EXERCICES

3-Séries numériques

<u>Ex 1</u>: $(x \in \mathbb{R}, a, b \in \mathbb{R}_+^*)$ Déterminer les limites (quand elles existent) quand n tend vers $+\infty$ de

$$\frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor, \ \sqrt[n]{a^n + b^n}, \ \frac{5n^2 + \sin n}{3n^2 \cos(n\pi/5)}, \ \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}, \ e^{-n} \operatorname{ch} \sqrt[4]{n^4 + 1}, \ n^{\frac{1}{n}} - 1.$$

Ex 2: Montrer que toute suite convergente à termes dans \mathbb{Z} est stationnaire.

- **Ex 3**: Soit (u_n) et (v_n) deux suites définies par leurs premiers termes $u_0 > 0$, $v_0 > 0$ et par les relations de récurrence $\forall n \in \mathbb{N}$, $\begin{cases} u_{n+1} = \frac{u_n + v_n}{2} \\ v_{n+1} = \frac{2u_n v_n}{u_n + v_n}. \end{cases}$
 - **a.** Montrer que les suites (u_n) et (v_n) sont bien définies et que $v_n \leq u_n$ pour $n \geq 1$.
 - **b.** Montrer que les suites (u_n) et (v_n) convergent. Que dire de leurs limites?
- **Ex 4:** 1. Soit $u_0 = 1$ et pour $n \ge 1$: $u_n = \prod_{k=1}^n \cos \frac{\alpha}{2^k}$, où $\alpha \in]-\pi;\pi[$. Simplifier u_n et en déduire la limite de (u_n) .
 - 2. Soit $z_0 = re^{i\alpha} \in \mathbb{C}^*$, avec r > 0 et $\alpha \in]-\pi,\pi]$. On définit la suite complexe (z_n) par la relation de récurrence : $\forall n \in \mathbb{N}, \quad z_{n+1} = \frac{z_n + |z_n|}{2}$. Calculer z_n en fonction de n et en déduire la limite de (z_n) .
- **Ex 5**: Soit $z = x + iy \in \mathbb{C}$.
 - 1. Montrer que $\lim_{n\to+\infty} \left|1+\frac{z}{n}\right|^n = e^x$.
 - **2.** Montrer que pour tout entier n assez grand $1 + \frac{z}{n} \neq 0$ et $\arg\left(1 + \frac{z}{n}\right) \equiv \arctan\frac{y}{n+x} [2\pi]$.
 - 3. En déduire que $\lim_{n\to+\infty} \left(1+\frac{z}{n}\right)^n = e^z$.
- **<u>Ex 6</u>**: Soit (x_n) définie par $\begin{cases} x_1 = 1 \\ x_n = \sqrt{n + x_{n-1}} & \text{si } n \geqslant 2 \end{cases}$

Montrer successivement que $\sqrt{n} \leqslant x_n \leqslant n$, $\sqrt{n} \leqslant x_n \leqslant \sqrt{2n-1}$, $x_n \sim \sqrt{n}$ et pour finir un développement asymptotique à deux termes de (x_n) .

- **Ex 7**: Étudier la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0\in\mathbb{R}_+$ et : $\forall n\in\mathbb{N},\ x_{n+1}=\frac{1}{2}\int_0^{\pi/2}e^{-x_n\sin(t)}dt$. On pourra montrer que $f:x\mapsto e^{-x}$ est 1-lipschitzienne.
- Ex 8: Montrer que l'équation $x^3 + nx = 1$ admet une unique solution pour $n \in \mathbb{N}$. On la note x_n . Déterminer la limite de la suite (x_n) puis un développement asymtpotique à deux termes.

Ex 10: (*) Montrer que l'ensemble des valeurs d'adhérence de la suite $(\sin(\sqrt{n}))_{n\in\mathbb{N}}$ est [-1,1]. On pourra remarquer que pour tout x de [-1,1], on a : $x=\sin\sqrt{t_k}$, avec $t_k=(2k\pi+\operatorname{Arcsin}(x))^2$, pour k dans \mathbb{N} .

Ex 11: (*) Soit $n \in \mathbb{N}^*$. On pose $x_n = \sum_{k=1}^n \frac{1}{k+n}$. Montrer l'existence de $l \in \mathbb{R}$, que l'on déterminera, tel que $x_n = l + O\left(\frac{1}{n}\right)$.

Ex 12 : Déterminer la nature de la série de terme général :

Ex 13: Soit (u_n) une suite à termes positifs tels que la série $\sum u_n$ converge. Montrer que la série $\sum u_n^2$ converge.

Ex 14: Déterminer la nature puis la somme de la série de terme général : 7.
$$(3+(-1)^n)^{-n}$$
; 8. $\frac{1}{n!}$; 8. $\frac{1}{(2n+1)^2}$; 14. $\frac{\sin\left(\frac{1}{n(n+1)}\right)}{\cos\left(\frac{1}{n}\right)\cos\left(\frac{1}{n+1}\right)}$; 15. $(n+1)3^{-n}$; 16. $\ln\left(1-\frac{1}{n^2}\right)$ $(n \ge 2)$; 10. $\frac{\cosh(n)}{4^n}$; 16. $\ln\left(1+\frac{2}{(n+3)n}\right)$; 17. $\frac{1}{4n^2-1}$ 18. $\sum \frac{1}{(1-x^n)(1-x^{n+1})}$, $x \in]-1,1[;12. \ln(1+x^{2^n}), x \in \mathbb{R}_+;$ 18. $\sum_{k=1}^{n-1} \frac{1}{k^2(n-k)^2}$; 19. $\sum_{k=1}^{n-1} \frac{1}{k^2(n-k)^2}$;

Ex 15: (*) Convergence et somme de la série
$$\sum_{k\geq 2} \frac{\left\lfloor \sqrt{k+1} \right\rfloor - \left\lfloor \sqrt{k} \right\rfloor}{k}$$
.

Ex 16: Soit $(u_n)_{n\geq 0}$ une suite réelle telle que : $\forall n\in\mathbb{N},\ u_{n+1}=u_n+u_n^2$

- 1. Étudier la convergence de (u_n) selon la valeur de u_0 .
- **2.** (*) On suppose que $u_0 > 0$.
 - **a.** On pose : $\forall n \in \mathbb{N}, \ v_n = 2^{-n} \ln(u_n)$. Montrer que (v_n) converge vers un réel $a \in \mathbb{R}_+^*$.
 - **b.** Montrer que $u_n \sim \exp(2^n a)$.
 - **c.** Montrer que $v_{n+1} v_n \sim \frac{1}{2^{n+1}} u_n$. En déduire que $u_n = \exp(2^n a) \frac{1}{2} + o(1)$.

Ex 17: Soit $f \in \mathcal{C}(\mathbb{R}_+, \mathbb{R}_+)$ dérivable, telle que f(0) = 1 et : $\forall x \in \mathbb{R}_+^*, \ 0 \le f(x) < 1$. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in\mathbb{R}_+$ et : $\forall n\in\mathbb{N},\ u_{n+1}=u_nf(u_n)$.

- 1. Étudier la suite (u_n) .
- 2. On suppose que $f'(0) \neq 0$. Quelle est la nature de $\sum u_n^2$?
- 3. On suppose toujours que $f'(0) \neq 0$. On pose $x_n = \ln(f(u_n))$, pour $n \in \mathbb{N}$. Quelle est la nature de (x_n) ? Nature de $\sum x_n$ et en déduire la nature de $\sum u_n$.
- 4. Soient $u_0, v_0 \in \mathbb{R}_+$. Pour tout n de \mathbb{N} , on pose $u_{n+1} = \sin(u_n)$ et $v_{n+1} = \ln(1+v_n)$. Étudier les suites (u_n) et (v_n) .

 $\underline{\mathbf{Ex}}\ \mathbf{18}$: Étude de la convergence des suites définies par :

1.
$$\forall n \in \mathbb{N}^*, \ u_n = \prod_{k=1}^n (2 - e^{1/k});$$
 2. $\forall n \in \mathbb{N}^*, \ v_n = \frac{a(a+1)...(a+n-1)}{n!}.$

Ex 19: Soit $(u_n)_n$ une suite décroissante telle que $\sum u_n$ converge.

- 1. Montrer que $\lim_{n\to\infty} nu_n = 0$.
- 2. Montrer que la série $\sum n(u_n u_{n+1})$ converge puis que : $\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{\infty} n(u_n u_{n+1})$.

<u>**Ex 20**</u>: Déterminer un équivalent simple de $\sum_{k=1}^{+\infty} \frac{1}{k(nk+1)}$ quand n tend vers $+\infty$.

Ex 21: (*) Soient $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels strictement positifs. Pour $n\in\mathbb{N}^*$, soit $S_n=\sum_{k=1}^n a_k^2$. On suppose que $\lim_{n\to+\infty} a_n S_n=1$.

- 1. Montrer que $\sum a_k^2$ diverge.
- 2. Donner un équivalent de a_n . On pourra étudier $S_{n+1}^{\alpha} S_n^{\alpha}$ pour un α bien choisi.

Ex 22: Soit $\sum u_n$ séries à termes positifs. On suppose que $\sqrt[n]{u_n} \to \ell \in \mathbb{R}^+$.

- **a.** Montrer que si $\ell > 1$ alors $\sum u_n$ est divergente.
- **b.** Montrer que si $\ell < 1$ alors $\sum u_n$ est convergente.
- $\boldsymbol{c}.$ Observer que, lorsque $\ell=1,$ on ne peut rien conclure.
- **d.** En déduire la nature de la série de terme général $\left(\frac{n-1}{2n+1}\right)^n$.

Ex 23 : Soit $(a_n)_{n\geq 2}$ une suite de réels strictement positifs. On suppose que la série de terme général a_n est convergente. On pose, pour $n\geq 2$, $b_n=-\frac{a_n\ln(a_n)}{\ln(n)}$.

- 1. Par une étude de $x \mapsto -x \ln(x)$, montrer qu'il existe $k_0 \in \mathbb{N}$ tel que tout entier k tel que $k \ge k_0$, on a l'implication : $a_k \le \frac{1}{k^3} \Rightarrow b_k \le \frac{3}{k^3}$.
- 2. Montrer que la série de terme général b_n converge.
- 3. Soit $(u_n)_{n\geq 2}$ une suite à valeurs dans]0,1[et telle que la série $\sum \frac{u_n}{\ln(u_n)}$ converge. Montrer que la série $\sum \frac{u_n}{\ln(n)}$ converge.

Ex 24: Soit $\alpha \in \mathbb{R}_+^*$. On définit une suite $(u_n)_{n \in \mathbb{N}^*}$ par $u_1 > 0$ et : $\forall n \in \mathbb{N}^*$, $u_{n+1} = u_n + \frac{1}{n^{\alpha}u_n}$. Pour quelles valeurs de α la suite (u_n) est-elle convergente?

Ex 25: Soit $x \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{n!}{x^n} \prod_{k=1}^n \ln\left(1 + \frac{x}{k}\right)$.

- 1. Étudier la suite $\left(\ln\left(\frac{u_{n+1}}{u_n}\right)\right)_{n\in\mathbb{N}^*}$ puis la suite $(u_n)_{n\in\mathbb{N}^*}$.
- 2. Trouver $\alpha \in \mathbb{R}$ tel que la série de terme général $\ln\left(\frac{u_{n+1}}{u_n}\right) \alpha \ln\left(1 + \frac{1}{n}\right)$ converge.
- 3. En déduire un équivalent de u_n .

<u>Ex 26</u> : 1. Montrer que pour tout n de \mathbb{N} , le réel $(2+\sqrt{3})^n+(2-\sqrt{3})^n$ est un entier.

2. En déduire la nature de la série $\sum \sin \left((2 + \sqrt{3})^n \right)$.

Ex 27: Soit $k \in]1, +\infty[$ et $(u_n)_{n\geq 1}$ une suite définie par $u_1>0$ et pour n dans \mathbb{N}^* :

$$u_{n+1} = \left(1 - \frac{1}{kn}\right) u_n.$$

1. La suite (u_n) est-elle convergente?

- 2. Étudier la convergence de $\sum (v_{n+1} v_n)$ avec $v_n = \ln(n^{1/k}u_n)$.
- 3. Étudier la convergence de la suite (v_n) .
- 4. En déduire un équivalent simple de (u_n) .
- **5.** Étudier la convergence des séries de termes généraux u_n , $\frac{u_n}{n}$ et $(-1)^n u_n$.
- 6. Montrer que la suite (w_n) avec $w_n = \int_0^{+\infty} \frac{dt}{(1+t^3)^n}$ vérifie les conditions de l'introduction.

Ex 28: (*) Soit $n \in \mathbb{N}^*$. On pose $R_n = \sum_{k=n}^{+\infty} \frac{\ln(k+1) - \ln(k)}{k}$. Montrer l'existence de R_n , puis en donner un équivalent simple et enfin un développement asymptotique à deux termes.

Ex 29 : 1. Trouver un équivalent de :
$$\sum_{k=1}^{n} \left(\frac{1}{k + \sqrt{k}} \right)$$

2. Montrer qu'il existe une constante C telle que : $\sum_{k=1}^{n} \left(\frac{1}{k^2 + \sqrt{k}} \right) = C - \frac{1}{n} + o\left(\frac{1}{n}\right).$

Ex 30: Soient
$$\alpha > 0, u_1 > 0$$
, puis : $\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{(-1)^{n+1}}{(n+1)^{\alpha}} \sum_{k=1}^n u_k$ et on note $S_n = \sum_{k=1}^n u_k$.

- 1. Jusitifier l'existence de $\ln(S_{n+1})$ pour tout n de \mathbb{N} , et l'exprimer à l'aide de $\ln(S_n)$.
- 2. Donner un développement asymptotique à deux termes de $\ln\left(1+\frac{(-1)^n}{n^{\alpha}}\right)$.
- 3. En déduire que la série $\sum u_n$ converge si $\alpha > 1/2$.
- **4.** Pour $\alpha \leq 1/2$, déterminer la limite de $(\ln(S_{n+1}))_{n \in \mathbb{N}}$, puis la nature de la série $\sum u_n$.

Ex 31: Montrer que
$$\sum_{n=0}^{+\infty} \frac{(-1)^n 8^n}{(2n)!}$$
 est un réel négatif.

- **Ex 32**: 1. Montrer que la série de terme général $\frac{(-1)^n}{n!}$ converge et calculer sa somme S.
 - 2. Proposer un encadrement de S avec ses sommes partielles.
 - 3. Montrer que e est irrationnel.

Ex 33: 1. Calculer
$$S = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$$
 (on exprimera les sommes partielles sous forme d'intégrale).

2. On pose pour $n \in \mathbb{N}$, $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{2k+1}$. Montrer que la série de terme général R_n converge et déterminer sa somme.

$$\underline{\mathbf{Ex}\ \mathbf{35}}$$
: On pose, pour tout $n \in \mathbb{N}^*, u_n = \prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}}\right)$. Donner un équivalent de u_n lorsque n tend vers $+\infty$. Quelle est la nature de la série $\sum u_n$?

Ex 36: On pose
$$a_n = \sum_{k=1}^{n} (-1)^{k+1} \sqrt{k}$$
.

- 1. Montrer que la suite $\left(a_n + (-1)^n \frac{\sqrt{n}}{2}\right)$ admet une limite réelle ℓ .
- 2. Montrer que ℓ est dans \mathbb{R}_+^*
- 3. Quelle est la nature de $\sum 1/a_n$?

Ex 37: Soit, pour
$$x \in \mathbb{R}_+^*$$
, $f(x) = \frac{\sin(\ln(x))}{x}$.

- 1. Montrer que pour tout n de \mathbb{N}^* , on a : $\int_n^{n+1} f(x)dx f(x) = \int_n^{n+1} (n+1-x)f'(x)dx$.
- 2. Montrer que la série $\sum \frac{\sin(\ln(n))}{n}$ et l'intégrale $\int_1^{+\infty} \frac{\sin(\ln(x))}{x} dx$ sont de même nature.

Ex 38: Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$ telle que $u_{n+1} = o(u_n)$. Montrer que $\sum_{k=n}^{+\infty} u_k \sim u_n$.

En déduire la nature de la série de terme général $n! \left[\left(\sum_{k=0}^{n} \frac{1}{k!} \right) \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!} \right) - 1 \right]$.

Ex 39: Soit z = x + iy, avec x et y réels. On suppose que z n'est pas dans \mathbb{Z}_{-}^{*} . Pour n dans \mathbb{N}^{*} , on pose : $u_{n} = \frac{n!}{(z+1)(z+2)...(z+n)}$.

- 1. Montrer que la série $\sum u_n$ est absolument convergente si et seulement si x > 1 (on pourra étudier $\sum_{k=2}^{n} \ln \left| \frac{u_k}{u_{k-1}} \right|$ et en déduire un équivalent simple de $|u_n|$).
- **2.** On pose $S_n = \sum_{k=1}^n u_k$. Montrer que : $\forall n \ge 2$, $(n+z)u_n + (z-1)S_{n-1} = 1$.

En déduire que la convergence de la série $\sum u_n$ équivaut à son absolue convergence. Lorsque la série converge, quelle est sa somme?

Ex 40: Pour
$$a > 0$$
, étudier la convergence de $\sum_{n \ge 1} a^{\sum_{k=1}^{n} \frac{1}{k}}$.

Ex 41: On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=\frac{\pi}{2}$ et $\forall n\in\mathbb{N}, u_{n+1}=\sin(u_n)$.

- 1. Montrer que la suite (u_n) converge vers 0.
- 2. Montrer que $\sum \ln \left(\frac{u_{n+1}}{u_n}\right)$ et $\sum u_n^2$ sont de même nature. En déduire la nature de la série $\sum u_n^2$.
- 3. Montrer que $\sum (u_{n+1}-u_n)$ et $\sum u_n^3$ sont de même nature. En déduire la nature de la série $\sum u_n^3$.
- 4. En déduire la nature de la série $\sum u_n^k$ pour tout $k \in \mathbb{N}^*$.

Ex 42: Soit
$$n \in \mathbb{N}$$
 et on pose $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$.

- **a.** Montrer l'existence de R_n pour tout n de \mathbb{N} .
- **b.** Montrer que : $\forall n \in \mathbb{N}, \ R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}.$
- \boldsymbol{c} . En déduire un équivalent de R_n .
- **d.** Quelle est la nature de $\sum R_n$.

Ex 43 : 1. Étudier la convergence de la série
$$\sum_{k\geq 1} u_k$$
, avec $u_k = \frac{1}{\sqrt{k} + k\sqrt{k}}$.

- 2. On pose $R_n = \sum_{k=n+1}^{+\infty} u_k$. Montrer que : $\forall n \in \mathbb{N}^*$, $2 \operatorname{Arctan} \left(\frac{1}{\sqrt{n+1}} \right) \leq R_n \leq 2 \operatorname{Arctan} \left(\frac{1}{\sqrt{n}} \right)$.
- 3. Montrer que R_n Arctan $\left(\frac{1}{\sqrt{n}}\right)$ Arctan $\left(\frac{1}{\sqrt{n+1}}\right) = O\left(\frac{1}{n^{3/2}}\right)$.

Ex 44: (*) Déterminer
$$\left[\sum_{n=1}^{10^9} \frac{1}{n^{2/3}} \right]$$
.

$$\underline{\mathbf{Ex}\ \mathbf{45}}: \ \mathrm{Donner}\ \mathrm{un}\ \mathrm{\acute{e}quivalent}\ \mathrm{des}\ \mathrm{suites}\ \left(\sum_{k=2}^{n}\frac{1}{k\ln(k)}\right)_{n\in\mathbb{N}^*} \ \mathrm{et}\ \left(\sum_{k=1}^{n}\left\lfloor\sqrt{k}\right\rfloor\right)_{n\in\mathbb{N}^*}.$$

Ex 46: (*) **1.** Montrer que
$$\sum_{k=n+1}^{2n} \frac{\ln(k)}{k} = (\ln(2))(\ln(n)) + \frac{1}{2}(\ln 2)^2 + o(1).$$

- 2. En déduire la somme de la série $\sum (-1)^n \frac{\ln n}{n}$. (On pourra transformer $\sum_{k=1}^{2n} (-1)^k \frac{\ln k}{k}$ et on rappelle qu'il existe une constante γ telle que : $\sum_{k=1}^n \frac{1}{k} \ln(n) = \gamma + o(1)$).
- 3. Donner un équivalent du reste $\sum_{k=n+1}^{+\infty} (-1)^k \frac{\ln k}{k}$.

Ex 47: (*) Déterminer la nature de la série de terme général $u_n = \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^{\alpha}}$ (avec $\alpha \in \mathbb{R}$). Même question avec la série de terme général $(-1)^n u_n$.

Ex 48: (*) Montrer que :
$$\int_{n\pi}^{+\infty} \frac{\sin(x)}{x} dx = O\left(\frac{1}{n}\right).$$

Ex 49: 1. Montrer l'existence de $\int_0^{+\infty} \frac{t^3 \sin(t)}{1+t^4} dt$.

- 2. Donner un équivalent de $\int_{n\pi}^{(n+1)\pi} \frac{t^3 \sin(t)}{1+t^4} dt$ quand n tend vers $+\infty$.
- 3. Donner un équivalent de $\int_{n\pi}^{+\infty} \frac{t^3 \sin(t)}{1+t^4} dt$ quand n tend vers $+\infty$.

Ex 50: Nature et somme de :

1.
$$\sum_{n=0}^{+\infty} \frac{z^{2^n}}{1-z^{2^{n+1}}}, |z| < 1;$$

3.
$$(r^{|n|}e^{in\theta})_{n\in\mathbb{Z}}$$
, avec (r,θ) dans $\mathbb{R}_+\times\mathbb{R}$;

2.
$$\sum_{p,q\geq 2}^{n-0} \frac{(-1)^p}{q^p}$$
;

4.
$$\sum_{n=2}^{+\infty} (\zeta(n) - 1)$$
, avec $\zeta(n) = \sum_{k=1}^{+\infty} \frac{1}{k^n}$.

 $\underline{\mathbf{Ex}\ \mathbf{51}}\ \mathbf{:}\ (*)\ \mathrm{Soit}\ \sigma\ \mathrm{une}\ \mathrm{bijection}\ \mathrm{de}\ \mathbb{N}^*\ \mathrm{dans}\ \mathbb{N}^*.\ \mathrm{D\acute{e}terminer}\ \mathrm{la}\ \mathrm{nature}\ \mathrm{de}\ \sum_{n\geq 1}\frac{1}{(\sigma(n))^2}\ \mathrm{et}\ \mathrm{de}\ \sum_{n\geq 1}\frac{1}{n\sigma(n)}\ ?$

 $\underline{\mathbf{Ex}} \ \mathbf{52} : (*)$ Soient $\sum_{n\geq 1} a_n$ et $\sum_{n\geq 1} b_n$ deux séries absoluments convergentes. Pour $n\in\mathbb{N}^*$, on pose :

 $c_n = \sum_{d|n} a_d b_{\frac{n}{d}}$ (somme étendue sur tous les diviseurs de n) et N(n) le nombre de diviseurs de n.

On pose $\zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ pour $\alpha > 1$ et on note φ l'indicatrice d'Euler.

- 1. Montrer que $\sum_{n\geq 1} c_n$ converge absolument et $\sum_{n=1}^{+\infty} c_n = \left(\sum_{n=1}^{+\infty} a_n\right) \left(\sum_{n=1}^{+\infty} b_n\right)$.
- 2. Montrer que la série de terme général $N(n)/n^{\alpha}$ converge pour $\alpha>1$ et déterminer sa somme.
- 3. Montrer que pour $\alpha > 2$, la série $\sum_{n \ge 1} \frac{\varphi(n)}{n^{\alpha}}$ converge et déterminer sa somme.

 $\underline{\mathbf{Ex}}\ \mathbf{53}$: Étudier la finitude des sommes suivantes :

1.
$$\sum_{(i,j)\in(\mathbb{N}^*)^2}\frac{1}{i^{\alpha}+j^{\alpha}};$$

2.
$$\sum_{x \in \mathbb{Q} \cap [1, +\infty[} \frac{1}{x^2};$$

3.
$$\sum_{(p,q)\in\mathbb{N}^2} \frac{1}{a^p+b^q}, \ a>1, \ b>1.$$

Ex 54: Soient $n \in \mathbb{N}^*$ et $S_n = \sum_{n=1}^n \sum_{q=1}^n \frac{pq}{p+q}$.

En examinant $S_n - S_{n-1}$, montrer que $S_n \sim \frac{2}{3}(1 - \ln(2))n^3$.