a. Soit
$$k \in \mathbb{N}^*$$
. On a : $0 < \frac{1}{k^x} < \zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$. On a donc : $\forall k \in \mathbb{N}^*$, $\mathbb{P}(\{k\}) \in [0,1]$. Par ailleurs $\sum_{n=1}^{+\infty} \mathbb{P}(\{n\}) = \frac{1}{\zeta(x)} \sum_{n=1}^{+\infty} \frac{1}{n^x} = \frac{1}{\zeta(x)} \times \zeta(x) = 1$.

$$\mathbb{P} \text{ définit une probabilité sur } (\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$$

b. Soit $a \in \mathbb{N}^*$. Nous avons l'union disjointe $a\mathbb{N}^* = \bigcup_{n=0}^{+\infty} \{an\}$ et donc

$$\mathbb{P}(a\mathbb{N}^*) = \sum_{n=1}^{+\infty} \mathbb{P}(\{an\}) = \frac{1}{\zeta(x)} \sum_{n=1}^{+\infty} \frac{1}{(an)^x} = \frac{1}{a^x \zeta(x)} \sum_{n=1}^{+\infty} \frac{1}{n^x} = \frac{1}{a^x \zeta(x)} \times \zeta(x) = \boxed{\frac{1}{a^x}}.$$

c. Soit I une partie finie de \mathbb{N}^* non vide. k est dans $\bigcap_{i \in I} p_i \mathbb{N}^*$ est réalisé si et seulement si p_i divise k pour tout i de I, si et seulement si les nombres premiers p_i , avec i dans I, figurent dans la décomposition en facteurs premiers de k. Ceci est équivalent à dire que $\prod_{i \in I} p_i$ est dans la décomposition en facteurs premiers de k si et seulement si $\prod p_i$ divise k.

Ainsi :
$$\bigcap_{i \in I} p_i \mathbb{N}^* = \left(\prod_{i \in I} p_i\right) \mathbb{N}^*, \text{ puis}$$
$$\mathbb{P}\left(\bigcap_{i \in I} p_i \mathbb{N}^*\right) = \mathbb{P}\left(\left(\prod_{i \in I} p_i\right) \mathbb{N}^*\right) = \frac{1}{\left(\prod_{i \in I} p_i\right)^x},$$

grâce à la question précédente.

Or $\frac{1}{\left(\prod_{i\in I}p_i\right)^x} = \prod_{i\in I}\frac{1}{p_i^x} = \prod_{i\in I}\mathbb{P}(p_i\mathbb{N}^*)$, toujours grâce à la question précédente.

On a donc $\mathbb{P}\left(\bigcap_{i\in I}p_i\mathbb{N}^*\right)=\prod_{i\in I}\mathbb{P}(p_i\mathbb{N}^*)$, pour tout partie I finie de \mathbb{N}^* non vide.

Les événements $(p_i\mathbb{N}^*)_{i\in\mathbb{N}^*}$ sont indépendants

d. La suite d'événements $(B_n)_{n\in\mathbb{N}^*}$ est décroissante pour l'inclusion, car pour $n\in\mathbb{N}^*$, on a :

 $B_{n+1} = \bigcap_{k=1}^{n+1} \overline{p_k \mathbb{N}^*} = B_n \cap \overline{p_{n+1} \mathbb{N}^*} \subset B_n. \text{ De plus l'événement } \bigcap_{n=1}^{+\infty} B_n = \bigcap_{k=1}^{+\infty} \overline{p_k \mathbb{N}^*} \text{ est l'événement } \mathbb{N}^* \text{ is described and the proposition of premier } p_k \text{ pour } k \text{ dans } \mathbb{N}^* \text{ is described and the proposition of premier pour tout entier supérieur ou égal à 2, cela signifie que } \bigcap_{k=1}^{+\infty} \overline{p_k \mathbb{N}^*} = \{1\}.$ On a donc

$$\left| \lim_{n \to \infty} \mathbb{P}(B_n) = \mathbb{P}\left(\bigcap_{n=1}^{+\infty} B_n\right) = \mathbb{P}(\{1\})\right|$$

Soit $k \in \mathbb{N}^*$. Nous avons $P(B_n) = \mathbb{P}\left(\bigcap_{k=1}^n \overline{p_k \mathbb{N}^*}\right) = \prod_{k=1}^n \mathbb{P}\left(\overline{p_k \mathbb{N}^*}\right)$, grâce à l'indépendance prouvée dans la question précédente. Or pour tout k de \mathbb{N}^* , nous avons $\mathbb{P}\left(\overline{p_k \mathbb{N}^*}\right) = 1 - \mathbb{P}\left(p_k \mathbb{N}^*\right) = 1 - \frac{1}{p_k^x}$.

On en déduit que
$$P(\{1\}) = \lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 - \frac{1}{p_k^x}\right)$$
 et donc :

$$\forall x \in]1, +\infty[, \quad \frac{1}{\zeta(x)} = \lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 - \frac{1}{p_k^x}\right)$$

 $\boldsymbol{e}.$ Grâce à la question précédente, pour $x\in]1,+\infty[,$ on a :

$$\ln(\zeta(x)) = -\lim_{n \to +\infty} \ln\left(\prod_{k=1}^n \left(1 - \frac{1}{p_k^x}\right)\right) = -\lim_{n \to +\infty} \sum_{k=1}^n \ln\left(1 - \frac{1}{p_k^x}\right) = -\sum_{k=1}^{+\infty} \ln\left(1 - \frac{1}{p_k^x}\right).$$

Soit $x \in]1, +\infty[$ et pour k dans \mathbb{N}^* , on pose $u_k(x) = -\ln\left(1 - \frac{1}{p_k^x}\right).$ Sur $]1, +\infty[$, la suite de

fonctions $\sum_{k \in \mathbb{N}^*} u_k$ converge simplement vers $\ln(\zeta)$.

On suppose que
$$\sum_{k\geq 1} \frac{1}{p_k}$$
 converge. On a : $\forall k \in \mathbb{N}^*, \forall x \in]1, +\infty[$, $\frac{1}{p_k^x} \leq \frac{1}{p_k}$, car $1/p_k$ est dans $]0,1[$ et $x>1$. Ainsi : $\forall k \in \mathbb{N}^*, \forall x \in]1, +\infty[$, $0 \leq u_k(x) \leq -\ln\left(1-\frac{1}{p_k}\right)$, puis : $\forall k \in \mathbb{N}$ $||u_k|| \leq -\ln\left(1-\frac{1}{p_k}\right)$ Or $\lim_{k \to \infty} |u_k| = +\infty$ car la suite des nombres premiers est

 $\forall k \in \mathbb{N}, \ \|u_k\|_{\infty} \le -\ln\left(1-\frac{1}{p_k}\right)$. Or $\lim_{k\to+\infty} p_k = +\infty$, car la suite des nombres premiers est

une suite strictement croissante d'entiers, donc : $\forall k \in \mathbb{N}^*, \ p_k \geq k$. Ainsi $-\ln\left(1 - \frac{1}{p_k}\right) \sim \frac{1}{p_k}$,

donc la série $-\sum \ln \left(1 - \frac{1}{p_k}\right)$ converge et donc $\sum_{k \in \mathbb{N}^*} u_k$ converge normalement sur $]1, +\infty]$.

Ainsi par la double limite $\lim_{x\to 1^+} \ln(\zeta(x)) = \lim_{x\to 1^+} \sum_{k=1}^{+\infty} u_k(x) = -\sum_{k=1}^{+\infty} \ln\left(1 - \frac{1}{p_k}\right)$, soit

 $+\infty = -\sum_{k=1}^{+\infty} \ln\left(1 - \frac{1}{p_k}\right)$, ce qui est contradictoire.

La série
$$\sum_{k\geq 1} \frac{1}{p_k}$$
 diverge