1}{\sqrt{1-u}} = \sum_{n \ge 0} \frac{1}{4^n} \binom{2n}{n} u^n$ pour tout $u \in]-1,1[$.

3. On pose $f(x) = \int_0^{\pi} \frac{1}{\sqrt{1 - x^2 \sin^2 t}} dt$.

Justifier que f est développable en série entière pour $x \in]-1,1[$, et exprimer ce développement.

Ex 293:

- 1. Montrer que pour tout $u \in \mathbb{R}$, $|\operatorname{Arctan} u| \leq |u|$.
- 2. On pose $F(x) = \int_0^{+\infty} \frac{\operatorname{Arctan}(xt)}{t(1+t^2)} dt$.
 - (a) Domaine de définition de F?
 - (b) Domaine de continuité de F?
 - (c) Domaine de dérivabilité de F?
 - (d) Déterminer F'.
 - (e) En déduire F.
- $\underline{\mathbf{Ex}\ \mathbf{294}} : \text{Soit}\ F : t \mapsto \int_0^{+\infty} \frac{e^{-(u^2+i)t^2}}{u^2+i} du. \ \text{On admet que}\ \int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$
 - 1. Montrer que F est définie et continue sur \mathbb{R} .
 - 2. Pour $t \in \mathbb{R}_+^*$, déterminer $\int_0^{+\infty} e^{-t^2 u^2} du$.
 - 3. Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et : $\forall t \in \mathbb{R}_+^*$, $F'(t) = -\sqrt{\pi}e^{-it^2}$. En déduire que F est dérivable en 0 et que F est de classe \mathcal{C}^1 sur \mathbb{R} .
 - 4. Déterminer $\lim_{t\to +\infty} F(t)$.
 - 5. Montrer que $F(0) = \sqrt{\pi} \int_0^{+\infty} e^{-it^2} dt$.
 - 6. En déduire les valeurs de $\int_0^{+\infty} \cos(t^2) dt$ et $\int_0^{+\infty} \sin(t^2) dt$.
- $\mathbf{\underline{Ex 295}} : \mathrm{Soit} \ \Gamma(x) = \int_0^{+\infty} t^{x-1} \mathrm{e}^{-t} \, \mathrm{d}t.$
 - 1. Montrer que Γ est bien définie sur $]0, +\infty[$.
 - 2. Montrer que Γ est de classe C^1 sur $]0, +\infty[$ et donner Γ' .
 - 3. Montrer que : $\forall x \in]1, +\infty[, \forall \lambda \in]-1, 1[\int_0^{+\infty} \frac{t^{x-1}e^{-t}}{1-\lambda e^{-t}} dt = \sum_{n=0}^{+\infty} \frac{\lambda^n \Gamma(x)}{(n+1)^x}.$
- **Ex 296**: On pose $F(x) = \int_0^{+\infty} e^{-xt} \frac{\sin(t)}{t} dt$.
 - 1. Montrer que F est définie sur \mathbb{R}_+^* .
 - 2. Montrer que F est dérivable sur \mathbb{R}_+^* .
 - 3. Calculer F' sur \mathbb{R}_+^* .
 - 4. Calculer F sur \mathbb{R}_+^* .

 $\underline{\mathbf{Ex}}\ \mathbf{297}$: On admet que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$. Soit $x \in \mathbb{R}$. On pose $z(x) = \int_0^{+\infty} \frac{e^{(-1+ix)t}}{\sqrt{t}} dt$ quand l'intégrale existe.

- 1. Justifier l'existence de z(0) et montrer que $z(0) = \sqrt{\pi}$.
- 2. Montrer que z est de classe \mathcal{C}^1 sur \mathbb{R} .
- 3. Montrer que : $\forall x \in \mathbb{R}, \ z'(x) = -\frac{1}{2(x+i)}z(x)$.
- 4. Soit $x \in \mathbb{R}$. Déterminer la partie réelle et imaginaire de $-\frac{1}{2(x+i)}$. En déduire z(x).

<u>Ex 298</u>: On considère l'équation différentielle : 4xy'' + 2y' - y = 0 (E). Trouver l'unique solution développable en série entière à l'origine respectant la condition y(0) = 1.

 $\underline{\mathbf{Ex}\ \mathbf{299}}$: Soit le système suivant : $\begin{cases} x' = z + \cos t \\ y' = y + \mathrm{e}^{3t} \\ z' = x + \sin t \end{cases}$

- 1. Résoudre.
- 2. Trouver la solution telle que x et z soient bornées sur \mathbb{R}_+ et que x(0) = z(0).

Ex 300: Soit l'équation différentielle (*): $t^2y'' + 4ty' + 2y = 0$.

- 1. Déterminer les solutions de (*) de la forme $t\mapsto t^r$ sur \mathbb{R}_+^* .
- 2. Écrire (*) sous forme d'un système différentiel linéaire.
- 3. Soit l'équation différentielle (**) : $t^2y'' + 4ty' + 2y = e^t$. À l'aide de la méthode de la variation des constantes, donner les solutions de (**) sur \mathbb{R}_+^* .
- 4. On propose une autre méthode de résolution. Vérifier qu'il existe une solution particulière de (**) de la forme $y:t\mapsto \frac{z(t)}{t}$, avec z une fonction de classe \mathcal{C}^2 sur \mathbb{R}_+^* . En déduire l'ensemble des solutions de (**) sur \mathbb{R}_+^* .

$$\underline{\mathbf{Ex}\ \mathbf{301}}: \mathrm{Soit}\ f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \dfrac{xy}{\sqrt{x^2+y^2}} \sin\left(\dfrac{1}{\sqrt{x^2+y^2}}\right) & \mathrm{si} & (x,y) \neq (0,0) \\ 0 & \mathrm{si} & (x,y) = (0,0) \end{array} \right.$$

- 1. Prouver que $f \in C^0(\mathbb{R}^2, \mathbb{R})$.
- 2. On pose $\overrightarrow{u_{\theta}} = (\cos \theta, \sin \theta)$ avec $\theta \in]-\pi, \pi]$. Trouver les θ tels que la dérivée partielle de f en (0,0) selon $\overrightarrow{u_{\theta}}$ existe.
- 3. Existent-ils des dérivées partielles de f en $\left(0,0\right)$?
- 4. Calculer $\frac{\partial f}{\partial x}(x,y)$ avec $(x,y) \neq (0,0)$.
- 5. Est-ce qu'ils existent des dérivées partielles d'ordre 2 de f sur \mathbb{R}^2 ?

Ex 302:
$$\Omega = \{(x, y) \in \mathbb{R}^2 / x > 0 \text{ et } y > 0\}$$

Soit
$$\Phi: \Omega \longrightarrow \Omega$$

 $(x,y) \longmapsto (xy,\frac{x}{2})$

$$(x,y) \longmapsto (xy,\frac{x}{y})$$

- 1. Montrer que Φ est bijective et déterminer Φ^{-1} .
- 2. On pose $(u, v) = \Phi(x, y)$ et f(x, y) = F(u, v). Exprimer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial^2 x}$ et $\frac{\partial^2 f}{\partial^2 y}$ en fonction des dérivées partielles de F.
- 3. Résoudre $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) 2f(x,y) + 2 = 0$
- 4. Résoudre $x^2 \frac{\partial^2 f}{\partial^2 x} y^2 \frac{\partial^2 f}{\partial^2 y} = 0$.

 $\underline{\mathbf{Ex}}$ 303 : On a la fonction f définie sur $\mathbb{R}_+^*\mathbf{x}$ \mathbb{R} telle que $f(x,y)=x((\ln(x))^2+y^2)$ et Σ la surface représentative de f dans un repère orthonormé.

- 1. Déterminer les points critiques de f. f admet-elle un extremum global?
- 2. Soit (a,b) un point critique de f, déterminer l'équation du plan tangent à Σ en (a,b,f(a,b))
- 3. Exprimer l'équation du plan tangent en (1,1,1)
- 4. Exprimer la différentielle de f en (1,1) puis g telle que g(x,y)=(f(x,y),f(x,y))

Ex 304 : Soient X, Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre $p \in]0,1[$. On pose $U = \min(X,Y)$ et $V = \max(X,Y)$.

- 1. Pour $n \in \mathbb{N}^*$, donner $P(X \le n)$ et P(X > n).
- 2. Donner P(U=n) et P(V=n).
- 3. Que peut-on dire des événements $(X = n) \cap (Y = n)$ et $(U = n) \cap (V = n)$? Les variables aléatoires U et V sont-elles indépendantes?
- 4. Donner l'espérance de U et de V.

<u>Ex 305</u>: Soient A_1, A_2 et A_3 trois personnes venant dans cet ordre déposer une lettre à la poste dans laquelle il y a deux guichets. A_3 doit donc attendre que A_1 et A_2 aient fini. Soient X_1 , X_2 et X_3 les temps d'attente respectifs au guichet des visiteurs et elles suivant toutes une loi géométrique de paramètre p.

Soit Y le temps d'attente de A_3 avant d'accéder à un guichet.

Soit Z le temps total passé par A_3 (temps d'attente pour accéder à un guichet attendre le guichet et temps passé au guichet).

- 1. Déterminer la loi de Y (calculer P(Y > k) d'abord).
- 2. Écrire Z en fonction de Y et X_3 puis déterminer la loi de Z.
- 3. Temps moyen passé par A_3 à la poste.

IMT 1 MP 2022

Ex 306: Soit
$$n \in \mathbb{N}^*$$
, $a_0 \in \mathbb{R}_+^*$, $(a_1, ..., a_{n-1}) \in (\mathbb{R}_+)^{n-1}$, $P = X^n - \sum_{k=0}^{n-1} a_k X^k$.

- 1. Montrer que dans \mathbb{R}_{+}^{*} , P admet un unique zéro, noté ρ .
- 2. Montrer que tout zéro de P est de module inférieur ou égal à $\rho.$
- 3. Montrer que : $\rho \le \max\left(1, \sum_{k=0}^{n-1} a_k\right)$.
- 4. Montrer que : $\rho < 1 + \max_{0 \le k \le n-1} a_k$.

Ex 307: Quels sont les polynômes complexes P tels que $P(\mathbb{U}) \subset \mathbb{U}$ (en notant \mathbb{U} le cercle unité)?

Ex 308: Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB = 0.

- 1. A-t-on nécessairement BA = 0?
- 2. Montrer que : $\forall p \in \mathbb{N}^*$, $tr((A+B)^p) = tr(A^p) + tr(B^p)$.
- 3. Déterminer une relation entre $\operatorname{rg}(A)$ et $\operatorname{rg}(B)$.

Ex 309: Soit $M \in \mathcal{M}_n(\mathbb{R})$ avec $M^2 + M + I_n = 0$.

- 1. Montrer que n est pair.
- 2. Déterminer $\operatorname{tr}(M)$, $\operatorname{rg}(M)$ et $\operatorname{det}(M)$.
- 3. Donner un exemple pour n = 2, puis déterminer toutes les solutions.

Ex 310 : Soit *D* l'opérateur de dérivation dans $\mathbb{R}_n[X]$, $n \ge 1$.

- 1. Trouver son polynôme caractéristique.
- 2. Montrer qu'il n'existe pas d'application f telle que $f^2 = D$.

Ex 311: Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + I_n = 0$. Montrer que $\operatorname{tr}(A)$ est un entier.

 $\underline{\mathbf{Ex\ 312}}$: Soit $A\in M_n(\mathbb{R})$ telle que A^2 est diagonalisable à valeurs propres strictement positives. Montrer que A est diagonalisable.

$$\underline{\mathbf{Ex 313}} : \mathrm{Soit} \ A = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & (0) \\ \vdots & & \ddots \\ 1 & (0) & & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}) \text{ avec } n \ge 3.$$

Montrer que 1 est valeur propre de A et déterminer le sous-espace propre associé. Déterminer les autres valeurs propres et vecteurs propres.

Ex 314: Soit
$$A \in \mathcal{M}_n(\mathbb{R})$$
 et $B = \begin{pmatrix} A & 0 \\ A & A \end{pmatrix}$.

- 1. Soit $P \in \mathbb{R}[X]$. Donner une expression de P(B).
- 2. Trouver une condition nécessaire et suffisante pour que B soit diagonalisable.

Ex 315: Soient $M, N \in \mathcal{M}_n(\mathbb{R})$ telles que $N^n = NM = 0$. On suppose de plus que M est trigonalisable sur $\mathcal{M}_n(\mathbb{R})$. Montrer que M + N est trigonalisable sur $\mathcal{M}_n(\mathbb{R})$.

Ex 316: Soit $A \in S_n(\mathbb{R})$ ayant des valeurs propres positives. Soit $U \in O_n(\mathbb{R})$. Montrer que $tr(AU) \leq tr(A)$.

Ex 317: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction k-lipschitzienne, avec $k \in [0, 1]$.

- 1. Montrer que f admet un unique point fixe.
- 2. Montrer que cela est faux lorsque l'on suppose seulement que : $\forall x,y\in\mathbb{R},\ x\neq y\Rightarrow |f(x)-f(y)|<|x-y|.$

Ex 318: On pose
$$a_n = \int_0^1 \frac{dt}{1+t^n}$$
.

- 1. Montrer que la suite (a_n) converge et donner sa limite.
- 2. Donner un développement asymptotique à deux termes de a_n .

Ex 319: On pose
$$u_n = \int_n^\infty \frac{e^{-t}}{t} dt$$
.

- 1. Pour quels $n \in \mathbb{N}$ u_n est-elle correctement définie?
- 2. Nature de $\sum u_n$?

Ex 320: On pose:
$$\forall n \in \mathbb{N}, \ u_n = \int_0^{+\infty} \frac{e^{-t}t^n}{\sqrt{t}} dt.$$

- 1. Montrer que u_n est bien définie.
- 2. Calculer u_n .

Ex 321: Soient
$$a \in \mathbb{R}_+^*$$
 et $\alpha \in \mathbb{R}$. Nature de la série $\sum \frac{n^{\alpha}}{a(1+a)...(1+a^n)}$.

 $\underline{\mathbf{Ex}\ \mathbf{322}}$: Pour $n \in \mathbb{N}^*$, soit $u_n = \frac{(-1)^{\frac{n(n-1)}{2}}}{\sqrt{n(n+1)}}$. Nature de la série $\sum u_n$ (on pourra sommer par paquet).

$$\underline{\mathbf{Ex}\ \mathbf{323}}$$
: Soit $f:t\mapsto \frac{\ln(t)}{1+t^2}$. Montrer que f est intégrable sur \mathbb{R}_+^* et calculer $\int_0^1 f(t)dt$.

Ex 324: Pour
$$(n,x) \in \mathbb{N}^* \times \mathbb{R}_+$$
, on pose $f_n(x) = \frac{ne^{-x} + x^3}{n+x}$.

- 1. Étudier les convergences simple et uniforme de la suite (f_n) sur \mathbb{R}_+ et sur [0,1].
- 2. Déterminer $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$.

Ex 325:

- 1. Montrer que la fonction $g: x \mapsto \sum_{n=0}^{+\infty} e^{-n+n^2 i x}$ est bien définie et de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. Montrer que g n'est pas DSE au voisinage de 0.

Ex 326: Montrer que
$$\int_0^{+\infty} \frac{\sin(t)}{e^t - 1} = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$
.

Ex 327: On pose
$$f(x) = \sum_{n=0}^{+\infty} x^{n^2}$$
.

- 1. Donner le domaine de définition de f.
- 2. Donner un équivalent de f en 1, sachant que $\int_0^{+\infty} \frac{\exp(-v)}{\sqrt{v}} dv = \sqrt{\pi}$.

Ex 328 : Soit la série entière $\sum_{n>0} \frac{x^n}{(n!)^2}$ et f sa somme.

- 1. Rayon de convergence de cette série?
- 2. Lien entre f et $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{2\sqrt{x}sin(t)}dt$?

 $\underline{\mathbf{Ex}}$ 329 : On pose $f:z\in\mathbb{U}_n\to z^2\in\mathbb{U}_n$ où \mathbb{U}_n est le groupe des racines n-ièmes de l'unité.

- 1. Pour quels $n \in \mathbb{N}^*$, la fonction f est-elle bijective?
- 2. Pour quels $n \in \mathbb{N}^*$ $f \circ f = Id$?

 $\underline{\mathbf{Ex}\ \mathbf{330}}$: Soit n un entier naturel supérieur à 2. On définit une probabilité uniforme sur l'ensemble $\Omega = \{1, 2, \dots, n\}$.

Pour un entier p divisant n, on introduit l'événement $D_p = \{1 \le k \le n, p \text{ divise } k\}$.

- 1. Calculer $P(D_p)$.
- 2. Soit $n = p_1^{\alpha_1} \times ... \times p_r^{\alpha_r}$ la décomposition de n en facteurs premiers. Les événements D_{p_1}, \ldots, D_{p_r} sont-ils mutuellement indépendants?
- 3. Soient $n \in \mathbb{N}^*$ et φ l'indicatrice d'Euler (le nombre d'eléments de Ω premiers avec n). Montrer que $\frac{\varphi(n)}{n} = \prod_{i=1}^r \left(1 \frac{1}{p_i}\right)$.

Ex 331 : Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées selon une loi de Bernoulli de paramètre $p\in]0,1[$.

Pour $r \in \mathbb{N}^*$, on considère la variable aléatoire $T_r = \min (\{n \in \mathbb{N}^* \mid X_1 + \dots + X_n = r\} \cup \{+\infty\}).$

- 1. Reconnaître la loi de T_1 .
- 2. Calculer $P(T_r = n)$ pour tout $n \in \mathbb{N}^*$.
- 3. Montrer que l'événement $(T_r = +\infty)$ est négligeable.

IMT 2 MP 2022

<u>Ex 332</u> : On pose pour $n \in \mathbb{N}$ le polynôme $P_n = (X^2 - X + 1)^n - X^{2n} - X^n + 1$.

- 1. Déterminer n tel que $X^3 X^2 + X 1$ divise P_n .
- 2. Dans les cas où P_n n'est pas divisé, calculer le reste de la division euclidienne

 $\underline{\mathbf{Ex}}$ 333 : Soit $f: \mathbb{R} \to \mathbb{R}$ un morphisme de corps.

- 1. Déterminer f sur \mathbb{Z} , puis sur \mathbb{Q} .
- 2. Soit $x \in \mathbb{R}_+$. Montrer que $f(x) \in \mathbb{R}_+$.
- 3. Étudier la monotonie de f.
- 4. Déterminer entièrement f.

 $\mathbf{\underline{Ex 334}} : \mathbf{Soit} \ A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}.$

- 1. Calculer A^n , pour $n \in \mathbb{N}$.
- 2. A est-elle inversible? Si oui, donner A^n , pour $n \in \mathbb{Z}$.

Ex 335 : Soit E un \mathbb{K} -espace vectoriel non réduit à $\{0\}$. Soit $f \in \mathcal{L}(E)$ nilpotent d'ordre p.

- 1. f est-elle injective? Surjective?
- 2. On suppose que $\dim(E) = n$ et p = n.
 - (a) Montrer qu'il existe $x_0 \in E$ tel que $\mathcal{B} = (x_0, f(x_0), ..., f^{n-1}(x_0))$ soit une base de E.

- (b) Quelle est la matrice de f dans cette base \mathcal{B} ? On appelle A cette matrice.
- (c) A est-elle diagonalisable?
- 3. $E = \mathbb{K}_{n-1}[X]$. Donner un exemple de f dans $\mathcal{L}(E)$ nilpotent d'ordre n, et d'une base telle que la matrice de f dans cette base soit la matrice A.
- 4. (a) Pour $t \in \mathbb{R}$, calculer $\exp(t(I_n + A))$.

(b) Résoudre :
$$\begin{cases} X'(t) &= X(t) + AX(t) \\ X(0) &= \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix} .$$

Ex 336:

- 1. Donner la définition de la somme directe de n espaces vectoriels $(n \ge 2)$.
- 2. Soit f un endomorphisme, λ, μ deux valeurs propres distinctes. Démontrer que E_{λ}, E_{μ} sont en somme directe. Que dire si le nombre de sous espaces propres augmente?
- 3. Soit E un espace muni d'une structure euclidienne. Démontrer qu'une partie et son orthogonal sont en somme directe.
- 4. Soit f un endomorphisme et A sa matrice associée, dans une base \mathcal{B} de E, avec $\operatorname{Mat}_{\mathcal{B}}(f) = A = \begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 0 & 3 & 1 \end{pmatrix}$. Que dire des sous-espaces stables en observant la matrice?

$$\underline{\mathbf{Ex 337}} : \mathrm{Soit} \ X = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}).$$

- 1. Soit F l'ensemble des $M \in \mathcal{M}_n(\mathbb{R})$ dont X est un vecteur propre. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$; quelle est sa dimension?
- 2. Même question avec X quelconque.

 $\underline{\mathbf{Ex}} \ \mathbf{338} : \mathrm{Soit} \ A \in \mathcal{M}_n(\mathbb{R}) \ \text{à coefficients dans } [0,1], \ \mathrm{telle} \ \mathrm{que} \ \mathrm{pour \ tout} \ i \in [\![1,n]\!], \sum_{j=1}^n a_{i,j} = 1.$

- 1. Montrer que 1 est valeur propre de A.
- 2. Soit λ une valeur propre de A. Montrer que $|\lambda| \leq 1$ et que pour $\omega > 0$, $|\lambda - \omega| \leq 1 - \omega$.

$$\mathbf{\underline{Ex\ 339}} : \text{Soit } a_1, \dots, a_n \text{ des réels non tous nuls. On pose} : A = \begin{pmatrix} 0 & a_1 & \cdots & a_n \\ a_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & \cdots & 0 \end{pmatrix}.$$

- 1. Montrer que A est diagonalisable.
- 2. Quel est le rang de A? Que peut-on en déduire sur son spectre?
- 3. Calculer A^2 . En déduire le spectre et le polynôme caractéristique de A.

$$\mathbf{\underline{Ex\ 340}}: \mathrm{Soit}\ A = \left(\begin{array}{ccc} 1 & -3 & 0 \\ -3 & -2 & 1 \\ 0 & 1 & 1 \end{array}\right).$$

- 1. Résoudre $M^2 = A$, où $M \in \mathcal{M}_3(\mathbb{C})$.
- 2. Résoudre $M^2 = A$, où $M \in \mathcal{M}_3(\mathbb{R})$.

Ex 341: Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A$.

- 1. Montrer que A est diagonalisable.
- 2. On suppose que $\operatorname{rg} A = \operatorname{Tr} A$. Montrer que A est la matrice d'un projecteur.

$$\underline{\mathbf{Ex}\ \mathbf{342}}$$
: Soit l'application $u: \mathbb{R}_n[X] \longrightarrow \mathbb{R}[X]$

$$P \longmapsto X^n \times P(\frac{1}{X})$$

- 1. Montrer que l'application u est un endomorphisme.
- 2. Montrer que u est diagonalisable et exprimer son polynôme minimal.
- 3. Déterminer une base de vecteurs propres de u.

Ex 343: Soit E un \mathbb{R} -espace vectoriel de dimension finie et $(u, v) \in (\mathcal{L}(E))^2$. Montrer que si $\lambda \in \mathbb{R}$ est valeur propre de $u \circ v$, alors λ est valeur propre de $v \circ u$.

Ex 344: Pour $n \ge 2$, on pose $E = \mathbb{R}_n[X]$ et l'on définit φ qui à $P \in E$ associe $\varphi(P) = (X^2 + X)P(1) + (X^2 - X)P(-1)$.

- 1. Montrer que φ est un endomorphisme de E. Déterminer l'image et le noyau de φ .
- 2. Déterminer les éléments propres de φ . Est-il diagonalisable ?

Ex 345: On pose E l'espace des fonctions continues de [0,1] à valeurs réelles. On pose $\phi: f \longrightarrow F$ avec $F(x) = \frac{1}{x} \int_0^x f(t)dt$ pour x différent de 0 et F(0) = f(0)

- 1. Montrer que ϕ est un endomorphismes de E
- 2. Déterminer les valeurs propres et vecteurs propres de ϕ .

Ex 346: Soit E un espace vectoriel de dimension n, muni du produit scalaire $\langle \cdot, \cdot \rangle$, et $a \in E$ un vecteur normé.

Soit $\alpha \in \mathbb{R}$ et $f_{\alpha} : x \mapsto x + \alpha \langle a, x \rangle a$, endomorphisme de E.

Monter que : $\forall (\alpha, \beta) \in \mathbb{R}^2$, $f_{\alpha} \circ f_{\beta} = f_{\alpha+\beta+\alpha\beta}$.

- 1. Déterminer les α tels que f_{α} soit bijectif.
- 2. Trouver les valeurs propres de f_{α} .

Ex 347 : Dans tout l'exercice, on considère A une matrice antisymétrique.

- 1. Montrer que : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), X^{\top}AX = 0$.
- 2. Qu'en déduire des valeurs propres réelles de A? À quelle condition A est-elle diagonalisable sur \mathbb{R} ?
- 3. On pose : $M = A + I_n$, montrer que M est inversible, est-elle diagonalisable ?
- 4. Montrer que $K = M^{-1}M^{\top}$ est orthogonale.
- 5. Soit B une matrice symétrique réelle dont les valeurs propres sont strictements positives, montrer que A+B est inversible.

Ex 348: Soit $n \in \mathbb{N}^*$ et $X \in \mathcal{M}_n(\mathbb{R})$ telle que $XX^TX = -I_n$.

Ex 349 : Soit E un espace euclidien de dimension $n \geq 2$. Soit (a,b) une famille libre de E et $f: x \mapsto (a|x)a + (b|x)b$ définie sur E.

- 1. Montrer que f est un endomorphisme autoadjoint de E.
- 2. Trouver les éléments propres de f.

Ex 350: On pose pour tout l'exercice $E = \mathcal{C}^0([a,b],\mathbb{R})$.

- 1. Donner les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sur E.
- 2. Montrer que $\|\cdot\|_1$ est une norme.
- 3. Montrer que si $(f_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ converge au sens de $\|\cdot\|_{\infty}$, alors elle converge au sens de $\|\cdot\|_1$.
- 4. Les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sont-elles équivalentes?

Ex 351 : Exprimer $\sin 3x$ comme polynôme de $\sin x$. En déduire que $\sin \left(\frac{\pi}{18}\right)$ est irrationnel.

Ex 352: On pose la suite $(u_n)_n$ telle que $\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{u_n} \end{cases}$

- 1. Étudier la suite $(u_n)_n$.
- 2. Déterminer un équivalent simple de $(u_n)_n$.

Ex 353:

- 1. Montrer que pour n dans \mathbb{N}^* , il existe un unique $x \in \mathbb{R}_+$ tel que : $\cos x = nx$.
- 2. On note $(x_n)_{n\in\mathbb{N}^*}$ la suite ainsi trouvée. Montrer une éventuelle monotonie et une éventuelle limite de cette suite.

Ex 354: On pose pour $n, p \in \mathbb{N}^*$, $S_p(n) = \sum_{i=1}^{n-1} i^p$.

- 1. Calculer $S_1(n)$ et $S_2(n)$ et en donner un équivalent quand n tend vers $+\infty$.
- 2. Donner un équivalent de $S_p(n)$ quand n tend vers $+\infty$, pour p quelconque fixé.

 $\underline{\mathbf{Ex\ 355}}$: Montrer la convergence et calculer la somme de la série $\sum \ln \left(\frac{(2n+1)n}{(2n-1)(n+1)} \right)$

Ex 356:

- 1. Si f est continue sur [a, b], que représente $S_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$?

 Illustrer graphiquement et énoncer le théorème relatif à $S_n(f)$.
- 2. Trouver un équivalent en $+\infty$ de $\sum_{k=0}^{n-1} \frac{k^2}{n^2(n^3+k^3)^{1/3}}$.

Ex 357: Déterminer la nature de $\sum u_n$, avec $u_n = \frac{(-1)^n}{n^{3/4} + \sin(n)}$.

 $\underline{\mathbf{Ex\ 358}}$: Pour $n \in \mathbb{N}^*$, soit $f_n : x \mapsto \min\left(n, \frac{x^2}{n}\right)$, définie sur \mathbb{R} . Étudier la convergence simple et la convergence uniforme de la suite (f_n) sur des ensembles à préciser.

Ex 359:

- 1. Définition de la convergence uniforme de (f_n) vers f sur I.
- 2. Démontrer le théorème de la continuité pour la convergence uniforme (on remarquera que : $f(x) f(a) = f(x) f_n(x) + f_n(x) f_n(a) + f_n(a) f(a)$).
- 3. Soit $n \in \mathbb{N}$ et on pose $f_n : x \mapsto \frac{1-x^n}{1+x^n}$ définie sur \mathbb{R}_+ . Étudier la convergence simple, puis uniforme de (f_n) .

<u>Ex 360</u>: On pose : $f(x) = \sum_{n=0}^{+\infty} \frac{e^{-nx}}{1+n^2}$.

- 1. Donner le domaine de définition de f.
- 2. Montrer que f est continue sur son domaine.
- 3. Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .
- 4. Donner le tableau de variation de f.
- 5. Donner la limite de f en $+\infty$.

<u>Ex 361</u>: Pour $x \in [0,1]$ et $n \in \mathbb{N}^*$, on pose $g_n(x) = \int_0^x g_{n-1}(1-t)dt$, avec $g_0 = 1$.

- 1. Montrer que la suite (g_n) est bien définie sur [0,1].
- 2. Montrer que la suite (g_n) est bornée et que : $\forall n \in \mathbb{N}^*, \|g_n\|_{\infty} \leq \frac{1}{2} \|g_{n-1}\|_{\infty}$.
- 3. Montrer que la série $\sum g_n$ converge uniformément sur [0,1].
- 4. Identifier la somme $S = \sum_{n=0}^{+\infty} g_n$.

Ex 362: Soit $n \in \mathbb{N}$, on pose $f_n : x \mapsto x^n(1 - \sqrt{x})$.

- 1. Calculer $\int_0^1 f_n(x) dx$.
- 2. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{1}{(n+1)(2n+3)}.$

 $\underline{\mathbf{Ex 363}}$: Pour $n \in \mathbb{N}^*$, on pose $f_n : t \mapsto \frac{n}{\sqrt{t}} \ln \left(1 + \frac{1}{nt} \right)$ et $I_n = \int_0^1 f_n$.

- 1. Montrer que l'intégrale I_n converge.
- 2. Calculer $\lim_{n\to+\infty} I_n$.

<u>Ex 364</u>: Pour $x \in [0, +\infty[$, on pose $f(x) = \sum_{n=1}^{+\infty} (-1)^n \ln(1 + \frac{x}{n})$.

Montrer que f est définie, continue et de classe \mathcal{C}^1 sur $[0, +\infty[$.

Ex 365: Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^{\frac{\pi}{4}} (\tan(t))^n dt$.

- 1. Déterminer la limite de la suite (a_n) .
- 2. Déterminer, pour $n \in \mathbb{N}$, une relation entre a_{n+2} et a_n .
- 3. On considère $fx \mapsto \sum_{n=0}^{+\infty} a_n x^n$. Déterminer le domaine de définition de f.
- 4. Calculer f.

<u>Ex 366</u>: Soit $(a_n)_n$ une suite complexe telle que la série entière $\sum a_n x^n$ a pour rayon R_1 . Montrer que la série entière $\sum a_n^2 x^n$ a pour rayon de convergence $R_2 = R_1^2$.

1. Pour
$$x \in \mathbb{R}$$
, montrer que $u_x : t \mapsto \frac{e^{-t} - e^{-2t}}{t} \cos(xt)$ est intégrable sur \mathbb{R}_+^* . On posera $f(x) = \int_{-\infty}^{+\infty} u_x$.

- 2. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
- 3. Montrer que : $\forall x \in \mathbb{R}, \ f'(x) = \frac{x}{4+x^2} \frac{x}{1+x^2}$.
- 4. Montrer l'existence de $K=\int_0^1 \frac{e^{-t}-1}{t}dt$. En déduire $\lim_{a\to 0^+}\int_a^{2a} \frac{e^{-t}}{t}dt$.
- 5. Calculer f(x).

 $\underline{\mathbf{Ex\ 368}}$: On définit $f: x \mapsto \int_0^{+\infty} \sqrt{t}e^{-xt}dt$ quand l'intégrale existe. Montrer que f est solution d'une équation différentielle du premier ordre sur un intervalle à préciser. Résoudre celle-ci.

Ex 369 : Soit $f: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{x+t} dt$ si l'intégrale converge.

- 1. Quel est l'ensemble de définition de f?
- 2. Montrer que f est continue sur \mathbb{R}_+^* .
- 3. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et exprimer f'(x) sous forme d'intégrale.
- 4. Déterminer les limites de f en 0^+ et $+\infty$.
- 5. Déterminer un équivalent de f en 0^+ .

 $\underline{\mathbf{Ex}} \ \mathbf{370} : \mathrm{Soit} \ (E) : y'' + 2y' + y = \frac{1}{\sqrt{x}}$. Montrer que les solutions de E ont une limite finie en 0^+ .

$\mathbf{Ex}\ \mathbf{371}:$

- 1. Soit X suivant une loi géométrique. Rappeler de quelle loi il s'agit, donner un exemple concret d'utilisation (justifier).
- 2. Rappeler la définition d'une fonction génératrice, puis donner celle de X.
- 3. Rappeler comment on obtient l'espérance et la varianace à l'aide de la fonction génératrice et faire le calcul pour X.

Ex 372: Soit X une variable aléatoire suivant une loi gémoétrique de paramètre $p \in]0,1[$.

- 1. Que vaut $P(X \ge k)$, pour $k \in \mathbb{N}^*$?
- 2. Yves et Zak disposent chacun d'une pièce ayant la probabilité p de tomber sur pile. Yves lance la pièce jusqu'à l'obtention de pile, puis Zak fait de même. Quelle est la probabilité quiil faille deux fois plus de lancers à Zak d'obtenir pile que Yves n'en a eu besoin?

ENSEA MP 2022

 $\underline{\mathbf{Ex\ 373}}$: On note $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ les sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$ constiués respectivement des matrices symétriques et antisymétriques.

- 1. Quelle est la dimension de $S_n(\mathbb{K})$?
- 2. Montrer que $\mathcal{M}_n(\mathbb{K}) = A_n(\mathbb{K}) \oplus S_n(\mathbb{K})$.
- 3. On pose $\varphi: M \mapsto M^T$. Déterminer $\det(\varphi)$.

Ex 374: Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension $n \ge 2$ et u un endomorphisme n'ayant que \mathbb{E} et $\{0\}$ pour seuls espaces stables.

- 1. Montrer que u ne possède pas de valeur propre.
- 2. En déduire $\mathbb{K} \neq \mathbb{C}$.
- 3. Montrer que pour tout $x \in \mathbb{E} \setminus \{0\}$, la famille $(x, u(x), u^2(x), \dots, u^{n-1}(x))$ est une base de \mathbb{E} .
- 4. Comment est la matrice de u dans cette base?

Ex 375: Trouver l'enemble des matrices $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisables sur \mathbb{R} telles que : $A^3 + A = 2I_n$.

Ex 376: On pose $E = \mathbb{R}[X]$ et on définit $f \in \mathcal{L}(E)$ par : $\forall P \in E, \ f(P) = (X-3)(X+1)P' - XP$. Donner les valeurs propres et vecteurs propres de f.

$$\underline{\mathbf{Ex}} \ \mathbf{377} : \text{Pour } P \in \mathbb{R}_n[X], \text{ on pose } f(P) = \sum_{i=0}^n \left(\int_0^1 t^i P(t) dt \right) X^i.$$

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}_n[X])$.
- 2. Soit $P \in \text{Ker}(f)$. Montrer que $\forall Q \in \mathbb{R}_n[X], \int_0^1 P(t)Q(t)dt = 0$. En déduire que $\text{Ker}(f) = \{0\}$.
- 3. Quelle est la matrice de f dans la base canonique? Est-elle inversible? diagonalisable?
- 4. En fonction de n, déterminer un développement asymptotique à deux termes de tr(f).

Ex 378: Pour tout
$$n \in \mathbb{N}^*$$
, on note (E_n) l'équation : (E_n) : $\sum_{k=1}^n x^k = 1$

- 1. Montrer pour tout $n \in \mathbb{N}^*$ qu'il existe une unique solution x_n de (E_n) sur \mathbb{R}_+ et que $x_n \in [\frac{1}{2}, 1]$.
- 2. Montrer la convergence de $(x_n)_{n\in\mathbb{N}^*}$.
- 3. Déterminer $\lim_{n\to\infty} x_n$.

 $\mathbf{\underline{Ex\ 379}}$: Soit $f: x \mapsto e^{-x^2}$.

1. Montrer que pour tout n de \mathbb{N} , on a : $\forall x \in \mathbb{R}$, $f^{(n)}(x) = P_n(x)e^{-x^2}$, avec P_n un polynôme réel donc on précisera le degré et le coefficient dominant.

2. Pour
$$m, n \in \mathbb{N}$$
, on pose $I_{m,n} = \int_{-\infty}^{+\infty} P_m(t) P_n(t) e^{-t^2} dt$. Calculer $I_{m,n}$, sachant que
$$\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}.$$

Ex 380: Soit $h \in \mathcal{C}^0([0, \pi/2], \mathbb{R})$ et $f_n : x \mapsto h(x) \sin^n(x)$, pour $n \in \mathbb{N}$.

- 1. Étude de la convergence simple de (f_n) .
- 2. Étude de la convergence uniforme de (f_n) .

Ex 381: Soit
$$u_n = \int_0^1 \frac{t^n - t^{2n}}{1 - t} dt$$
.

- 1. Montrer l'existence de u_n pour $n \in \mathbb{N}$.
- 2. Montrer que (u_n) converge et calculer sa limite

Ex 382: Pour
$$n \in \mathbb{N}$$
, on pose $u_n = \int_0^{1/n} \frac{dt}{(1+t^2)(1+n^2t^2)}$.

- 1. Déterminer $\lim_{n\to+\infty} nu_n$.
- 2. Calculer le rayon de convergence R de $\sum u_n x^n$.
- 3. Étudier la limite de la somme en R et -R.

Ex 383: Soit
$$F$$
 la fonction définie par $F(x) = \int_0^{+\infty} \cos(xt^2) e^{-t} dt$.

- 1. Montrer que F est définie sur \mathbb{R} .
- 2. Montrer que $F \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.
- 3. Donner pour tout $k \in \mathbb{N}$, $F^{(k)}(0)$ puis donner, si possible, le développement en série entière de F.