EXERCICES

2-Structures algébriques

 $\underline{\mathbf{Ex}\ \mathbf{1}}$: Montrer que n=1010...10101, comptant 2p zéros, n'est pas premier.

 $\mathbf{\underline{Ex}\ 2}:(^*)$ Quel est le chiffre des unité de $2022^{2022^{2022}}$?

 $\underline{\mathbf{Ex}\ 3}$: Soit p un nombre premier strictement supérieur à 3, montrer que p^2-1 est divisible par 12 et par 24.

Ex 4: Déterminer les entiers $n \in \mathbb{N}$ tels que : $(2n+8) \wedge (3n+15) = 6$.

Ex 5: Montrer que $\ln(2)/\ln(3)$ est irrationnel.

<u>Ex 6</u>: Soit n de la forme 3^p5^q tel que le produit de ses diviseurs soit 45^{42} . Déterminer n.

 $\mathbf{\underline{Ex 7}}$: Résoudre dans \mathbb{Z}^2 : $\left\{ \begin{array}{lcl} x \wedge y & = & x-y \\ x \vee y & = & 72 \end{array} \right. .$

$\mathbf{Ex} \ \mathbf{8} :$

- 1. Soit $a \in \mathbb{N}$. Montrer que le reste de la division euclidienne de a^2 par 8 est égal à 0,1 ou 4.
- 2. Soit $n \in \mathbb{N}$. Montrer que si $n \equiv 7[8]$, alors n ne peut pas être la somme de trois carrés d'entiers.

Ex 9: Résoudre dans \mathbb{Z}^2 : 544x - 944y = 160.

 $\underline{\mathbf{Ex}\ \mathbf{10}}:(^*)$ On définit sur \mathbb{N}^* la fonction μ ainsi :

- Si $n = 1, \mu(n) = 1;$
- Si n a un facteur carré, $\mu(n) = 0$;
- Sinon, en notant $n = p_1...p_k$ la décomposition en facteurs premiers de n, on a $\mu(n) = (-1)^k$.
- 1. Montrer que pour tous entiers $n, m \in \mathbb{N}^*$ premiers entre eux, $\mu(mn) = \mu(m)\mu(n)$.
- 2. On considère désormais la fonction S définie sur \mathbb{N}^* par $S(n) = \sum_{d|n} \mu(d)$. Montrer que pour $n \geq 2$, on a : S(n) = 0.

<u>Ex 11</u>: (*) Montrer qu'il existe un nombre infini de nombres premiers n tels que $n \equiv -1[4]$.

$\mathbf{Ex} \ \mathbf{12} :$

- 1. Soit $n \in \mathbb{N}^*$ tel que $n \wedge 10 = 1$. Montrer que : $n^4 \equiv 1$ [10].
- **2.** On suppose $a \wedge 10 = 1$ et $k \in \mathbb{N}$. Montrer que : $a^{4.10^k} \equiv 1 \ [10^{k+1}]$.

Ex 13: Déterminer l'ensemble des entiers relatifs tels que : $n^{13} \equiv n[42]$.

Ex 14: 1. Soit $n \in \mathbb{N}$. Montrer que si $2^n + 1$ est premier alors il existe $p \in \mathbb{N}$ tel que $n = 2^p$.

- **2.** On note $f_p = 2^{2^p} + 1$. Montrer que, pour $p \neq q, f_p \wedge f_q = 1$.
- 3. En déduire qu'il y a une infinité de nombres premiers.

Ex 15: Déterminer le pgcd dans $\mathbb{Q}[X]$ des polynômes A et B dans les cas suivants :

1)
$$A = 2X^4 + 3X^3 + 4X^2 + 2X + 1$$
 $B = 3X^3 + 4X^2 + 4X + 1$;
2) $A = X^5 + X^4 + 2X^3 - 2X + 3$ $B = X^4 + 3X^3 + 7X^2 + 8X + 6$.

$$B = 3X^3 + 4X^2 + 4X + 1$$
;

2)
$$A = X^5 + X^4 + 2X^3 - 2X + 3$$

$$B = X^4 + 3X^3 + 7X^2 + 8X + 6.$$

Ex 16: 1. Soit $P \in \mathbb{C}[X]$. Montrer que les racines de P sont simples si et seulement si $P \wedge P' = 1$. **2.** Montrer que si P est irréductible sur $\mathbb{Q}[X]$, alors toutes les racines complexes de P sont simples. 3. Soit $P \in \mathbb{Q}[X]$. Montrer que s'il existe $a, b, c \in \mathbb{C}^*$ tels que $P = (X - a)^p (X - b)^q (X - c)^r$, avec 0 des entiers, alors <math>a, b, c sont dans \mathbb{Q} .

 $\underline{\mathbf{Ex}} \ \mathbf{17}$: Soit $P = X^4 + X^2 + 1$. Est-il irréductible dans $\mathbb{C}[X]$? dans $\mathbb{R}[X]$? dans $\mathbb{Q}[X]$? Mêmes $\overline{\text{questions avec } Q = X^3 + 3X^2 + 2 \text{ et } R = 8X^3 + 6X^2 - 9X + 24.}$

Ex 18: (*) Soit des entiers naturels a_1, a_2, \ldots, a_n , deux à deux distincts. On note $P = -1 + \prod_{i=1}^{n} (X - a_i)$. On suppose qu'on peut décomposer P en produit QR de polynômes à coefficients entiers, démontrer qu'un des deux polynômes est de degré n.

Ex 19: On pose pour $n \in \mathbb{N}$ le polynôme $P_n = (X^2 - X + 1)^n - X^{2n} - X^n + 1$.

- 1. Déterminer n tel que $X^3 X^2 + X 1$ divise P_n .
- 2. Dans les cas où P_n n'est pas divisé, calculer le reste de la division euclidienne

Ex 20: Soit S l'ensemble des couples $(P,Q) \in \mathbb{R}[X]^2$ tels que $(X-1)^n Q(X) + X^n P(X) = 1.$

- 1. Montrer l'existence et l'unicité d'un couple $(P_0, Q_0) \in \mathbb{R}_{n-1}[X]^2$ dans \mathcal{S} .
- 2. Déterminer S.

Ex 21 : (*) Quels sont les polynômes complexes P tels que $P(\mathbb{U}) \subset \mathbb{U}$ (en notant \mathbb{U} le cercle unité)?

Ex 22 : (*) Soit $P \in \mathbb{C}[X]$ unitaire de degré au moins deux tel que : P''|P. Montrer que soit P est scindé à racines simples sur \mathbb{C} , soit il est de la forme $(X-a)^n$.

Ex 23 : **1.** Le polynôme $X^4 + 4$ est-il irréductible sur \mathbb{R} ? Sur \mathbb{Q} ?

2. En déduire les entiers n tels que $n^4 + 4$ est premier.

Ex 24: Soit $P \in \mathbb{R}[X]$ tel que : $\forall x \in \mathbb{R}, P(x) \ge 0$.

- 1. Montrer que P peut se décomposer comme suit : $\prod_{i=1}^{n} (X a_i)^{\alpha_i} \cdot \prod_{j=1}^{m} (X \lambda_j)^{\beta_j} \cdot \prod_{k=1}^{m} (X \bar{\lambda_j})^{\beta_j}$ avec α_i entier pair et $\lambda_j \in \mathbb{C} \setminus \mathbb{R}$.
- 2. Montrer que : $\exists A, B \in \mathbb{R}[X], P = A^2 + B^2$.
- 3. On note $Q=P+P'+P^{(2)}+\cdots+P^{(n)}$ où n est le degré de P. Montrer que Q vérifie : $\forall x\in\mathbb{R},\ Q(x)\geqslant 0$.

Ex 25:

- 1. Résoudre dans \mathbb{C} l'équation : $4x^4 + 3x^2 + 1 = 0$.
- 2. Factoriser dans $\mathbb{R}[X]$ le polynôme $4X^4 + 3X^2 + 1$.
- 3. Trouver deux diviseurs de 40301.

Ex 26: Soit $P = (X+1)^7 - X^7 - 1$.

- 1. Calculer P(j). En déduire la factorisation de P en facteurs irréductibles dans $\mathbb{R}[X]$.
- 2. Décomposer en éléments simples $\frac{(X^3-1)^4}{((X+1)^7-X^7-1)^2}$ dans $\mathbb{R}(X)$.

 $\underline{\mathbf{Ex}\ \mathbf{27}} : \mathrm{Soit}\ \omega_k = e^{\frac{2ik\pi}{n}}\ \mathrm{et}\ p \in \llbracket 0, n-1 \rrbracket, \ \mathrm{avec}\ n \geq 2. \ \mathrm{Mettre\ sous\ forme\ irréductible}\ \sum_{k=0}^{n-1} \frac{\omega_k^p}{X - \omega_k}.$

<u>Ex 28</u> : Un sous-groupe H de (G,\cdot) est dit <u>distingué</u> lorsque : $\forall x \in H, \ \forall a \in G, \ axa^{-1} \in H.$

- 1. Montrer que le noyau d'un morphisme de groupes au départ de (G,\cdot) est distingué.
- 2. Démontrer que H est distingué dans G si et seulement si pour tout $a \in G$, Ha = aH.
- 3. Soient H, K deux sous-groupes de (G, \cdot) . On suppose H distingué jusqu'à la fin de l'exercice. Montrer que l'ensemble $HK = \{xy : x \in H, y \in K\}$ est un sous-groupe de (G, \cdot) .
- **4.** Considérons l'ensemble G/H des classes de G sous H (c'est-à-dire pour la relation $x\mathcal{R}y$ ssi $xy^{-1} \in H$). Démontrer qu'on le munit d'une structure de groupe en posant Hx * Hy = Hxy.

 $\underline{\mathbf{Ex}}$ 29 : (*) Soit (G, \cdot) un groupe commutatif fini, on note e l'élément neutre. Le groupe des automorphismes de G est supposé de cardinal 3.

- 1. Montrer que : $\phi: G \to G$, $x \mapsto x^{-1}$ est un automorphisme, puis que $\forall x \in G$, $x^2 = e$.
- 2. Montrer qu'il existe un sous-groupe V de G de cardinal 4, déterminer les automorphismes de V.
- 3. Montrer qu'il existe $r \in \mathbb{N}$ tel G soit isomorphe à $V \times (\mathbb{Z}/2\mathbb{Z})^r$, en conclure une absurdité.

Ex 30: Le groupe $(\mathbb{Q}, +)$ est-il engendré par une partie finie?

Ex 31: Démontrer que tout morphisme de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$ est l'application nulle.

Ex 32: 1. Démontrer que les groupes $(\mathbb{Q}, +)$ et (\mathbb{Q}_+^*, \times) ne sont pas isomorphes. 2. Démontrer que les groupes (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) ne sont pas isomorphes.

Ex 33: (*) Déterminer les morphismes de groupes entre $(\mathbb{Z}/n\mathbb{Z}, +)$ et $(\mathbb{Z}/m\mathbb{Z}, +)$.

Ex 34: Soient $\alpha \in \mathbb{C}^*$ et $\beta \in \mathbb{C}$ et on note $f_{\alpha,\beta} : \begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto \alpha z + \beta \end{cases}$

- 1. Montrer que $\{f_{\alpha,\beta}, \alpha \in \mathbb{C}^*, \beta \in \mathbb{C}\}$ est un groupe pour la loi \circ . Est-il commutatif?
- **2.** A quelle condition sur α, β , l'application $f_{\alpha,\beta}$ est d'ordre fini?

 $\underline{\mathbf{Ex 35}}: \mathrm{Soit}\ f \in \mathbb{Z}[X]\ \mathrm{et}\ S_q = \sum_{\substack{0 \leq a < q \\ a \wedge q = 1}} \sum_{n=0}^{q-1} e^{\frac{2i\pi a f(n)}{q}}, \ \mathrm{pour}\ q \in \mathbb{N}^*.\ \mathrm{Montrer}\ \mathrm{que}: q \wedge q' = 1 \Rightarrow S_{qq'} = S_q S_{q'}.$

Ex 36: (*) Soit p un nombre premier. On pose $G_p = \left\{ z \in \mathbb{C} ; \exists k \in \mathbb{N}, z^{p^k} = 1 \right\}$.

- 1. Montrer que G_p est un sous-groupe de (\mathbb{C}^*, \times) .
- **2.** Déterminer les générateurs de (\mathbb{U}_n, \times) , avec $\mathbb{U}_n = \{z \in \mathbb{C}, z^n = 1\}$.
- 3. Montrer que les sous-groupes de G_p différents de G_p sont cycliques et qu'aucun d'eux n'est maximal pour l'inclusion. On pourra s'aider de $\mathbb{U}_{p^k}=\{z\in\mathbb{C}\,;\,z^{p^k}=1\}$.
- ${\bf 4.}\,$ Montrer que G_p n'est pas engendré par un système fini d'éléments.

Ex 37: Soit G un groupe. On note \widehat{G} l'ensemble des morphismes de groupes de G dans (\mathbb{C}^*, \times) .

- 1. Montrer que \widehat{G} est un groupe.
- 2. Déterminer \widehat{G} dans le cas où $G = \mathbb{Z}/n\mathbb{Z}$.

 $\underline{\mathbf{Ex}\ \mathbf{38}} : \text{Soit}\ n \in \mathbb{N}, \text{ avec}\ n \geq 3 \text{ et } \omega = e^{\frac{2i\pi}{n}}. \text{ Pour } k \in \llbracket 0, n-1 \rrbracket, \text{ on pose } f_k : \left\{ \begin{array}{c} \mathbb{C} \to \mathbb{C} \\ z \mapsto \omega^k z \end{array} \right. \text{ et }$ $g_k : \left\{ \begin{array}{c} \mathbb{C} \to \mathbb{C} \\ z \mapsto \omega^k \overline{z} \end{array} \right. \text{ On pose } G = \left\{ f_k, g_k, \ k \in \llbracket 0, n-1 \rrbracket \right\}.$

- 1. Décrire géométriquement l'application f_k .
- **2.** Montrer que (G, \circ) est un groupe.
- 3. G est-il cyclique?
- **4.** Montrer que G est engendré par f_1 et g_0 et que $f_1 \circ g_0 = g_0 \circ f_1^{-1}$.
- **5.** Soit H un groupe quelconque engendré par a et b, tels que a soit d'ordre n et b d'ordre 2 et $ab = ba^{-1}$. Montrer que G et H sont isomorphes.

Ex 39: Soit G un groupe fini non réduit à un singleton. Montrer que |G| est premier si et seulement si ses seuls sous-groupes sont $\{e\}$ et G.

<u>Ex 40</u> : Soit $s \in \mathcal{S}_n$ un n-cycle. Soit G le sous-groupe de \mathcal{S}_n engendré par s. Soit $\sigma \in G$. Montrer que σ engendre G si et seulement si σ est un n-cycle.

<u>Ex 41</u>: Soit G l'ensemble des permutation de S_n telles que : $\forall k \in [1, n]$, $\sigma(n - k + 1) = n - \sigma(k) + 1$. Montrer que G est un groupe.

Ex 42: **1.** Soit $\sigma \in S_n$ et $a, b \in [1, n]$ distincts. Déterminer $\sigma \circ (a, b) \circ \sigma^{-1}$.

- 2. Soit $\sigma \in S_n$ et $a_1, ..., a_p \in [1, n]$ deux à deux distincts. Déterminer $\sigma \circ (a_1, ..., a_p) \circ \sigma^{-1}$.
- 3. En déduire que toute transposition (i, j) est la composée de transpositions du type (1, k).
- **4.** Montrer que $\{(1,k), k \in [2,n]\}$ engendre S_n .
- **5.** En déduire que $\{(1,2),(2,3),...,(n-1,n)\}$ engendre S_n .
- **6.** Soit $s \in S_n$ tel que : $\forall \sigma \in S_n$, $s \circ \sigma = \sigma \circ s$. Déterminer s.

Ex 43 : (*) Soit G un groupe cyclique de cardinal n, d'élément neutre e.

- 1. Soit H un sous-groupe de G. Montrer que H est cyclique. Montrer que le cardinal de H divise le cardinal de G.
- 2. Montrer qu'il y a $\varphi(d)$ éléments de $(\mathbb{Z}/n\mathbb{Z},+)$ d'ordre d, où φ désigne l'indicatrice d'Euler.
- 3. Montrer que $n = \sum_{d|n} \varphi(d)$.

$$\underline{\mathbf{Ex}\ \mathbf{44}}: \mathrm{Soit}\ E = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix},\ a,b \in \mathbb{R} \right\}.$$

- 1. Montrer que E est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$.
- $\textbf{2. Soit } \varphi: \left\{ \begin{array}{ll} \mathbb{C} & \to & E \\ z & \mapsto & \begin{pmatrix} Re(z) & Im(z) \\ -Im(z) & Re(z) \end{pmatrix} \right. \text{ Montrer que } \varphi \text{ est un isomorphisme d'anneaux}.$

Ex 45 : Soit $P = X^3 - X - 1$.

- 1. Montrer que P admet une unique racine réelle α et que celle-ci est irrationnelle.
- **2.** Soit $Q \in \mathbb{Q}[X]$, non nul, de degré au plus deux. Montrer que $P \wedge Q = 1$.
- 3. On note $\mathbb{Q}[\alpha] = \{R(\alpha), R \in \mathbb{Q}[X]\}$. Montrer que $\mathbb{Q}[\alpha]$ est un \mathbb{Q} -espace vectoriel de dimension 3.
- 4. Montrer que c'est un sous-corps de \mathbb{R} .

Ex 46: On pose $u = 2 + \sqrt{3}$ et $v = 2 - \sqrt{3}$. Pour $n \in \mathbb{N}$, on note $M_n = 2^n - 1$ et $s_n = u^{2^n} + v^{2^n}$.

- 1. Montrer que si M_n est premier, alors n est premier.
- 2. Montrer que : $\forall n \in \mathbb{N}, \ s_{n+1} = s_n^2 2$. Qu'en déduire sur la suite (s_n) ?
- 3. Soit q un nombre premier. On munit l'ensemble $B=(\mathbb{Z}/q\mathbb{Z})^2$ des deux lois de composition interne définies par :

$$(x,y) + (x',y') = (x+x',y+y')$$
 et $(x,y).(x',y') = (xx'+3yy',xy'+x'y)$.

- (a) Montrer que les deux lois précédentes munissent B d'une structure d'anneau commutatif fini.
- (b) On note $A = \mathbb{Z} + \sqrt{3}\mathbb{Z}$. Montrer que l'application $\pi : \begin{cases} A & \to B \\ a + \sqrt{3}b & \mapsto (\overline{a}, \overline{b}) \end{cases}$ est bien défini et est un morphisme surjectifs d'anneaux.
- 4. On suppose n premier. Montrer que si M_n divise s_{n-2} , alors M_n est premier. Indication: on pourra raisonner par l'absurde en considérant le plus petit facteur premier q de M_n et déterminer l'ordre de $(\overline{2},\overline{1})$ dans le groupe des éléments inversibles de l'anneau B.

 $\underline{\mathbf{Ex}}$ 47 : Soit $(A,+,\cdot)$ un anneau d'élément unité 1.

- 1. Soit a un élément de A tel qu'il existe un entier naturel non nul n tel que $a^n = 0$. Un tel élément est dit nilpotent.
 - \boldsymbol{a} . Montrer que 1-a est inversible et préciser son inverse.
 - **b.** En déduire que $b=1+2a+\cdots+na^{n-1}$ est inversible dans A et préciser son inverse.
- 2. Soit (a,b) dans A^2 tel que ab est nilpotent. Montrer que ba est nilpotent.
- 3. On suppose A commutatif. On note Nil(A) l'ensemble des éléments nilpotents de A. Montrer que Nil(A) est un idéal de A.

Ex 48: Soit $A = \{m/n \in \mathbb{Q}, \text{ avec } n \text{ impair}\}.$

- 1. Montrer que A est un sous-anneau de \mathbb{Q} .
- 2. Quels sont les éléments inversibles de A?
- 3. (*) Montrer que les idéaux non nuls de A sont de la forme $\{2^k x, x \in A\}$, avec $k \in \mathbb{N}$.

Ex 49 : Soit (A, +, x) un anneau commutatif non réduit à $\{0\}$. Démontrer que A est un corps si et seulement si les seuls idéaux de A sont $\{0_A\}$ et A

Ex 50 : Soit $f : \mathbb{R} \to \mathbb{R}$ un morphisme de corps.

- 1. Soit $x \in \mathbb{R}_+$. Montrer que $f(x) = (f(\sqrt{x}))^2$. En déduire que f est croissante.
- **2.** Soit $(n, x) \in \mathbb{N} \times \mathbb{R}$. Montrer que f(nx) = nf(x).
- 3. Soit $x \in \mathbb{Q}$, montrer que f(x) = x.
- **4.** Montrer que $f = \mathrm{Id}_{\mathbb{R}}$.

 $\underline{\mathbf{Ex}} \ \mathbf{51} : (*) \ \mathrm{Soit} \ a_1, \dots, a_r \in \mathbb{N}^*, \ \mathrm{deux} \ \mathrm{\grave{a}} \ \mathrm{deux} \ \mathrm{premiers} \ \mathrm{entre} \ \mathrm{eux}. \ \mathrm{On} \ \mathrm{pose}, \ \mathrm{pour} \ 1 \leqslant k \leqslant r, c_k = \prod_{\substack{i=1\\i\neq k}}^r a_i.$

- 1. Montrer qu'il existe $u_1, ... u_r$ dans \mathbb{Z} tels que : $\sum_{i=1}^r c_i u_i = 1$.
- 2. Soit b dans \mathbb{Z} . Montrer qu'il existe $(y, x_1, \dots, x_r) \in \mathbb{Z}^{r+1}$, avec $0 \le x_k < a_k$ pour tout k de [1, r], tel que : $\frac{b}{a_1 \dots a_r} = y + \sum_{k=1}^r \frac{x_k}{a_k}$.
- 3. Montrer que la décomposition précédente est unique (on pourra donner l'expression des x_k dans $\mathbb{Z}/a_k\mathbb{Z}$).

 $\underline{\mathbf{Ex}}$ 52 : Soit N une application de $\mathbb Q$ dans $\mathbb R^+$. On dit que $\mathbb N$ est une valeur absolue si et seulement si :

- $\forall x \in \mathbb{Q}, N(x) = 0 \Leftrightarrow x = 0;$
- $\forall x, y \in \mathbb{Q}^2, N(xy) = N(x)N(y);$
- $\forall x, y \in \mathbb{Q}^2, N(x+y) \leq N(x) + N(y).$

Une valeur absolue N est dite ultramétrique si : $\forall x, y \in \mathbb{Q}^2, N(x+y) \leq \max(N(x), N(y))$.

N est dite triviale si elle est constante sur \mathbb{Q}^* .

Si p est un nombre premier, on note $\nu_p(n)$ la valuation p-adique définie sur les entiers. On pose par convention $\nu_p(0) = +\infty$.

- ${\bf 1.}$ Soit N une valeur absolue. Déterminer N(1) et N(-1).
- 2. Soit $q = \frac{a}{b} \in \mathbb{Q}^*$ où $a, b \in \mathbb{Z}^{*2}$, et p un nombre premier. Montrer que : $\nu_p(a) \nu_p(b)$ ne dépend que de q. On le notera $\nu_p(q)$.
- 3. On définit pour $q \in \mathbb{Q}^*, |q|_p = p^{-\nu_p(q)}$. Montrer que $|.|_p$ est une valeur absolue ultramétrique.
- **4.** (*) Soit N une valeur absolue ultramétrique non triviale. Montrer qu'il existe $\alpha \in \mathbb{R}_+^*$ et p premier tels que $N = |.|_p^{\alpha}$.

Ex 53: Montrer que si n est produit de nombres premiers distincts, alors : $\forall k \in \mathbb{N}, \forall a \in \mathbb{Z}, \ a^{1+k\varphi(n)} \equiv a[n].$

Ex 54: Soit $n \in \mathbb{N}^*$. Montrer que $n | \varphi(2^n - 1)$.

Ex 55: On note φ l'indicatrice d'Euler. Trouver les $n \in \mathbb{N}^*$ tels que $\varphi(n)$ divise n.

Ex 57: (*) Soient p un nombre premier tel que $p \equiv 3[4]$ et $C = \{x \in \mathbb{Z}/p\mathbb{Z}, \exists y \in \mathbb{Z}/p\mathbb{Z}, x = y^2\}$.

1. Rappeler l'énoncé du petit théorème de Fermat. Montrer que : $-1 \notin C$.

On pose
$$\pi_x = \prod_{y \in C \setminus \{x\}} (x+y)$$
 et pour $x \in C \setminus \{0\}$ et $\pi = \prod_{\substack{x,y \in C \\ x \neq y \in C}} (x+y)$.

- 2. Déterminer le cardinal de C.
- 3. Montrer que : $\forall x \in C \setminus \{0\}, \ \pi_x = \pi_1$.
- 4. Calculer π .

Ex 58: (*) Soit φ la fonction indicatrice d'Euler.

- 1. Calculer $\varphi(1176)$.
- **2.** Soient p_1, \ldots, p_r des nombres premiers distincts. Soit $a \in \mathbb{N}^*$ et on pose $q = ap_1p_2 \cdots p_r$. Calculer le cardinal de l'ensemble $E(q, p_1, \ldots, p_r) = \{k \in \mathbb{N} \mid 1 \leq k \leq q \text{ et } k \wedge p_1p_2 \cdots p_r = 1\}$.

<u>Ex 59</u>: Soit p un nombre premier et $G = (\mathbb{Z}/p^2\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z})$ qui est un groupe muni de +. Combien il y a-t-il d'éléments d'ordre p? d'ordre p^2 ?

 $\underline{\mathbf{Ex}}$ 60 : Soit p un entier premier et $k \in \mathbb{N}$. Montrer que $\sum_{x \in \mathbb{Z}/p\mathbb{Z}} x^k$ est égal à 0 ou -1.

 $\underline{\mathbf{Ex}}$ **61** : (*) **1.** Soit p un nombre premier impair.

Montrer que le nombre de carrés dans $\mathbb{Z}/p\mathbb{Z}$ est $\frac{p+1}{2}$.

- **2.** Montrer que : $\{x^2, x \in (\mathbb{Z}/p\mathbb{Z})^*\} \subset \{x \in \mathbb{Z}/p\mathbb{Z}, x^{\frac{p-1}{2}} = \overline{1}\}.$
- ${\it 3.}$ Montrer que tout élément de $\mathbb{Z}/p\mathbb{Z}$ est somme de deux carrés.

Ex 62: 1. Démontrer que $(\mathcal{U}(\mathbb{Z}/12\mathbb{Z}), \times)$ est isomorphe au groupe additif $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Est-il cyclique?

2. $(\mathcal{U}(\mathbb{Z}/10\mathbb{Z}), \times)$ est-il cyclique?

 $\mathbf{\underline{Ex}\ 63}: \mathrm{Dans}\ \mathbb{Z}/11\mathbb{Z}, \, \mathrm{r\acute{e}soudre}: \left\{ \begin{array}{ll} x+y & = & \overline{4} \\ xy & = & \overline{10} \end{array} \right..$

Ex 64 : 1. Déterminer les éléments non inversibles de $\mathbb{Z}/p^2\mathbb{Z}$, avec p un nombre premier.

2. Trouver les entiers naturels n tels que : $9|(2n^2+13n+20)$.