EXERCICES

Correction des exercices du 02/12/2024 (Suites et séries de fonctions)

Ex 1 : Étudier la continuité et la dérivabilité de $x \mapsto \sum_{-\infty}^{+\infty} xe^{-n^2x}$ sur \mathbb{R}_+ .

Correction: Soit $n \in \mathbb{N}$ et on pose $f_n : x \mapsto xe^{-n^2x}$ définie sur \mathbb{R}_+ .

Montrons d'abord la continuité de $\sum f_n$ sur \mathbb{R}_+ .

- Pour tout n∈ N*, la fonction f_n est continue sur R₊.
 Soit n∈ N*. On a: ∀x∈ R₊, f'_n(x) = e^{-n²x} n²xe^{-n²x} = (1 n²x)e^{-n²x}.

 Ainsi la fonction f_n est croissante sur [0, 1/n²] et décroissante sur [1/n², +∞[. Par ailleurs elle est positive, donc $|f_n|$ admet un maximum en $1/n^2$, puis $||f_n||_{\infty} = f_n\left(\frac{1}{n^2}\right) = \frac{e^{-1}}{n^2}$.

Ainsi $\sum_{n\geq 1} \|f_n\|_{\infty}$ converge d'où la convergence normale de $\sum_{n\geq 1} f_n$ sur \mathbb{R}_+ .

La série de fonction $\sum_{n=1}^{\infty} f_n$ est continue sur \mathbb{R}_+ . Par ailleurs f_0 est aussi continue sur \mathbb{R}_+ , donc la

fonction $x \mapsto \sum_{n=0}^{\infty} xe^{-n^2x}$ est continue sur \mathbb{R}_+ .

Pour la dérivablité nous n'allons pas pouvoir utiliser la convergence normale de $\sum f'_n$ car $f'_n(2/n^2) = -e^{-2}$ et ne peut pas tendre vers 0.

Montrons que la série de fonctions est dérivable sur \mathbb{R}_{+}^{*} .

- Pour tout $n \in \mathbb{N}$, la fonction f_n est \mathcal{C}^1 sur \mathbb{R}_+ .
- La série de fonctions $\sum f_n$ converge simplement sur \mathbb{R}_+^* .
- Soit $n \in \mathbb{N}$. On a: $\forall x \in \mathbb{R}_+, f'_n(x) = (1 n^2 x)e^{-n^2 x}$. Soit $[a,b] \subset \mathbb{R}_+^*$.

On a: $\forall x \in [a, b], |f'_n(x)| \le (1 + n^2 x)e^{-n^2 a} \le (1 + n^2 b)e^{-n^2 a}$

Ainsi on a: $||f'_n||_{\infty,[a,b]} \le (1+n^2b)e^{-n^2a} = u_n$. Or: $n^2u_n \underset{n \to +\infty}{\sim} n^4be^{-n^2a} = b(n^2)^2e^{-n^2a} \underset{n \to +\infty}{\longrightarrow} 0$. Ainsi $||f'_n||_{\infty,[a,b]} = o(1/n^2)$, puis $\sum_{n \ge 0} ||f'_n||_{\infty,[a,b]}$

converge et donc $\sum_{n\geq 0} f'_n$ converge normalement sur tout segment [a,b] de \mathbb{R}_+^* .

La fonction $x \mapsto \sum_{n=1}^{+\infty} xe^{-n^2x}$ est \mathcal{C}^1 sur \mathbb{R}_+^* .

Regardons en détail la dérivabilité en 0.

Soit
$$S = \sum_{n=0}^{+\infty} f_n(x) =$$
, pour x positif.

Soit $x \in \mathbb{R}_{+}^{*}$. On a: $\frac{S(x) - S(0)}{x} = \sum_{n=0}^{+\infty} e^{-n^{2}x}$.

La fonction $x \mapsto \frac{S(x) - S(0)}{x}$ est donc décroissante et admet donc une limite $\ell \in \mathbb{R}_+ \cup \{+\infty\}$ en 0

par valeurs supérieure. On a par décroissance : $\forall x \in \mathbb{R}_+^*, \ \frac{S(x) - S(0)}{r} \le \ell.$

Soit $N \in \mathbb{N}$. On a $\forall x \in \mathbb{R}_+^*$, $\sum_{n=0}^{\infty} e^{-n^2 x} \leq \frac{S(x) - S(0)}{x}$, car on somme des termes positifs.

On a donc : $\forall x \in \mathbb{R}_+^*$, $\sum_{n=0}^\infty e^{-n^2x} \le \ell$. Quand x tend vers 0, on obtient : $N+1 \le \ell$. Cela étant valable

pour tout N de N alors quand N tend vers $+\infty$, on a : $+\infty \le \ell$, donc $\ell = +\infty$ et S n'est pas dérivbale en 0.

Ex 2: Montrer que :
$$\int_0^1 \frac{\ln(t)}{t-1} dt = \frac{\pi^2}{6}.$$

Correction: Soit
$$t \in]0,1[$$
. On a $\frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n$, puis: $\frac{\ln(t)}{t-1} = -\sum_{n=0}^{+\infty} t^n \ln(t)$.

Pour $n \in \mathbb{N}$ on pose $f_n : t \mapsto -t^n \ln(t)$ définie sur]0,1[.

On pose $S = \sum_{n=0}^{+\infty} f_n$ qui est la fonction $t \mapsto \frac{\ln(t)}{t-1}$ définie sur]0,1[.

• Pour tout n de \mathbb{N} , la fonction f_n est continue par morceaux et positive sur]0,1[. Montrons qu'elle y est intégrable. f_n est continue sur]0,1[.

On a par ailleurs $\lim_{t\to 0^+} t^{1/2} t^n |\ln(t)| = 0$ par croissance comparée. Ainsi $|f_n(t)| =_{t\to 0^+} o\left(\frac{1}{t^{1/2}}\right)$.

Comme $t \mapsto \frac{1}{t^{1/2}}$ est intégrable sur]0,1[, alors f_n l'est aussi.

• $\sum_{n=0}^{+\infty} g_n$ converge simplement sur]0,1[vers S qui est continue par morceaux sur]0,1[.

On a alors dans $\mathbb{R}_+ \cup \{+\infty\}$:

$$\int_0^1 \frac{\ln(t)}{t-1} dt = \int_0^1 S = \sum_{n=0}^{+\infty} \int_0^1 f_n.$$

Reste à calculer $\int_0^1 f_n$.

Soit $n \in \mathbb{N}$. Soit $X \in]0,1[$. On a :

$$\int_{X}^{1} t^{n} \ln(t) dt = \left[\frac{t^{n+1} \ln(t)}{n+1} \right]_{X}^{1} - \int_{X}^{1} \frac{t^{n}}{n+1} dt = -\frac{X^{n+1} \ln(X)}{n+1} - \frac{1}{(n+1)^{2}} + \frac{X^{n+1}}{(n+1)^{2}}.$$

Quand X tend vers 0, on a : $\int_{0}^{1} f_{n} = \frac{1}{(n+1)^{2}}$.

Par conséquent :

$$\int_0^1 \frac{\ln(t)}{t-1} dt = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^2} = \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Fin de la correction des exercices de TD

 $\underline{\mathbf{Ex}\ \mathbf{3}}$: On pose $S: x \mapsto \sum_{k=2}^{+\infty} \ln\left(1 - \frac{1}{k^x}\right)$ qui est bien définie sur $]1, +\infty[$ et nous devons montrer que : $\lim_{x \to 1^+} S(x) = -\infty$.

Nous avons montré que $x \mapsto \ln\left(1 - \frac{1}{k^x}\right)$ est croissante pour tout $k \geq 2$. Ainsi la fonction S est croissante sur $]1, +\infty[$ et donc $\ell = \lim_{x \to 1^+} S(x)$ existe et on a $\ell \in \mathbb{R} \cup \{-\infty\}$.

Par croissance, on a : $\forall x \in]1, +\infty[, \ell \leq S(x)]$.

Soit $N \geq 2$. Comme les termes de la série S(x) sont négatifs, alors pour x dans $]1,+\infty[$, on a :

$$S(x) = \sum_{k=2}^{+\infty} \ln\left(1 - \frac{1}{k^x}\right) \le \sum_{k=2}^{N} \ln\left(1 - \frac{1}{k^x}\right), \text{ puis } : \ell \le \sum_{k=2}^{N} \ln\left(1 - \frac{1}{k^x}\right).$$

Comme on a une somme finie, on peut passer à la limite quand x tend vers 1 et donc on a :

$$\ell \le \sum_{k=2}^{N} \ln \left(1 - \frac{1}{k} \right).$$

Cette dernière relation est vraie pour tout $N \ge 2$, donc comme la série à termes négatifs $\sum_{k\ge 2} \ln\left(1-\frac{1}{k}\right)$

$$\text{diverge } (\ln \left(1 - \frac{1}{k}\right) \underset{k \to +\infty}{\sim} - \frac{1}{k}), \text{ alors } \lim_{N \to +\infty} \sum_{k=2}^{N} \ln \left(1 - \frac{1}{k}\right) = -\infty, \text{ puis } \ell \leq -\infty \text{ et donc } \ell = -\infty.$$