ORAUX DE CONCOURS

CCINP MP 2024

Ex 1: [CCINP] Soit $P \in \mathbb{C}[X]$ tel que $P(X^2) = P(X)P(X-1)$.

- 1. Soit $a \in \mathbb{C}$ racine de P.
 - **a.** Montrer que a = 0 ou |a| = 1.
 - **b.** Montrer que a = -1 ou |a + 1| = 1.
- 2. En déduire tous les polynômes de $\mathbb{C}[X]$ qui vérifient $P(X^2) = P(X)P(X-1)$.

 $\underline{\mathbf{Ex}\ \mathbf{2}}:$ [CCINP] Soient a_1,\ldots,a_{n+1} des réels deux à deux distincts.

- 1. Soit b_1, \ldots, b_{n+1} des réels. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que, pour tout $k \in [1, n+1], P(a_k) = b_k$.
- 2. Expliciter L_k l'unique polynôme de la question précédente lorsque $b_i = 1$ si i = k, 0 sinon.
- 3. Montrer que, pour tout $p \in [0, n], X^p = \sum_{k=1}^{n+1} a_k^p L_k$.

Ex 3: [CCINP] Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ non colinéaire à I_n tel que $(A+I_n)^3=0$.

- 1. Montrer que A est inversible et expliciter son inverse. Donner un exemple d'une telle matrice.
- 2. A est-t-elle diagonalisable?
- 3. Soit p un entier naturel, exprimer A^p en fonction de A^2 , de A et de I_n .

Ex 4: [CCINP] Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$. Soit $f \in \mathcal{L}(E)$ de rang un.

- 1. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que : $f^2 = \lambda f$.
- 2. A-t-on : $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$?
- 3. Montrer que les assertions suivantes sont équivalentes :
 - i. Il existe un scalaire c non nul tel que cf soit un projecteur;
 - ii. $f \circ f \neq 0$;
 - iii. $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$.

 $\underline{\mathbf{Ex}\ \mathbf{5}}: [\mathrm{CCINP}]$ Soient E un espace vectoriel de dimension n et $u \in \mathcal{L}(E)$.

- 1. On suppose u nilpotent. Prouver que $u^n = 0$.
- 2. On suppose que $u^n = 0$ et $u^{n-1} \neq 0$. Montrer qu'il existe une base de E dans laquelle la matrice

$$\det u \text{ est } A = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & \ddots & & \vdots \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

3. Résoudre l'équation $X^2 = A$.

<u>Ex 6</u>: [CCINP] Soit E un espace vectoriel de dimension finie n avec $2 \le n$ Soit u un endomorphisme de E. On suppose que E est le seul espace non nul stable par u.

- 1. Que peut-on dire du spectre de u?
- 2. Montrer que : $\forall x \in E, (x, u(x), ..., u^{n-1}(x))$ est une base de E.
- 3. On fixe $x \in E$. Donner la matrice de u dans cette base et montrer qu'elle ne dépend pas de x.

Ex 7: [CCINP] Soit $P = X^n - X + 1$, avec $n \ge 2$.

- 1. Montrer que P admet n racines $z_1, ..., z_n$ distinctes sur \mathbb{C} .
- 2. Soit la matrice $A = [a_{i,j}]_{1 \le i,j \le n}$ telle que $\forall i,j \in [1,n]$, $a_{i,j} = \begin{cases} 1+z_i & \text{si} & i=j\\ 1 & \text{sinon} \end{cases}$. Calculer $\det(A)$.

<u>Ex 8</u> : [CCINP] Soit $n \ge 2$ et $E = \mathfrak{M}_n(\mathbb{R})$. On considère $A \in E$ telle que $A^2 = I_n, A \ne I_n$ et $A \ne -I_n$.

- 1. Montrer que $\operatorname{Tr} A \equiv n \mod 2$.
- 2. Montrer que $|\operatorname{Tr} A| \leq n-2$.

 $\underline{\mathbf{Ex}} \ \underline{\mathbf{9}} : [\text{CCINP}] \text{ Soit } A \in \mathcal{M}_n(\mathbb{R}).$

- 1. Montrer que si w est une valeur propre complexe de A, alors \overline{w} l'est aussi.
- 2. a. Montrer que $X^3 3X 4$ possède une unique racine réelle.
 - **b.** On suppose dans cette question de $A^3 3A 4I_n = 0$. Montrer que $\det(A)$ est positif.
- 3. On suppose dans cette question de $A^2 + A + I_n = 0$. Montrer que n est pair.
- 4. On suppose dans cette question de $A^3 + A^2 + A = 0$.
 - \boldsymbol{a} . Montrer que rg (A) est pair.
 - **b.** Montrer que tr(A) est dans \mathbb{Z}^- .

 $\mathbf{\underline{Ex}} \ \mathbf{10} : [\mathbf{CCINP}]$

- 1. Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A^2 = 0$ et $A \neq 0$.
 - **a.** Montrer que $\dim(\operatorname{Ker}(A)) = 2$.
 - **b.** Montrer que A est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$
- **2.** Dans $\mathcal{M}_2(\mathbb{R})$, on considère l'équation $M^2+M=A$, d'inconnue M, avec $A=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
 - \boldsymbol{a} . Si M est solution, montrer que M est diagonalisable.

b. Résoudre l'équation.

Ex 11: [CCINP] Soit $A \in M_n(\mathbb{K})$ $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $n \geq 2$ tel que $\operatorname{rg}(A) = 1$.

1. a. Montrer que $\chi_A = X^{n+1}(X - \operatorname{Tr}(A))$ et $\Pi_A = X(X - \operatorname{Tr}(A))$.

b. En déduire une condition nécessaire et suffisante pour que A soit diagonalisable.

c. Montrer que A est semblable à Diag(0, ..., 0, Tr(A)) ou à la matrice $\begin{pmatrix} & \ddots & \ddots & & \vdots \\ & & \ddots & & 0 & 0 \\ & & (\mathbf{0}) & & 0 & 1 \end{pmatrix}.$

2. On suppose que rg(B) = rg(A) = 1 où B désigne une matrice de $M_n(\mathbb{K})$. Montrer que A et B sont semblables si et seulement si Tr(A) = Tr(B)

3. On fixe maintenant 2 matrices A et B dans $M_{n,1}(\mathbb{R})$ et on pose $M = AB^T$.

 \boldsymbol{a} . Donner le rang de M.

 \boldsymbol{b} . Valeur propre et sous espace propre de M?

 \boldsymbol{c} . M est-elle diagonalisable?

 $\underline{\mathbf{Ex}\ \mathbf{12}}: [\mathrm{CCINP}] \ \mathrm{Soit}\ U \ \mathrm{et}\ V \ \mathrm{deux}\ \mathrm{vecteurs}\ \mathrm{non}\ \mathrm{nuls}\ \mathrm{de}\ \mathcal{M}_{n,1}(\mathbb{C}),\ \mathrm{la}\ \mathrm{matrice}\ A = UV^{\top}\ \mathrm{et}\ \mathrm{le}\ \mathrm{complexe}$ $a = \mathrm{Trace}(A).$

1. Quel est le rang de la matrice A?

2. Calculer $U^{\top}V$.

3. Calculer A^2 .

4. La matrice A est-elle diagonalisable?

5. Dans le cas où $a \neq 0$, déterminer les sous-espaces propres de A.

 $\underline{\mathbf{Ex}\ \mathbf{13}}: [\mathrm{CCINP}] \ \mathrm{Soit}\ \mathrm{la}\ \mathrm{matrice}\ A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

 ${\bf 1.}$ Justifier que A est trigonalisable mais n'est pas diagonalisable.

2. Soit $M \in \mathcal{M}_3(\mathbb{R})$ telle que $M^2 = A$.

 $\boldsymbol{a}.$ Justifier que M n'est pas inversible.

 \boldsymbol{b} . Montrer que les seules valeurs propres possibles pour M sont -1, 0 et 1.

 \boldsymbol{c} . Montrer que la dimension des sous-espaces propres de M est égale à 1.

3. Déterminer l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telle que $M^2 = A$.

 $\underline{\mathbf{Ex}\ \mathbf{14}}: [\mathrm{CCINP}]\ \mathrm{Soit}\ A = \left(\begin{array}{ccc} 1 & a & a \\ -1 & 1 & -1 \\ -1 & 0 & 2 \end{array}\right)\ \mathrm{avec}\ a \in \mathbb{R}.$

1. Déterminer le polynôme caractéristique de A.

2. La matrice A est-elle diagonalisable sur \mathbb{R} ?

Ex 15 : [CCINP] On considère la matrice A suivante : $\begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & -1 \\ 1 & 2 & 0 \end{pmatrix}$

- 1. Calculer les valeurs propres de A et ses sous-espaces. A est-elle diagonalisable?
- 2. Soit u_1 un vecteur propre de A. On pose $u_2 = e_1 e_2$ et $u_3 = e_1$ (avec (e_1, e_2, e_3) base canonique de \mathbb{R}^3). Montrer que (u_1, u_2, u_3) est une base de \mathbb{R}^3 .
- 3. On pose f l'endomorphisme canoniquement associée à A. Exprimer la matrice f dans (u_1, u_2, u_3) .
- 4. Résoudre l'équation X' = AX.

Ex 16: [CCINP]

- 1. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathfrak{M}_n(\mathbb{C})$ à diagonale strictement dominante, c'est-à-dire telle que : $\forall i \in [1,n], \ |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|$. Montrer que A est inversible.
- 2. Soit $B = (b_{i,j})_{1 \leq i,j \leq n} \in \mathfrak{M}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$ une valeur propre de B. Montrer qu'il existe $i \in [1, n]$ tel que $|\lambda b_{i,i}| \leq \sum_{i \neq i} |b_{i,j}|$.

Ex 17: [CCINP] Soit $(a, b) \in \mathbb{C}^2$ et la matrice :

$$A = \begin{pmatrix} a^2 & ab & ab & b^2 \\ ab & a^2 & b^2 & ab \\ ab & b^2 & a^2 & ab \\ b^2 & ab & ab & a^2 \end{pmatrix}$$

- 1. Calculer det(A). On exprimera le résultat sous une forme factorisée.
- 2. Déterminer le rang de la matrice A.
- 3. La matrice A est-elle diagonalisable? Préciser la valeurs propres de A ainsi que leur multiplicité. Déterminer le polynôme minimal π_A de A.

 $\underline{\mathbf{Ex}\ \mathbf{18}}: [\mathrm{CCINP}]\ \mathrm{Soient}\ (a,b,c,d) \in \mathbb{C}^4\ \mathrm{tel}\ \mathrm{que}\ a^2 + b^2 \neq 0\ \mathrm{et}\ M = \left(\begin{array}{cccc} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{array}\right).$

- 1. Calculer MM^T et en déduire det M.
- 2. a. On suppose que $a^2 + b^2 + c^2 + d^2 \neq 0$. Montrer que rg M = 4.
 - **b.** On suppose que $a^2 + b^2 + c^2 + d^2 = 0$. Montrer que rg M = 2.
- 3. Étudier la diagonalisabilité de M.

Ex 19: [CCINP] Soit $n \in \mathbb{N}^*$, $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et la matrice :

$$A = \begin{pmatrix} 0 & \cdots & 0 & a \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & a \\ a & \cdots & a & b \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- 1. Justifier que A est diagonalisable.
- 2. Déterminer le rang de A.
- 3. Déterminer le polynôme minimal de A, les valeurs propres de A et le polynôme caractéristique de A.

Ex 20 : [CCINP] Soit $A \in \mathcal{M}_n(\mathbb{R})$ définie par $[A]_{ij} = \sin(i+j)$.

$$A = \begin{pmatrix} \sin(2) & \sin(3) & \sin(4) & \cdots & \sin(n+1) \\ \sin(3) & \sin(4) & \sin(5) & \cdots & \sin(n+2) \\ \sin(4) & \sin(5) & \ddots & \cdots & \sin(n+3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sin(n+1) & \sin(n+2) & \sin(n+3) & \cdots & \sin(2n) \end{pmatrix}$$

- 1. Déterminer le rang de A
- **2.** Trouver $B \in \mathcal{M}_{n,2}(\mathbb{R})$ et $C \in \mathcal{M}_{2,n}(\mathbb{R})$ telles que A = BC et CB soit inversible.
- 3. Montrer que $\operatorname{Sp}(CB) \subset \operatorname{Sp}(A)$.
- 4. Trouver les valeurs propres de A et les sous-espaces propres associés.

Ex 21: Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$.

$$\overline{\text{Soit } f} : \left\{ \begin{array}{ccc} \mathcal{L}(E) & \to & \mathcal{L}(E) \\ v & \mapsto & u \circ v \end{array} \right.$$

1.

- 2. Montrer que toute valeur propre de f est également valeur propre de u.
- 3. Soit $\lambda \in Sp(u)$ et v un projecteur sur $E_{\lambda}(u)$.

a.

- \boldsymbol{b} . Montrer que v est un vecteur propre de f.
- \boldsymbol{c} . En déduire que u et f ont le même spectre.
- 4. Pour $\lambda \in Sp(u)$, on suppose que $\dim(E_{\lambda}(f)) = n \dim(E_{\lambda}(u))$. Montrer que f est diagonalisable ssi u est diagonalisable.
- 5. Montrer que $\dim(E_{\lambda}(f)) = n \dim(E_{\lambda}(u))$.

$\underline{\mathbf{Ex}\ \mathbf{22}}$: Soit $A \in \mathcal{M}_n(\mathbb{R})$

et
$$\phi_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$$
 avec $\phi_A(M) = AM$.

- 1. a. Soit $P \in \mathbb{R}[X]$. Montrer que $\phi_{P(A)} = P(\phi_A)$.
 - $\boldsymbol{b}.$ Montrer que A est diagonalisable ssi ϕ_A est diagonalisable.
 - c. Si A diagonalisable et $\lambda \in Sp(A)$ de multiplicité m. Alors montrer que $\lambda \in Sp(\phi_A)$ et sa muliplicité est mn.
- **2.** Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})$ et $\phi_{A,B} \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ telle que $\phi_{A,B}(M) = AMB$.
 - **a.** Si X est un vecteur propre de A et Y un vecteur propre de B^T , montrer que XY^T est un vecteur propre de $\phi_{A,B}$.
 - **b.** Montrer que si A et B diagonalisable alors $\phi_{A,B}$ est diagonalisable. La réciproque est-elle vraie?

Ex 23: [CCINP] Soit
$$u$$
 l'application de $M_3(\mathbb{C})$ et qui à $\begin{pmatrix} a & b & c \\ d & e & f \\ x & y & z \end{pmatrix}$ associe la matrice $\begin{pmatrix} c & b & a \\ f & e & d \\ z & y & x \end{pmatrix}$

- 1. Montrer que u est un endomorphisme.
- 2. Chercher les valeurs propres et vecteurs propres associés à l'endomorphisme u.
- 3. L'endomorphisme u est-il diagonalisable?
- 4. Déterminer la trace, le déterminant et le polynôme caractéristique de u.

$$\underline{\mathbf{Ex}\ 24}: [\text{CCINP}] \ \text{Soient}\ n \in \mathbb{N}, n \geq 3,\ M = \begin{bmatrix} 0 & 1 & 1 & . & 1 \\ 1 & 0 & 0 & . & 0 \\ 1 & 0 & . & . & . \\ 1 & 0 & . & . & . \\ 1 & 0 & . & . & . \end{bmatrix} \in M_n(\mathbb{R}), \text{ on note } f \ \text{l'endomorphisme}$$

canoniquement associé à M.

- 1. Déterminer le rang de M.
- 2. Donner les valeurs propres de M et leurs sous espaces propres associés.
- 3. Déterminer la matrice de la projection orthogonale sur Im f dans la base canonique de \mathbb{R}^n .

 $\underline{\mathbf{Ex}\ 25}$: [CCINP] Soit E un \mathbb{R} -espace vectoriel de dimension finie n. On considère $u\in\mathcal{L}(E)$ tel que $u^3=u$.

- 1. Montrer que u est diagonalisable et discuter de son nombre de valeurs propres p. On note $\lambda_1, \ldots, \lambda_p$ les valeurs propres de u et $E_{\lambda_1}, \ldots, E_{\lambda_p}$ les sous espaces propres associés.
- 2. Soit F un sous espace vectoriel de E. Prouver que : F stable par u si et seulement si $F = F_1 \oplus \cdots \oplus F_p$ avec pour tout i de [1; p], F_i est un sous espace vectoriel de E_{λ_i} .

Ex 26: [CCINP] Soit E un \mathbb{R} -espace vectoriel de dimension 3 et $f \in \mathcal{L}(E) \setminus \{0\}$ tel que $f^3 + f = 0$.

- 1. Soit $x \in E$. Montrer que si $(y, z) \in \text{Ker } f \times \text{Ker}(f^2 + \text{Id})$ est tel que x = y + z, alors $y = x + f^2(x)$ et $z = -f^2(x)$.
- 2. Montrer que dim $\operatorname{Ker}(f^2 + \operatorname{Id}) \ge 1$ et que si $x \in \operatorname{Ker}(f^2 + \operatorname{Id}) \setminus \{0\}$, alors (x, f(x)) est une famille libre de $\operatorname{Ker}(f^2 + \operatorname{Id})$.
- 3. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Ker}(f^2 + \operatorname{Id})$.
- 4. Calculer det(-Id); montrer que dim $Ker(f^2 + Id) = 2$.
- 5. Trouver une base \mathcal{B} telle que : $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

Ex 27: [CCINP] Soit $A \in \mathcal{M}_2(\mathbb{Z})$. On suppose que det A = 1 et qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = I_2$.

- 1. Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$.
- 2. On note α et β les deux racines complexes de χ_A . Montrer que : $|\alpha| = |\beta| = 1, \alpha = \bar{\beta}, |\Re \alpha| \in \{0, 1/2, 1\}.$

- 3. Montrer que $A^{12} = I_2$.
- 4. Montrer que $G = \{A^n, n \in \mathbb{N}\}$ est un groupe cyclique.

Ex 28: [CCINP] Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^2 + M^T = I_n$.

- 1. Montrer que, si P est un polynôme annulateur de M, toute valeur propre de M est racine de P.
- 2. On suppose M symétrique.
 - \boldsymbol{a} . Montrer que M diagonalisable.
 - **b.** Montrer que $Tr(M) \det(M) \neq 0$.
- ${\it 3.}$ On suppose M non symétrique. Montrer que M est diagonalisable.
- 4. Montrer que M est inversible si et seulement si $1 \notin \operatorname{Sp}(M)$.

Ex 29: [CCINP] Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note $\mathcal{C}(A) = \{M \in \mathcal{M}_n(\mathbb{K}), AM = MA\}$.

- 1. Si $B \in \mathcal{M}_n(\mathbb{K})$ est semblable à A, montrer que $\dim \mathcal{C}(A) = \dim \mathcal{C}(B)$.
- 2. Si A est diagonalisable sur \mathbb{K} , montrer que $\dim \mathcal{C}(A) = \sum_{\lambda \in \operatorname{Sp}(A)} m(\lambda)^2$, où $m(\lambda)$ est la multiplicité de la valeur propre λ .

Ex 30: [CCINP] Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ et $\Phi : M \in \mathcal{M}_n(\mathbb{C}) \mapsto AM + MB$.

- 1. Soit $N \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\operatorname{Sp} N = \operatorname{Sp} N^T$.
- **2.** Soient $U, V \in (\mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\})^2$. Montrer que : $UV^T \neq 0$.
- 3. Montrer que Φ est un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ et que, pour tous $(\alpha, \beta) \in \operatorname{Sp} A \times \operatorname{Sp} B$, $\alpha + \beta \in \operatorname{Sp} \Phi$.
- **4.** Soient $\lambda \in \operatorname{Sp} \Phi$ et M un vecteur propre associé.
 - **a.** Montrer que : $\forall P \in \mathbb{C}[X], P(A)M = MP(\lambda I_n B).$
 - **b.** Montrer qu'il existe $(\alpha, \beta) \in \operatorname{Sp} A \times \operatorname{Sp} B$ tel que : $\lambda = \alpha + \beta$.

$$\underline{\mathbf{Ex}\ \mathbf{31}}: [\mathrm{CCINP}] \ \mathrm{Soit}\ A \in \mathcal{M}_n(\mathbb{C}). \ \mathrm{On}\ \mathrm{d\acute{e}finit}: u: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{C}) & \longrightarrow & \mathcal{M}_n(\mathbb{C}) \\ X & \longmapsto & -X + \mathrm{tr}(X)A \end{array} \right..$$

- 1. Montrer que u est linéaire.
- 2. Montrer que u est injective si et seulement si $tr(A) \neq 1$.
- 3. En déduire une condition pour que u ne soit pas bijective.
- 4. Discuter selon A et $B \in \mathcal{M}_n(\mathbb{C})$ de l'existence de solutions de l'équation u(X) = B.

<u>Ex 32</u>: [CCINP] Soit $n \in \mathbb{N}^*$. On note $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R}) = \{M \in \mathcal{M}_n(\mathbb{R}) \mid M^T = -M\}$ l'ensemble des matrices antisymétriques. On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire : $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \ (A|B) = tr(A^TB)$.

- 1. Montrer que $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que $S_n(\mathbb{R}) = A_n(\mathbb{R})^{\perp}$.

3. On note
$$M = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$
. Calculer la distance de M à $\mathcal{S}_3(\mathbb{R})$.

- **4.** Soit $H = \{M \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{tr}(M) = 0\}$. Montrer que H est un espace vectoriel de dimension à déterminer.
- 5. Soit $J \in \mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont 1. Calculer la distance de J à H.

Ex 33: Pour
$$(P,Q) \in \mathbb{R}[X]^2$$
, on pose $\langle P, Q \rangle = \int_{-\infty}^{+\infty} P(x)Q(x)e^{-\frac{x^2}{2}}dx$.

- 1. Montrer que l'intégrale est bien définie et qu'il s'agit d'un produit scalaire.
- **2.** Soit $\delta \in \mathcal{L}(\mathbb{R}[X])$ tel que $\forall P \in \mathbb{R}[X]$, $\delta(P) = P'$. On note δ^* l'adjoint de δ . Montrer que $\forall P \in \mathbb{R}[X]$, $\delta^*(P) = XP - P'$.
- 3. On pose $H_0 = 1$ et $\forall k \in \mathbb{N}$, $H_{k+1} = \delta^*(H_k)$. Calculer H_1 , H_2 et H_3 .
- **4.** Montrer que $\forall P \in \mathbb{R}[X], \forall k \in \mathbb{N}, \langle H_k, P \rangle = \langle H_0, P^{(k)} \rangle$.
- **5.** Montrer que $(H_k)_{k\in\mathbb{N}}$ est une base orthogonale de $\mathbb{R}[X]$.

Ex 34 : [CCINP]

- 1. Rappeler l'expression du projeté orthogonal d'un vecteur sur un sous-espace vectoriel F d'un espace euclidien E, lorsque l'on dispose d'une base orthonormée de F.
- 2. On munit \mathbb{R}^3 de sa structure euclidienne canonique. Donner la matrice dans la base canonique de la projection orthogonale sur la droite d'équation 6x = 4y = z.

Ex 35 : [CCINP] Soit $E = \mathbb{R}^3$ muni du produit scalaire usuel noté $\langle ., . \rangle$. Soit u un vecteur unitaire de E et pour a dans \mathbb{R} on pose $f_a : x \mapsto x + a \langle x, u \rangle u$.

- 1. Montrer que f_a est un endomorphisme de E.
- **2. a.** Montrer qu'il existe un unique a' dans \mathbb{R}^* tel que : $\forall x \in E, \|f_{a'}(x)\| = \|x\|$.
 - **b.** Montrer que Ker $(f_{a'} + Id_E)$ et Im $(f_{a'} + Id_E)$ sont supplémentaires dans E.
- 3. On se replace dans le cas général. Déterminer les éléments propres de f_a .

$$\underline{\mathbf{Ex}\ \mathbf{36}}: [\text{CCINP}] \ \text{On pose} \ M = \left(\begin{array}{cccc} 3 & -3 & -3 \\ -3 & 3 & -3 \\ -3 & -3 & 3 \end{array} \right).$$

- 1. Calculer det(M).
- 2. Calculer le polynôme caractéristique et déterminer les sous-espaces propres de M.
- ${\it 3.}$ Montrer que M est diagonalisable.
- ${\it 4.}\,$ Trouver un polynôme annulateur de M. Qu'en dire ?
- 5. Trouver $P \in \mathcal{O}_3(\mathbb{R})$ telle que $P^{-1}MP$ soit diagonale.

Ex 37: [CCINP] Soit E un espace euclidien et u une isométrie vectorielle de E. On pose $v = \mathrm{Id}_E - u$.

1. Montrer que Im(v) et Ker(v) sont suplémentaires orthogonaux.

2. On pose :
$$\forall n \in \mathbb{N}^*, f_n = \frac{1}{n} \sum_{k=0}^{n-1} u^k$$
. Soit $x \in E$.

a. On considère $z \in \text{Im}(v)$ et $y \in \text{Ker}(v)$ tel que x = z + y. Montrer que :

$$f_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} u^k(z) + y.$$

b. En déduire que $(f_n(x))_{n\in\mathbb{N}^*}$ converge vers le projeté orthogonal de x sur $\operatorname{Ker}(v)$.

Ex 38: [CCINP] Soit E un espace euclidien de dimension $n \in \mathbb{N}^*$, soit un endomorphisme $f \in \mathcal{L}(E)$ tel que $f^* = -f$.

- 1. Montrer que si f est injectif, alors n est pair.
- 2. Montrer que Ker(f) et Im(f) sont supplémentaires orthogonaux.
- 3. En déduire que le rang de f est pair.
- 4. Montrer que la seule valeur propre réelle de f est 0.

Ex 39: [CCINP]

- 1. Montrer que $(M, N) \mapsto \operatorname{tr}(M^T N)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- **2.** Soient $M, N \in \mathcal{O}_n(\mathbb{R})$. Montrer que tr $(M^T N) \leq n$.
- 3. Soient $A, B \in \mathcal{S}_n(\mathbb{R})$.
 - **a.** Montrer que tr $((AB)^2) \leq \operatorname{tr}(A^2B^2)$.
 - **b.** Montrer que tr $((AB + BA)^2) \leq 4\sqrt{\operatorname{tr}(A^4)}\sqrt{\operatorname{tr}(B^4)}$.

Ex 40: [CCINP]

- 1. Montrer que $O_n(\mathbb{R})$ et $T_n^+(\mathbb{R})$ (l'ensemble des matrices triangulaires supérieures donc tous les coefficients diagonaux sont strictement positifs) sont des sous-groupes de $(GL_n(\mathbb{R}), \circ)$.
- 2. Montrer que $O_n(\mathbb{R}) \cap T_n^+(\mathbb{R}) = \{I_n\}.$
- 3. Soit $A \in GL_n(\mathbb{R})$. Soit $(e_1, ..., e_n)$ la base canonique de \mathbb{R}^n et $\mathcal{B} = (u_1, ..., u_n)$ la base constituée des vecteurs colonnes de A. Soit $\mathcal{B}_{GS} = (v_1, ..., v_n)$ la base orthonormée obtenue à partir de \mathcal{B} grâce au procédé d'orthonormalisation de Gram-Schmidt. À l'aide de ces bases, montrer qu'il existe $O \in O_n(\mathbb{R})$ et $T \in T_n^+(\mathbb{R})$ telles que : A = OT.

Ex 41 : [CCINP] Soit $(E, \langle \rangle)$ un espace euclidien.

- 1. Déterminer les éléments de $\mathcal{S}^+(E) \cap \mathcal{O}(E)$.
- 2. Montrer la stabilité de $S^+(E)$ par addition. L'ensemble $S^+(E)$ est-il un espace vectoriel?
- 3. Soit $u \in \mathcal{S}^+(E)$. Montrer l'existence de $v \in \mathcal{S}^+(E)$ tel que $u = v^2$.
- 4. En déduire que pour tous $u, v \in \mathcal{S}^+(E)$, $\operatorname{Ker}(u+v) = \operatorname{Ker}(u) \cap \operatorname{Ker}(v)$ et $\operatorname{Im}(u+v) = \operatorname{Im}(u) + \operatorname{Im}(v)$.

Ex 42 : [CCINP]

1. Soit
$$\gamma: [-1,1] \to \mathbb{C}^*$$
 définie par : $\forall t \in [-1,1], \ \gamma(t) = \left(\frac{t^2}{2} + \frac{1}{2}\right) e^{2i\pi t}$. Calculer $\frac{1}{2i\pi} \int_{-1}^1 \frac{\gamma'(t)}{\gamma(t)} dt$.

- **2.** Soit g une fonction de classe \mathcal{C}^1 de [a,b] dans \mathbb{C}^* . On note : $\phi: t \mapsto \frac{1}{i} \int_a^t \frac{g'(s)}{g(s)} \, \mathrm{d}s$ et $\psi: t \mapsto g(t) \mathrm{e}^{-i\phi(t)}$.
 - **a.** Montrer que ϕ est de classe \mathcal{C}^1 .
 - **b.** Montrer que ψ est constante.
 - c. Montrer qu'il existe $\rho:[a,b]\to\mathbb{R}_+^*$ et $\theta:[a,b]\to\mathbb{R}$ tel que $:\forall t\in[a,b],\ g(t)=\rho(t)\mathrm{e}^{i\theta(t)}$.
- 3. Soit $\gamma:[a,b]\to\mathbb{C}^*$ de classe \mathcal{C}^1 tel que $\gamma(a)=\gamma(b)$. Montrer que $\frac{1}{2i\pi}\int_a^b\frac{\gamma'(t)}{\gamma(t)}\,\mathrm{d}t\in\mathbb{Z}$. Pouvait-on déduire la valeur à la question 1?

Ex 43: [CCINP]

- 1. Soit f la fonction définie pour t > 0 telle que $f(t) = \frac{\ln t}{(1+t)^2}$. Montrer que f est intégrable sur [0,1] et sur $[1,+\infty[$.
- 2. Calculer $\int_0^1 \frac{\ln t}{(1+t)^2} dt \text{ et } \int_1^{+\infty} \frac{\ln t}{(1+t)^2} dt.$

Ex 44 : [CCINP]

- 1. Montrer que pour $n \ge 3$, on a : $\int_3^n \frac{\ln(t)}{t} dt + \frac{\ln(2)}{2} \le \sum_{k=2}^n \frac{\ln(n)}{n} \le \int_3^n \frac{\ln(t)}{t} dt + \frac{\ln(2)}{2} + \frac{\ln(3)}{3}$.
- **2.** Montrer que $\ln^2(n) \ln^2(n-1) = \frac{2\ln(n)}{n} + \frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)$.
- 3. On pose $u_n = \frac{\ln(n)}{n} \frac{1}{2} \left(\ln^2(n) \ln^2(n-1) \right)$. Montrer qu'il existe $c \in \mathbb{R}$ tel que $\sum_{k=2}^n \frac{\ln(k)}{k} = \frac{\ln^2(n)}{2} + c + \varepsilon_n$, avec $\lim_{n \to +\infty} \varepsilon_n = 0$.

$$\underline{\mathbf{Ex}} \ \mathbf{45} : \mathrm{Soit} \ u_n = \sum_{k=1}^n (-1)^k \sqrt{k}.$$

1.

- **2.** Montrer que $u_{2n} = \sum_{k=1}^{n} \frac{1}{\sqrt{2k} + \sqrt{2k-1}}$.
- 3. Par comparaison série-intégrale montrer que $u_{2n} \sim \frac{\sqrt{2n}}{2}$.
- 4. Trouver un équivalent de u_n .
- **5.** On pose $v_n = u_{n+1} + u_n$. Nature de $\sum_{n \ge 1} (v_{n+1} v_n)$. Montrer que (v_n) converge vers l < 0.
- 6. Nature de $\sum \frac{1}{u_n}$.

- 1. Montrer que g est continue sur I, puis dérivable sur I si $n \geq 2$.
- **2.** Montrer que g est de classe C^{n+1} sur $I \setminus \{0\}$ et que : $\forall x \in I \setminus \{0\}, \ g^{(n)}(x) = \sum_{k=0}^{n} \frac{(-1)^{n-k} n! f^{(k)}(x)}{k! x^{n-k+1}}$.
- 3. Montrer que : $\forall x \in I \setminus \{0\}$, $g^{(n)}(x) = \frac{1}{x^{n+1}} \int_0^x t^n f^{(n+1)}(t) dt$, grâce à une formule de Taylor avec reste intégrale.

Ex 47: [CCINP] On note $I =]0, +\infty[$ et on fixe une fonction $f: I \to \mathbb{R}_+^{\star}$ telle que :

$$\begin{cases} \forall x \in I, \ f(x+1) = xf(x) \\ f(1) = 1 \\ \phi = \ln(f) \text{ est convexe.} \end{cases}$$

- 1. Tracer l'allure du graphe d'une fonction convexe et y placer trois points A, B et C d'abscisses croissantes. Classer alors, sans justification, les pentes des droites (AB), (BC) et (AC).
- **2.** Montrer que $\forall n \in \mathbb{N}^*$ et $\forall x \in]0,1]$:

$$\ln(n) \le \frac{\phi(n+1+x) - \phi(n+1)}{x} \le \ln(n+1).$$

3. Montrer que $\forall (n,x) \in \mathbb{N}^* \times [0,1]$:

$$0 \le \phi(x) - \ln\left(\frac{n!n^x}{x(x+1)\dots(x+n)}\right) \le x \ln\left(1 + \frac{1}{n}\right).$$

4. Montrer alors que f est unique, puis vérifier que f coïncide avec la fonction $\Gamma \colon x>0 \mapsto \int_0^{+\infty} t^{x-1} e^{-t} \mathrm{d}t$ d'Euler.

Ex 48 : [CCINP]

- 1. Soient a, b > 0. Calculer $\int_a^b \frac{\mathrm{d}t}{t^{3/2} + t^{1/2}}$.

 On effectuera le changement de variable $u = \sqrt{t}$.
- 2. Soit $n \in \mathbb{N}$. Justifier la convergence de : $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{3/2} + k^{1/2}}$.
- 3. Soit $n \in \mathbb{N}$. Montrer que : $2 \operatorname{Arctan} \frac{1}{\sqrt{n+1}} \leqslant R_n \leqslant 2 \operatorname{Arctan} \frac{1}{\sqrt{n}}$.
- 4. Déterminer un équivalent simple de R_n quand n tend vers $+\infty$.

Ex 49: [CCINP] Pour tout n de \mathbb{N}^* , on pose $I_n = \int_0^{+\infty} \frac{dx}{(1+x^3)^n}$.

1. a. Montrer que I_n est bien définie pour tout n de \mathbb{N}^* .

- **b.** Montrer que la suite (I_n) converge et calculer sa limite.
- **2. a.** Trouver une relation de récurrence entre I_n et I_{n+1} .
 - **b.** En déduire une autre méthode pour calculer la limite de (I_n) .

$$\underline{\mathbf{Ex}\ \mathbf{50}}: [\mathrm{CCINP}]\ \mathrm{Soit}\ S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n e^{-x\sqrt{n}}}{n}.$$

- 1. Montrer que S est bien définie sur \mathbb{R}^+ .
- **2.** Montrer que S est de classe C^1 sur \mathbb{R}^+ et calculer S'.

Ex 51: [CCINP] On pose pour
$$x \in \mathbb{R}$$
, $u_n(x) = (-1)^n \frac{e^{-nx}}{n}$ et $S(x) = \sum_{n=1}^{\infty} u_n(x)$.

- 1. Quel est le domaine de défintion de S?
- 2. Montrer que $S \in \mathcal{C}^0(\mathbb{R}_+)$.
- 3. Montrer que $S \in \mathcal{C}^1(\mathbb{R}_+^*)$.
- 4. Calculer S.

$$\underline{\mathbf{Ex}\ \mathbf{52}}: [\mathrm{CCINP}] \ \mathrm{On} \ \mathrm{pose} \ \zeta(t) = \sum_{n=1}^{+\infty} \frac{1}{n^t}.$$

- 1. Donner le domaine de définition et le sens de variation de ζ .
- 2. Étudier la continuité de ζ sur son domaine de définition.
- 3. Quelle est la limite de ζ en $+\infty$?
- **4.** Montrer que $\zeta(t) \underset{t \to 1^+}{\sim} \frac{1}{t-1}$. On pourra s'aider $\int_k^{k+1} \frac{dx}{x^t}$.
- **5.** Montrer que ζ est convexe.

Ex 53: Pour tout
$$n \in \mathbb{N}$$
, soit $f_n : x \mapsto nx^n(1-x)$

et
$$S: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$$
 quand c'est défini.

- 1. a. Etudier les convergences simples, uniformes et normales de $\sum f_n$.
 - $\boldsymbol{b}.$ Montrer que S est définie sur [0,1] et continue sur [0,1[.
- **2. a.** Expliciter S(x).
 - **b.** Montrer que $S(x) \sim \frac{1}{1-x}$.
 - \boldsymbol{c} . S est-elle continue en 1? Justifiez.

Ex 54: [CCINP] On considère la fonction d'une variable réelle : $F: x \mapsto \sum_{n=0}^{+\infty} \ln(1 + e^{-nx})$.

- 1. Déterminer le domaine D de définition de F.
- **2.** La fonction F est-elle continue sur D?

- 3. Montrer que F est monotone sur D.
- 4. Déterminer le domaine image F(D).

 $\underline{\mathbf{Ex}}$ 55 : [CCINP] Soit une suite (a_n) décroissante positive et qui converge vers 0. Pour $x \in [0,1]$, on note

$$u_n(x) = a_n x^n (1 - x).$$

- 1. Justifier que (a_n) est bornée.
- 2. Étudier la convergence simple de la série $\sum (u_n)$ sur [0,1]
- 3. Étudier la convergence uniforme de la série (on peut calculer le reste $\sum_{k=n+1}^{+\infty} x^k$).
- 4. Calculer la limite de $\left(\frac{n}{n+1}\right)^n$
- 5. Étudier la convergence normale de la série (on peut calculer la norme infinie de u_n)

$$\underline{\mathbf{Ex}} \ \mathbf{56} : [\text{CCINP}] \ \text{On pose} \ f : x \mapsto \sum_{n=1}^{+\infty} \frac{2x}{x^2 + n^2}.$$

- 1. Montrer que f est définie sur \mathbb{R} et est impaire.
- 2. La série converge-t-elle normalement sur \mathbb{R} ?
- 3. Montrer que f est continue sur \mathbb{R} .
- 4. Déterminer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- 5. Étudier la convergence uniforme sur $[1, +\infty[$.

$$\underline{\mathbf{Ex}\ \mathbf{57}}: \mathrm{Soit}\ f: t \mapsto \sum_{n=0}^{+\infty} \frac{e^{-nt}}{1+n^2}.$$

- 1. Déterminer l'ensemble E de définition de f.
- **2.** f est-elle continue sur E?
- 3. f est-elle dérivable sur $]0, +\infty[$?
- **4.** f est-elle de classe \mathcal{C}^{∞} sur $]0, +\infty[?]$

Ex 58: [CCINP]

- 1. Pour quelles valeurs de $x \in \mathbb{R}$ la série $\sum e^{-nx}$ converge-t-elle?
- **2.** Soit $n \in \mathbb{N}^*$. Montrer que $x \mapsto e^{-nx}$ est intégrable sur \mathbb{R}^+ .
- 3. Justifier l'existence et calculer $\int_0^{+\infty} x e^{-nx} dx$.
- 4. Montrer que $\int_0^{+\infty} \frac{\sin(x)}{e^x 1} dx = \sum_{n=1}^{+\infty} \frac{1}{1 + n^2}$.

Ex 59 : [CCINP]

- 1. Montrer que l'intégrale $\int_0^a \frac{x + \ln(1-x)}{x^2} dx$ est convergente pour tout $a \in]0,1[$.
- **2.** Montrer que $\int_0^a \frac{x + \ln(1-x)}{x^2} dx = -\sum_{n=1}^{+\infty} \frac{a^n}{n(n+1)}$
- 3. Montrer alors que $\int_0^1 \frac{x + \ln(1-x)}{x^2} dx$ est convergente et en déduire sa valeur.

<u>Ex 60</u> : [CCINP] Soit $r \in]-1,1[$. On définit $f_n: x \mapsto r^n \cos(nx)$, pour $n \in \mathbb{N}$.

- 1. Montrer que $\sum_{n\geq 0} f_n$ converge normalement sur \mathbb{R} .
- 2. Soit $x \in \mathbb{R}$. Déterminer la fonction S définie par $S: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$.
- 3. En déduire que : $\forall x \in \mathbb{R}, \ \frac{1 r^2}{1 + r^2 2r\cos(x)} = 1 + 2\sum_{n=1}^{+\infty} f_n(x).$
- 4. Soit $(k,n) \in \mathbb{N}^2$. Calculer $\int_0^{2\pi} \cos(kx) \cos(nx) dx$.
- 5. En déduire, pour k dans \mathbb{N} , l'expression de $I_k = \int_0^{2\pi} \frac{\cos(kx)}{1 + r^2 2r\cos(x)} dx$.

 $\underline{\mathbf{Ex} \ \mathbf{61}} : [\text{CCINP}] \ \text{Soit} \ p \geqslant 2 \ \text{entier et} \ (a_n)_{n \in \mathbb{N}} \ \text{la suite définie par} : a_n = \begin{cases} 1 & \text{si } n \equiv 0 \ [p] \\ -1 & \text{si } n \equiv 1 \ [p] \\ 0 & \text{sinon} \end{cases}$

- 1. Déterminer le rayon de convergence R de la série entière $\sum_{n=0}^{+\infty} a_n x^n$.
- 2. Calculer la somme de la série f(x), et l'écrire sous une forme simplifiée.
- 3. La série converge-t-elle uniformément sur] -R,R[?
- 4. Décomposer f(x) en éléments simples dans \mathbb{C} , écrire les coefficients sous forme trigonométrique.

$\underline{\mathbf{Ex} \ \mathbf{62}} : [\mathbf{CCINP}]$

- 1. Donner le rayon de convergence de $S: x \mapsto \sum_{n=0}^{\infty} (-1)^n \ln(n) x^n$.
- **2.** Montrer que, pour tout $x \in]-1,1[,S(x)=\frac{1}{1+x}\sum_{n=1}^{+\infty}(-1)^{n+1}\ln\left(1+\frac{1}{n}\right)x^{n+1}.$
- 3. Montrer que $\lim_{\substack{x \to 1 \\ x \le 1}} S(x) = \frac{1}{2} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln \left(1 + \frac{1}{n} \right).$
- 4. Calculer cette limite à l'aide de la formule de Wallis : $\frac{2}{\pi} = \prod_{k=1}^{+\infty} \left(1 \frac{1}{4k^2}\right)$.

 $\underline{\mathbf{Ex}} \ \mathbf{63}$: Soit $u_n = \int_0^1 \ln(1+t^n) dt$.

- 1. Donner le développement en série entière de $\ln(1+t)$.
- 2. Montrer, avec le théorème d'intégration terme à terme, que

$$u_n = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k(nk+1)}$$

- 3. Soit $f: x \mapsto \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k(k+x)}$.
 - **a.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+ .
 - **b.** Déterminer u_n en fonction de f.
 - **c.** On admet $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Montrer que $u_n \sim \frac{\pi^2}{12n}$.
- 4. Montrer que : $\exists \lambda \in \mathbb{R}, \ u_n = \frac{\pi^2}{12n} + \frac{\lambda}{n^2} + o\left(\frac{1}{n^2}\right).$
- **5.** Trouver $(a,b,c) \in \mathbb{R}^3$ en fonction de λ tels que $\int_0^1 \frac{t^n}{1+t^n} dt = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + o\left(\frac{1}{n^2}\right)$.

Ex 64: [CCINP] Soit (u_n) la suite définie par $u_0 = 3$ et $\forall n \in \mathbb{N}, u_{n+1} = \sum_{k=0}^{n} \binom{n}{k} u_k u_{n-k}$.

- 1. Montrer que : $\forall n \in \mathbb{N}, 0 \leqslant u_n \leqslant n!4^{n+1}$.
- 2. Soit $f: x \mapsto \sum_{n=0}^{+\infty} \frac{u_n}{n!} x^n$. Donner l'intervalle de définition de f et montrer que, sur cet intervalle, $f'(x) = f(x)^2$.
- 3. En déduire une expression de f à l'aide de fonctions usuelles.
- 4. Donner une expression de u_n .

Ex 65 : [CCINP] Soit (a_n) une suite réelle convergente de limite $a \in \mathbb{R}^*$.

- 1. Déterminer le rayon de convergence de la série entière $\sum_{n>1} \frac{a_n}{n} x^n$.
- 2. Rappeler le développement en série entière de ln(1-x) et son rayon de convergence.
- ${\it 3.}$ Rappeler la définition de la convergence de (a_n) vers a.
- 4. On note f la somme de la série entière susmentionnée. Montrer que, pour tout $\varepsilon > 0$, on peut trouver un majorant de $\left| \frac{f(x)}{\ln(1-x)} + a \right|$ de limite ε quand x tend vers 1^- . En déduire la convergence et la limite de $\frac{f(x)}{\ln(1-x)}$ ainsi qu'un équivalent simple de f(x) quand x tend vers 1^- .

Ex 66: [CCINP] On pose $a_0 = a_1 = 1$ et, pour $n \in \mathbb{N}$, $a_{n+2} = a_{n+1} + a_n$ et $u_n = \frac{a_n}{a_{n+1}}$.

- 1. Montrer que $u_{n+1} = \frac{1}{1+u_n}$ puis que $\frac{1}{2} \le u_n \le 1$ pour tout $n \in \mathbb{N}$.
- 2. a. Montrer que $f: x \mapsto \frac{1}{1+x}$ admet un point fixe dans [1/2, 1].

b. Montrer que (u_n) converge et calculer sa limite.

3. Soit
$$S: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$$
.

 \boldsymbol{a} . Préciser le rayon de convergence de S.

b. Prouver que
$$S(x) = \frac{1}{1 - x - x^2}$$
.

 \boldsymbol{c} . En déduire une expression explicite de a_n .

<u>Ex 67</u>: [CCINP] On note n et p deux entiers naturels avec n non nul et $p \le n$. On note N(n,p) le nombre de permutation de \mathfrak{S}_n avec p points fixes et on introduit D(n) = N(n,0) et D(0) = 1.

On considère f(x) la somme de la série entière de terme général $\frac{D_n}{n!}x^n$.

1. Par dénombrement montrer que
$$N(n,p) = \binom{n}{p} D(n-p)$$
 et que $\sum_{n=0}^{n} N(n,p) = n!$.

- 2. Montrer que la fonction f est définie sur]-1,1[et que $f(x)e^x=\frac{1}{1-x}$ pour tout $x\in]-1,1[$.
- 3. En déduire N(n,p).
- 4. Trouver la limite lorsque $n \to +\infty$ de $\frac{N(n,p)}{n!}$ en fonction de p. Interpréter.

$$\underline{\mathbf{Ex 68}}$$
: [CCINP] Pour $n \in \mathbb{N}^*$, soit $I_n = \int_0^{+\infty} \frac{1}{(1+x^3)^n}$.

- 1. Justifier la définition de I_n .
- 2. Montrer que la suite (I_n) converge et déterminer sa limite.
- 3. On pose, pour $n \in \mathbb{N}^*$, $u_n = (-1)^n I_n$. Montrer que $\sum u_n$ converge et déterminer la somme de cette série.

Ex 69: [CCINP] On donne
$$\sum \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

- 1. Déterminer le rayon de convergence et la limite en 1 de $f: x \mapsto \sum \frac{x^{2n+1}}{(2n+1)^2}$.
- 2. Déterminer le rayon de convergence de $g: x \mapsto \sum \frac{x^{2n+1}}{2n+1}$. Exprimer g à l'aide de ln. Donner les limites en en 1 et 0 de $x \mapsto \ln(x)g(x)$.
- 3. Soient a et b deux réels, 0 < a < b < 1. Montrer que $\int_a^b \frac{\ln(x)}{x^2 1} dx$ est bien définie.

4. Montrer que
$$\int_a^b \frac{\ln(x)}{x^2 - 1} dx = -\sum_{n \ge 0} \int_a^b \ln(x) x^{2n} dx$$
.

5. Calculer
$$\int_a^b \ln(x) x^{2n} dx$$
.

6. En déduire la valeur de
$$\int_0^1 \frac{\ln(x)}{x^2 - 1} dx$$
.

Ex 70: [CCINP] Soit (E): $(x^2 - 2)y' + xy = -2$.

- 1. Résoudre (E) sur $I =]-\sqrt{2}, \sqrt{2}[$.
- 2. On considère la série entière $\sum_{n=0}^{+\infty} \frac{n!}{1 \times 3 \times ... \times (2n+1)} x^{2n+1}$. Déterminer le rayon de convergence de cette série entière.
- 3. On note f la somme de la série entière précédente, trouver une équation différentielle dont f est solution.
- 4. Déterminer une expression simple de f.

$\mathbf{Ex} \ 71 : [\mathbf{CCINP}]$

- 1. Déterminer le développement en série entière de la fonction Arcsin.
- **2.** Justifier que la fonction f définie par : $\forall x \in]-1, 1[, f(x) = (Arcsin x)^2$ admet un développement en série entière.
- 3. Montrer que f est solution de l'équation différentielle : $(1-x^2)y'' xy' = 2$.
- 4. En déduire le développement en série entière de f.

Ex 72: Soit
$$(E): x^2y'' + 4xy' + (2 - x^2)y = 1$$
 et $(H): x^2y'' + 4xy' + (2 - x^2)y = 0$. On étudie les solutions de (E) et (H) sur $]0, +\infty[$.

1.

- 2. Montrer qu'il existe une unique solution DSE, qui vérifie (E) et la déterminer.
- 3. Montrer que $g: x \mapsto -\frac{1}{x^2}$ est solution de (E).
- 4. On admet que $h: x \mapsto \frac{\operatorname{sh}(x)}{x^2}$ est solution de (H). Déterminer toutes les solutions de (H).

$$\underline{\mathbf{Ex} \ 73}$$
: [CCINP] Pour tout $n \in \mathbb{N}$, on pose $a_n = \frac{n!}{1.3...(2n+1)}$.

- 1. Donner le rayon de convergence R de $\sum a_n x^{2n+1}$.
- **2.** Résoudre sur]-R,R[l'équation différentielle $(E):(2-x^2)y'-xy=2.$
- 3. Montrer que la somme f de $\sum a_n x^{2n+1}$ est solution de (E) sur]-R,R[.
- 4. Étudier la convergence aux bords de l'intervalle de convergence de cette série entière.

Ex 74: [CCINP] On définit
$$g: x \in \mathbb{R}_+^* \mapsto \int_0^{+\infty} \frac{e^{-xt}}{t+1} dt$$
.

- 1. Montrer que g est continue sur \mathbb{R}_+^* .
- 2. Montrer que g est dérivable sur \mathbb{R}_+^{\star} et trouver une équation différentielle simple vérifiée par g.
- 3. En déduire une autre expression (intégrale) de g et un équivalent de g en $+\infty$.

Ex 75: [CCINP] On pose
$$f(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$$
.

- 1. Montrer que f est dérivable sur \mathbb{R}_{+}^{*} .
- 2. Rappeler la définition de $\lim_{x\to 0}|f'(x)|=+\infty$. Montrer que :

$$\forall A > 0 \quad \forall x > 0 \quad |f'(x)| \ge \int_0^A \frac{t^2}{1+t^2} (1-xt^2) dt.$$

3. Montrer que $\lim_{x\to 0} f'(x) = -\infty$.

<u>Ex 76</u>: [CCINP] Soit k > 0 et $f: x \in \mathbb{R} \mapsto \int_0^1 t^k \sin(xt) dt$.

- 1. Montrer que f est définie et continue sur \mathbb{R} .
- 2. Montrer que f est dérivable sur \mathbb{R} , puis prouver que f vérifie la relation :

$$\forall x \in \mathbb{R}, \ xf'(x) + (k+1)f(x) = \sin(x)$$

3. Déterminer le développement en série entière de $y: \mathbb{R} \to \mathbb{R}$ telle que : $\forall x \in \mathbb{R}$, $xy'(x) + (k+1)y(x) = \sin(x)$. Donner, ensuite, le rayon de convergence du développement en série entière d'une telle fonction y.

$\mathbf{Ex} \ \mathbf{77} : [\mathbf{CCINP}]$

- 1. Soit $(a,b) \in (\mathbf{R}_+^*)^2$, calculer $\int \frac{1}{au^2 + b} du$.
- 2. Soit t tel que $\cos\left(\frac{t}{2}\right)$ ne s'annule pas. On pose $u=\tan\left(\frac{t}{2}\right)$, déterminer $\cos(t)$ en fonction de u.
- 3. On définit : $f: \begin{cases}]1; +\infty[\rightarrow \mathbb{R} \\ x \mapsto \int_0^{\pi} \ln(x + \cos(t)) dt \end{cases}$.

Montrer que f est de classe C^1 sur $]1; +\infty[$ puis montrer que $: \forall x \in]1; +\infty[, f'(x) = \frac{\pi}{\sqrt{x^2 - 1}}.$

<u>**Ex 78**</u>: [CCINP] On pose : $\forall x \in \mathbb{R}, \ g(x) = \int_0^1 \frac{e^{-(t^2+1).x^2}}{t^2+1} dt.$

- 1. Montrer que g est de classe \mathcal{C}^1 sur \mathbb{R} et calculer g'(x) pour tout x.
- 2. Exprimer g en fonction de $h: x \mapsto \int_0^x e^{-t^2} dt$.
- 3. Montrer que $\lim_{x \to +\infty} g(x) = 0$.

$$\underline{\mathbf{Ex}\ \mathbf{79}}: [\mathrm{CCINP}]\ \mathrm{Soit}\ f: x \mapsto \int_0^{+\infty} \frac{1 - \exp\left(-xt^2\right)}{t^2}\ \mathrm{d}t.$$

1. Domaine de définition de f?

2. Montrer que f est de classe \mathcal{C}^1 sur son domaine de définition.

3. Donner une expression simplifiée de
$$f(x)$$
. On donne $\int_0^{+\infty} \exp(-t^2) dt = \frac{\sqrt{\pi}}{2}$.

Ex 80 : [CCINP] On considère l'équation différentielle : (E): y'-2xy=1.

1. Montrer qu'il existe une unique solution développable en série entière vérifiant y(0) = 0.

2. Résoudre sous forme intégrale le problème de Cauchy (y'-2xy=1,y(0)=0).

3. Montrer que :
$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k} = \frac{4^n (n!)^2}{(2n+1)!}$$
.

Ex 81: [CCINP] Soient $E = \mathcal{C}^2(\mathbb{R}, \mathbb{R}), P$ (resp. I) le sous-espace des fonctions paires (resp. impaires) de E.

1. Montrer que $E = P \oplus I$.

2. Résoudre l'équation différentielle $y'' - y = \operatorname{ch} x$.

3. Trouver les fonctions $f \in E$ telles que $f''(x) - f(-x) = \operatorname{ch} x$ pour tout $x \in \mathbb{R}$.

Ex 82: Soit la matrice $A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$.

1. Déterminer les valeurs propres de A. Montrer qu'il existe un unique $\lambda \in \mathbb{R}$ tel que $B = A + \lambda I_2$ soit nilpotente.

2. Soit $t \in \mathbb{R}$, calculer e^{tA} et e^{tB} .

3. Résoudre le système d'équation différentiel $\begin{cases} x' = x - y \\ y' = x + 3y \end{cases}$

Ex 83 : [CCINP]

1. Montrer que, pour tout $t \in [0, \pi/2], \frac{2}{\pi}t \leqslant \sin(t) \leqslant t$.

2. Montrer que $F: x \in \mathbb{R} \mapsto \int_{0}^{\pi/2} \frac{\sin(t)}{t} e^{-xt} dt$ est bien définie sur \mathbb{R} .

3. Majorer F sur \mathbb{R}^* et en déduire sa limite en $+\infty$.

4. Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R} et calculer explicitement F'(x).

Ex 84: [CCINP] Soient
$$a \in \mathbb{R}$$
 et f définie par : $\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, f(x,y) = \frac{2x^2 + xy^2 + 6x^2y^2}{(x^2 + y^2)^a}.$

1. La fonction f est-elle prolongeable par continuité en (0,0)?

2. La fonction f possède-t-elle des dérivées partielles en (0,0)?

3. Étudier la différentiabilité de f en (0,0).

<u>Ex 85</u> : [CCINP] Soit $n \ge 2$, $\alpha_1, ..., \alpha_n$ des réels strictements positifs tels que $\sum_{i=1}^{n} \alpha_i = 1$.

On pose deux fonctions f et g tels que

$$\forall (x_1, ..., x_n) \in (\mathbb{R}_+)^n \quad f((x_1, ..., x_n)) = \begin{cases} \prod_{i=1}^n x_i^{\alpha_i} & \text{si } \prod_{i=1}^n x_i \neq 0 \\ 0 & \text{sinon} \end{cases} \text{ et } g((x_1, ..., x_n)) = \sum_{i=1}^n \alpha_i x_i.$$

On pose également $\Gamma = \{(x_1, ..., x_n) \in (\mathbb{R}_+)^n, g((x_1, ..., x_n)) = 1\}.$

- 1. Montrer que f admet un maximum μ sur Γ , en particulier sur $\Gamma \cap [0, +\infty]^n$.
- 2. Déterminer μ et $A \in \Gamma \cap [0, +\infty]^n$ tel que $f(A) = \mu$.
- 3. En déduire que

$$\forall (x_1, ..., x_n) \in (\mathbb{R}_+)^n \quad \prod_{i=1}^n x_i^{\alpha_i} \le \sum_{i=1}^n \alpha_i x_i$$

Ex 86: [CCINP] Soit $n \in \mathbb{N}$, soit une fonction f_n définie sur $[0;1]^n$ telle que

$$\forall (x_1, ..., x_n) \in [0; 1]^n, \ f_n(x_1, ..., x_n) = \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n \sqrt{1 - x_i^2}\right)$$

- 1. Montrer que f_n admet un minimum m_n et un maximum M_n , pour tout $n \in \mathbb{N}$.
- **2.** Calculer m_n .
- 3. a. Montrer que f_n est \mathcal{C}^1 sur $\Omega =]0;1[^n,$ et montrer qu'il existe un unique point critique $A \in \Omega$.
 - **b.** Soit $(x_1, ..., x_n) \in [0; 1]^n$. Montrer que $\forall i, j \in [1; n], x_i \sqrt{1 - x_j^2} + x_j \sqrt{1 - x_i^2} \le 1$.
 - **c.** Montrer que $M_n = f_n(A)$.

 $\underline{\mathbf{Ex}} \ \mathbf{87} : [\text{CCINP}] \ \text{Pour tout} \ s > 1, \ \text{on pose} \ \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$ Soit X une variable aléatoire telle que

$$X(\Omega) = \mathbb{N}^*, \ \forall n \in \mathbb{N}^* : \ P(X = n) = \frac{\lambda}{n^s}$$

- 1. Calculer λ . Trouver une condition nécessaire et suffisante pour que X admette une espérance. Puis une variance.
- **2.** Soit A_n : « n divise X » (avec $n \in \mathbb{N}^*$). Calculer $P(A_n)$. Étudier l'indépendance de A_n et A_m quand $n \wedge m = 1$.
- ${\it 3.}$ Montrer qu'en notant P l'ensemble des nombres premiers,

$$\frac{1}{\zeta(s)} = \prod_{p \in P} \left(1 - \frac{1}{p^s} \right)$$

 $\underline{\mathbf{Ex}}$ 88 : [CCINP] Soient X_1, \dots, X_n des variables aléatoires réelles admettant une variance. On introduit la matrice $S = (\operatorname{cov}(X_i, X_j))_{1 \leq i, j \leq n}$ et l'application définie sur $\mathbb{R}^n \setminus \{0\}$ par : $\forall U = (u_i)_{1 \leq i \leq n} \in \mathbb{R}^n \setminus \{0\}$

$$\mathbb{R}^n \setminus \{0\}, f(U) = \frac{1}{\|U\|^2} \mathbf{V} \left(\sum_{i=1}^n u_i X_i \right).$$

1. Montrer que S est diagonalisable.

2. Prouver que pour tout
$$U \in \mathbb{R}^n, U^T S U = \mathbf{V} \left(\sum_{i=1}^n u_i X_i \right)$$
.

- 3. On ordonne les valeurs propres de S dans l'ordre décroissant : $\lambda_n \leqslant \cdots \leqslant \lambda_1$. Soit $U \in \mathbb{R}^n \setminus \{0\}$.
 - **a.** Montrer que $U^T S U \leq \lambda_1 ||U||^2$.
 - **b.** En déduire que $f(U) \leq \lambda_1$. Prouver que cette inégalité est une égalité si et seulement si U est un vecteur propre de S associé à la valeur propre λ_1 .
- **4. a.** Soit $a \in]0,1[$. On choisit ici $S = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}$. Donner les valeurs propres de S.
 - **b.** En déduire $\max_{U \in \mathbb{R}^n \setminus \{0\}} f(U)$ et donner les vecteurs U pour lesquels ce maximum est atteint.

Ex 89: On a deux urnes opaques.

L'urne U contient n boules numéroté de 1 à n.

L'urne V contient des boules blanches en proportion p.

On tire une boule dans l'urne U et on note X la variable aléatoire associée au numéro k de cette boule

On tire k boules dans l'urne V et on note Y la variable aléatoire associée au nombre de boules blanches tirées.

- 1. Reconnaître la loi de X. Donnez son espérance et sa variance.
- 2. Calculez la loi de Y. Donnez son espérance
- 3. Calculez E(Y(Y-1)), en déduire la variance de Y.

$$\underline{\mathbf{Ex}}\ \mathbf{90}$$
: Soit $M=\begin{pmatrix} a & b \\ -b & 0 \end{pmatrix}$ avec $(a,b)\in\mathbb{R}^2.$

- ${\it 1.}$ Pour quelles valeurs de a et b M est-elle diagonalisable?
- 2. Soient $X \sim \mathcal{G}\left(\frac{1}{2}\right)$ et $Y \sim \mathcal{G}\left(\frac{1}{2}\right)$ telles que X et Y soient indépendantes. Quelle est la probabilité que $\begin{pmatrix} X & -Y \\ Y & 0 \end{pmatrix}$ soit diagonalisable?
- 3. Soit $A = \begin{pmatrix} 3 & -1 \\ 1 & 0 \end{pmatrix}$ et $N \sim \mathcal{P}(\lambda)$ avec $\lambda \in \mathbb{R}_+^*$. tr (A^N) admet-elle une espérance? Si oui, la calculer.

IMT MP 2024

 $\underline{\mathbf{Ex}\ \mathbf{91}}: [\mathrm{IMT}]\ \mathrm{Quel\ est\ le\ nombre\ d'applications}\ f: [\![1,n]\!] \to [\![1,n]\!]\ \mathrm{telles\ que}\ f\circ f = f\,?$

 $\underline{\mathbf{Ex}}\ \mathbf{92}$: [IMT] Soit l'anneau $A=(\mathcal{F}(\mathbb{R},\mathbb{R}),+,.)$ et $I_x=\{f\in A/f(x)=0\}.$

- 1. Montrer que I_x est un idéal.
- **2.** Montrer que si $x_1 \neq x_2$, $A = I_{x_1} + I_{x_2}$.

Ex 93: [IMT] Soit $P \in \mathbb{C}[X]$.

- 1. Déterminer le reste de la division euclidienne de P par (X-a)(X-b) (on pourra traiter les cas a=b et $a\neq b$).
- 2. Déterminer le reste de la division euclidienne de $(X+1)^{2n+1}-X^{2n}$ par X^2+X+1 .

Ex 94: Soient $(m, n) \in \mathbb{N}^*$.

- 1. Supposons que n divise m, Montrer que $X^n 1$ divise $X^m 1$.
- 2. Nous ne supposons plus que n divise m. Calculer le résultat de la division euclidienne de X^m-1 par X^n-1

Ex 95 : [IMT]

- 1. Soit $P \in \underline{\mathbb{C}[X]}$ de degré n. Montrer l'existence d'un polynôme $Q \in \mathbb{C}[X]$ tel que : $\forall \theta \in \mathbb{R}, \ \overline{P(e^{i\theta})} = e^{-in\theta}Q(e^{i\theta})$.
- 2. En déduire les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{U}) = \mathbb{U}$.

 $\underline{\mathbf{Ex}}$ 96 : [IMT] On considère la matrice $A \in \mathcal{M}_n(\mathbb{R})$ de coefficients $a_{i,j} = \sin(i+j)$. Calculer $\operatorname{rg}(A)$ et en déduire $\det(A)$. Ind. On pourra considérer $X = \begin{pmatrix} \cos(1) \\ \vdots \\ \cos(n) \end{pmatrix}$ et $Y = \begin{pmatrix} \sin(1) \\ \vdots \\ \sin(n) \end{pmatrix}$.

 $\underline{\mathbf{Ex}}\ \mathbf{97}$: [IMT] Soient $f \in \mathcal{L}\left(\mathbb{R}^2, \mathbb{R}^3\right)$ et $g \in \mathcal{L}\left(\mathbb{R}^3, \mathbb{R}^2\right)$ telles que $\mathrm{rg}(f \circ g) = 2$. Calculer $\mathrm{rg}\ f$ et $\mathrm{rg}\ g$.

Ex 98: [IMT] Soit E un espace vectoriel de dimension 4 et $u \in \mathcal{L}(E)$ de rang 2 tel que $u^2 = 0$.

- 1. Montrer que Ker(u) = Im(u).
- 2. Montrer qu'il existe une base \mathcal{B} telle que la matrice de u dans \mathcal{B} soit $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$

$$\underline{\mathbf{Ex}} \ \mathbf{99} : [\mathrm{IMT}] \ \mathrm{Soit} \ A = \begin{pmatrix} 0 & \alpha & \alpha^2 \\ \frac{1}{\alpha} & 0 & \alpha \\ \frac{1}{\alpha^2} & \frac{1}{\alpha} & 0 \end{pmatrix}$$
 Calculer A^2 , puis A^n pour tout $n \in \mathbb{N}$.

 $\underline{\mathbf{Ex}}\ \mathbf{100}$: [IMT] Soit P un polynôme annulateur d'une matrice carrée M non inversible. Montrer que P(0)=0.

Ex 101: [IMT] Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Montrer que det $(I_n + XX^T) = 1 + X^TX$.

$$\mathbf{\underline{Ex\ 102}}: [\mathrm{IMT}] \ \mathrm{On\ pose}\ A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right).$$

- 1. Expliciter P inversible et D diagonale telles que $A = PDP^{-1}$.
- 2. Soit $X \in \mathcal{M}_2(\mathbb{R})$ telle que $X^2 + X = A$ et $\Delta = P^{-1}XP$.
 - **a.** Calculer $\Delta^2 + \Delta$.
 - **b.** Montrer que D et Δ commutent. En déduire que Δ est diagonale.
- 3. Résoudre dans $\mathcal{M}_2(\mathbb{R})$ l'équation $X^2 + X = A$.

$$\underline{\mathbf{Ex} \ \mathbf{103}} : \mathbf{Soit} \ A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. A est-elle diagonalisable? trigonalisable?
- 2. Soit $M \in \mathcal{M}_3(\mathbb{R})$ telle que $M^2 = A$. Montrer que $\{0\} \subset Sp(M) \subset \{-1,0,1\}$.
- 3. Soit $T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. Montrer que $\exists P \in GL_3(\mathbb{R}), A = PTP^{-1}$.
- 4. Montrer que la dimension des sous-espaces propres de M est égale à 1.
- 5. Déterminer l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que : $M^2 = A$.

 $\underline{\mathbf{Ex}} \ \mathbf{104} : [\mathrm{IMT}]$ Soient E un espace vectoriel réel de dimension finie et $u \in \mathcal{L}(E)$ vérifiant : $u^3 + u = 0$.

- 1. Pour $x \in \text{Im } u$, calculer $u^2(x)$.
- 2. On note v l'endomorphisme induit par u sur $\operatorname{Im} u$. Montrer que v est un isomorphisme.
- 3. Montrer que rg u est pair.

 $\underline{\mathbf{Ex}}$ 105 : [IMT] Soient u et v deux endomorphismes nilpotents et non nuls de \mathbb{R}^n qui commutent. On note \tilde{v} l'endomorphisme induit par v sur $\mathrm{Im}(u)$.

- 1. Montrer que l'endomorphisme \tilde{v} est bien défini et en déduire que $\operatorname{rg}(v \circ u) < \operatorname{rg}(u)$.
- **2.** Soient A_1, \ldots, A_n des matrices nilpotentes d'ordre n commutant deux à deux. Montrer que leur produit est nul.

 $\underline{\mathbf{Ex}\ \mathbf{106}} : [\mathrm{IMT}] \ \mathrm{On} \ \mathrm{pose} \ A = \left(\begin{array}{ccc} 1 & 0 & a \\ 0 & 2 & 0 \\ 0 & 0 & a \end{array} \right), \ \mathrm{où} \ a \in \mathbb{R}. \ \mathrm{La} \ \mathrm{matrice} \ A \ \mathrm{est\text{-elle inversible?}} \ \mathrm{diagonalisable?}$ lisable?

$$\underline{\mathbf{Ex}\ \mathbf{107}}: [\mathrm{IMT}]\ \mathrm{Soient}\ x \in \mathbb{R}\ \mathrm{et}\ A = \left(\begin{array}{ccc} x & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{array}\right).$$

- 1. La matrice A est-elle diagonalisable?
- 2. La matrice A est-elle inversible? Si oui, calculer son inverse.

$\underline{\mathbf{Ex}} \ \mathbf{108} : [\mathrm{IMT}] \ \mathrm{Soit} \ n \in \mathbb{N}.$

On considère la matrice $A = (a_{i,j})_{1 \le i,j \le n}$ telle que, pour tout $(i,j) \in \mathbb{N}^2$, $a_{i,j} = \begin{cases} i & \text{si } j = n \\ j & \text{si } i = n \\ 0 & \text{sinon} \end{cases}$

- 1. La matrice A est-elle diagonalisable?
- 2. Déterminer ses éléments propres.

Ex 109: Trouver toutes les matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M^5 = M^2$ et tr(M) = n.

 $\underline{\mathbf{Ex}}$ 110 : [IMT] Soit $A \in \mathcal{M}_n(\mathbb{C})$ dont le polynôme caractéristique est scindé à racines simples.

- 1. Montrer que $(I_n, A, \ldots, A^{n-1})$ est libre.
- **2.** Soit $B \in \mathcal{M}_n(\mathbb{C})$ telle que AB = BA. Montrer que B est combinaison linéaire de (I_n, A, \dots, A^{n-1}) .

Ex 111 : [IMT]

- 1. Montrer que $P = X^3 X 1$ admet une unique racine réelle et qu'elle est strictement positive.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que P(A) = 0. Montrer que det A > 0.

Ex 112: [IMT] Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $f_A : M \in \mathcal{M}_n(\mathbb{R}) \mapsto M - 2\operatorname{Tr}(M)A$.

- 1. Montrer que f est un endomorphisme.
- 2. Donner une condition nécessaire et suffisante de bijectivité de f_A .
- ${\it 3.}$ Dans le cas de non bijectivité, montrer que f_A est un projecteur.
- 4. L'endomorphisme f_A est-il diagonalisable?

Ex 113: [IMT] On se place dans $E = \mathbb{R}_n[X]$. On considère $f: P \mapsto X(X+1)P' - nXP$.

- 1. Montrer que f est un endomorphisme de E.
- 2. Déterminer les élements propres de f. L'endomorphisme f est-il diagonalisable?

Ex 114: [IMT] Soit $\phi \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ défini par $M \mapsto (\operatorname{Tr} M)I_n - M$.

- 1. Montrer que $-1 \in \operatorname{Sp}(\phi)$ et déterminer la dimension de $E_{-1}(\phi)$.
- 2. Est-ce que ϕ est diagonalisable?
- 3. Calculer $\det(\phi)$.

Ex 115 : Soit E un ev de dimension finie et $(u, v) \in \mathcal{L}^2$.

Montrer que si λ est valeur propre de $u \circ v$ alors elle est valeur propre de $v \circ u$.

Ex 116 : [IMT] Soit E un \mathbb{C} espace vectoriel de dimension n. Soit $u, v \in \mathcal{L}(E)$. On considère ϕ définie sur $\mathcal{L}(E)$ par $\phi(v) = u \circ v$.

- 1. Montrer que ϕ est un endomorphisme de $\mathcal{L}(E)$.
- 2. Montrer que $\lambda \in \operatorname{Sp}(u) \Leftrightarrow \lambda \in \operatorname{Sp}(\phi)$.
- 3. Montrer que si v est un vecteur propre de ϕ associé à λ , alors $\operatorname{Im} v \subset \operatorname{Ker}(u \lambda \operatorname{Id})$.
- 4. Montrer que si u est diagonalisable, alors ϕ l'est aussi.

Ex 117: [IMT] Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soit $\psi : M \mapsto (\operatorname{Tr} A)M + (\operatorname{Tr} M)A$.

- 1. L'endormorphisme ψ est-il diagonalisable?
- 2. Donner son polynôme caractéristique et sa trace.

Ex 118: [IMT] Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$. Soit $f \in \mathcal{L}(E)$ diagonalisable. On considère $\varphi : \mathcal{L}(E) \to \mathcal{L}(E)$ tel que : $\forall u \in \mathcal{L}(E), \varphi(u) = f \circ u$.

- 1. Montrer que φ est diagonalisable.
- 2. Calculer les valeurs et vecteurs propres de φ .

Ex 119 : [IMT] On considère l'endomorphisme $T:(u_n)\in\mathbb{R}^{\mathbb{N}}\mapsto(w_n)$ où $w_n=\frac{1}{n+1}\sum_{k=0}^nu_k$. Déterminer les éléments propres de T.

$$\underline{\mathbf{Ex}\ \mathbf{120}}: [\mathrm{IMT}]\ \mathrm{Soit}\ \varphi: \left\{ \begin{array}{ll} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ A & \mapsto & -A + tr(A)I_n \end{array} \right..$$

- 1. Montrer que φ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Déterminer le spectre de φ .
- 3. Montrer que Ker(tr) est un hyperplan de $\mathcal{M}_n(\mathbb{R})$.
- 4. Est-ce que φ est diagonalisable?

Ex 121: [IMT] Soit $E = \mathbb{R}_4[X]$ et Φ défini par $\Phi(P)(X) = 2X^4 P(\frac{1}{X}) + P(X)$ pour tout $P \in E$.

- 1. Montrer que Φ est un endomorphisme.
- 2. Calculer les éléments propres de Φ (vecteurs propres et valeurs propres), Φ est il diagonalisable?

 $\underline{\mathbf{Ex}} \ \mathbf{122} : [\mathrm{IMT}] \text{ On pose } E = \mathbb{R}[X].$

1. Montrer que

$$\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t}dt$$

définit un produit scalaire sur E.

- **2.** Calculer $\varphi(X^p, X^q)$ pour (p, q) dans \mathbb{N}^2 .
- 3. Orthonormaliser la base $(1, X, X^2)$ à l'aide du procédé d'orthonormalisation de Gram-Schmidt.

 $\underline{\mathbf{Ex}\ \mathbf{123}}$: [IMT] On munit \mathbb{R}^4 de sa structure euclidienne canonique. Déterminer une base orthogonale de F et de F^{\perp} pour :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + 2z = 0 \text{ et } t + x + y = 0\}$$

 $\underline{\mathbf{Ex}}$ 124 : [IMT] On considère le \mathbb{R} -espace vectoriel \mathbb{R}^4 , que l'on munit de sa structure euclidienne canonique, et le plan \mathcal{P} d'équations :

$$\begin{cases} x + y + z + t = 0 \\ x - y + z - t = 0 \end{cases}$$

On note s la symétrie orthogonale par rapport à \mathcal{P} .

Donner l'expression de la matrice de s dans la base canonique.

Ex 125 : [IMT] Soit E un espace euclidien de dimension n. Soient $(u, v) \in E^2$ fixés quelconques. On pose : $\forall x \in E$, $u \otimes v(x) = \langle v | x \rangle u$

- 1. Montrer que $u \otimes v$ est un endomorphisme et déterminer son rang.
- 2. Déterminer les éléments propres de $u \otimes v$. L'endomorphisme est-il diagonalisable?

Ex 126: [IMT] Soit $(E, \langle \cdot, \cdot \rangle)$ espace euclidien. On définit $f: x \mapsto x + \langle a, x \rangle b$ où $a, b \in E$. Les espaces Ker f et Im f sont-ils supplémentaires?

Ex 127 : [IMT] Soit E un espace euclidien. Soit (e_1, \ldots, e_n) une famille liée de vecteurs unitaires de E, deux à deux distincts, pour laquelle il existe $\alpha \in \mathbb{R}$ tel que

$$\forall (i,j) \in [1,n]^2 \quad i \neq j \Longrightarrow \langle e_i | e_j \rangle = \alpha$$

- 1. Montrer que $\sum_{i=1}^{n} e_i = 0$ et $\alpha = -\frac{1}{n-1}$.
- **2.** Montrer que dim E = n 1.

Ex 128: [IMT] Soit E un espace euclidien, soit $f \in \mathcal{L}(E)$, et soit $u = f^* \circ f$.

- 1. Montrer que u est diagonalisable, et que son spectre est inclus dans \mathbb{R}_+ .
- 2. Montrer qu'il existe $g \in \mathcal{S}(E)$ tel que : $g^2 = u$.

Ex 129 : [IMT] On munit $\mathcal{M}_n(\mathbb{R})$ de sa structure euclidienne canonique.

- 1. Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Exprimer en fonction des coefficients de M la distance de M à $\mathcal{S}_n(\mathbb{R})$.

Ex 130 : [IMT]

- 1. Montrer que l'espace des matrices symétriques et l'espace des matrices antisymétriques sont supplémentaires orthogonaux dans l'espace des matrices carrées réelles de taille n muni de sa structure euclidienne canonique.
- 2. Déterminer la distance de la matrice M suivante à l'espace des matrices antisymétriques : $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

<u>Ex 131</u>: [IMT] Soit E un espace euclidien de dimension n (on identifiera $\mathcal{M}_{n,1}(\mathbb{R})$ et \mathbb{R}^n . Soit $M \in S_n(\mathbb{R})$. On note $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$ ses valeurs propres comptées avec leur multiplicité. On pose $\varphi_A(X) = X^T A X$, pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

- 1. Montrer que : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ \lambda_1 ||X||^2 \leq \varphi_A(X) \leq \lambda_n ||X||^2$.
- 2. Trouver une condition nécessaire et suffisante pour que $\varphi_A^{-1}(\{1\})$ soit un compact non vide.

Ex 132: [IMT] Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 euclidien. Donner la matrice de la rotation R autour de la droite D d'équation x - y + z = x + y + z = 0 et telle que $R(e_1) = \frac{1}{\sqrt{2}}(e_1 + e_3)$.

Ex 133: [IMT] Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Donner la définition de $\exp(A)$.
- **2.** Soit $A \in A_n(\mathbb{R})$. Montrer que $\exp(A) \in SO_n(\mathbb{R})$

 $\underline{\mathbf{Ex}} \ \mathbf{134} : [\mathrm{IMT}] \ \mathrm{Soit} \ X \in \mathcal{M}_n(\mathbb{R}) \ \mathrm{telle} \ \mathrm{que} : XX^TX = -I_n.$

- 1. Montrer que $X \in \mathcal{S}_n(\mathbb{R})$.
- **2.** Déterminer X.

Ex 135 : [IMT] Soit (E, ||||) un espace vectoriel normé de dimension finie et u une suite d'éléments de E telle que $\forall x \in E, (||u_n - x||)_{n \in \mathbb{N}}$ converge.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ admet une valeur d'adhérence.
- **2.** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

Ex 136: [IMT] Soit E un \mathbb{R} -espace vectoriel et soient A et B deux parties de E. On pose : $A + B = \{a + b : a \in A, b \in B\}$.

- 1. Montrer que si A et B sont compacts, alors A + B est compact.
- 2. Montrer que si A est fermé et B compact, alors A+B est fermé.

Ex 137 : [IMT] Soient $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ et f l'endomorphisme de \mathbb{R}^n associé à A dans une base (e_1,\ldots,e_n) . Soit t>0. On note \mathcal{B} la base $\left(\frac{e_1}{t},\ldots,\frac{e_n}{t^n}\right)$.

- 1. Déterminer $Mat_{\mathcal{B}}(f)$.
- 2. Soit $N \in \mathcal{M}_n(\mathbb{R})$. On note $\operatorname{Sim}(N)$ la classe de similitude de N. Montrer que la matrice N est nilpotente si et seulement si la matrice nulle est dans l'adhérence de $\operatorname{Sim}(N)$.

Ex 138: [IMT] Considérons la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \ln(1 + u_n) \end{cases}$$

- 1. Déterminer la limite éventuelle de $(u_n)_{n\in\mathbb{N}}$.
- 2. Déterminer la limite de $\left(\frac{1}{u_{n+1}} \frac{1}{u_n}\right)_{n \in \mathbb{N}}$
- 3. En déduire un équivalent de $(u_n)_{n\in\mathbb{N}}$.

Ex 139: [IMT] On note I_n l'intervalle $[2n\pi, 2n\pi + \pi/2]$, pour tout $n \in \mathbb{N}$.

- 1. Soit $n \in \mathbb{N}$. Montrer que l'équation $\sin(x) = e^{-x}$ admet une unique solution dans I_n , notée par la suite x_n . Qu'en est-il sur \mathbb{R}^+ ?
- **2.** Montrer que $x_n \to +\infty$.
- 3. Déterminer un développement asymptotique à deux termes de x_n .

Ex 140: [IMT] Pour $n \in \mathbb{N}^*$, on pose $d_n = \frac{1! + 2! + \cdots + n!}{n!}$.

- 1. Donner une relation entre d_{n+1} et d_n .
- $\boldsymbol{2.}$ Montrer par récurrence que d_n est majorée par 2.
- 3. En déduire la convergence de (d_n) .
- **4.** Étudier la série $\sum \frac{d_n}{n^{\alpha}}$, $\alpha \in \mathbb{R}$.

Ex 141: [IMT] Pour tout $n \in \mathbb{N}$, on pose $g_n : t \mapsto \ln t - \arctan t - n\pi$.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique $x_n \in \mathbb{R}^{+*}$ tel que $g_n(x_n) = 0$.
- 2. Montrer que, pour tout $n \in \mathbb{N}$, $e^{n\pi} < x_n$. En déduire la nature de la série $\sum \frac{1}{x_n}$.

Ex 142: [IMT] Soit
$$(a_n)_{n\in\mathbb{N}} \in (\mathbb{R}_+^*)^{\mathbb{N}}$$
. On pose : $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n a_k$. On suppose que $\lim_{n \to \infty} a_n S_n = 1$.

1. Montrer que $\lim_{n\to +\infty} a_n = 0$ et que $(S_n)_{n\in\mathbb{N}}$ diverge.

2. Montrer que $S_{n+1} \sim S_n$.

Ex 143 : [IMT] Déterminer la nature de la série de terme général $\frac{1}{n \ln(n) \ln(\ln(n))}$.

 $\underline{\mathbf{Ex}} \ \mathbf{144} : [\mathrm{IMT}] \ \mathrm{Soit} \ (u_n) \ \mathrm{définie} \ \mathrm{par} \ u_0 \in \mathbb{R} \ \mathrm{et}, \ \mathrm{pour} \ n \in \mathbb{N}, u_{n+1} = \frac{e^{-u_n}}{n+1}.$ Nature de $\sum u_n$? de $\sum (-1)^n u_n$?

Ex 145 : [IMT] Donner la nature des séries de termes général u_n avec :

1.
$$u_n = n^a \left(1 - \cos\left(\frac{1}{n}\right)\right)$$
, pour a réel.

2. $u_n = n^{1/n^2} - 1$.

 $\underline{\mathbf{Ex}} \ \mathbf{146} : [\mathrm{IMT}]$ Donner une condition nécessaire et suffisante d'existence de $\int_0^{+\infty} x^{\alpha} (1 - \mathrm{e}^{-\frac{1}{\sqrt{x}}}) \, \mathrm{d}x$ quand $\alpha \in \mathbb{R}$.

Ex 147: Convergence de $\int_0^{+\infty} x^3 \sin(x^8) dx$.

Ex 148: [IMT] Soit $f: x \mapsto \int_{x}^{+\infty} \frac{\sin(t)}{t^2} dt$.

- 1. Montrer que f est définie et dérivable sur \mathbb{R}_+^* .
- $\boldsymbol{2}$. Donner un équivalent de f en 0.
- 3. Montrer que f est intégrable sur \mathbb{R}_+^* .

 $\underline{\mathbf{Ex}\ \mathbf{149}}: [\mathrm{IMT}] \ \mathrm{Existence} \ \mathrm{et} \ \mathrm{calcul} \ \mathrm{de} \ \int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(x-z)^2}, \ \mathrm{avec} \ z \in \mathbb{C} \setminus \mathbb{R}.$

 $\underline{\mathbf{Ex}} \ \mathbf{150} : [\mathrm{IMT}] \ \mathrm{Soit} \ S : x \mapsto \sum_{n=1}^{+\infty} \frac{\mathrm{e}^{-xn}}{n}.$

- 1. Préciser l'ensemble de définition réel D de S.
- **2.** Calculer S(x) pour tout $x \in D$.
- ${\it 3.}$ Quelles sont les limites de S aux bornes de D?
- 4. L'intégrale $\int_0^{+\infty} S(x) dx$ est-elle convergente?

 $\underline{\mathbf{Ex}}\ \mathbf{151}$: [IMT] On s'intéresse pour x dans \mathbb{R}_+ à la série

$$\sum_{n\geq 0} (-1)^n \frac{e^{-nx}}{n+1}.$$

- a. Étudier sa convergence simple.
- **b.** Converge-t-elle normalement?
- c. Uniformément?

On note S sa somme.

- **d.** Montrer que S est continue sur \mathbb{R}_+ .
- e. Déterminer la limite de S en $+\infty$.
- **f.** Donner une expression de S sur \mathbb{R}_+ .

Ex 152: [IMT] On considère la fonction $g: x \mapsto \sum_{n=0}^{+\infty} \frac{e^{-nx}}{1+n^2}$.

- 1. Montrer que g est de classe C^2 sur \mathbb{R}^{+*} .
- 2. Calculer g''(x) et en déduire une équation différentielle vérifiée par g.
- 3. Déterminer $\lim_{x \to +\infty} g(x)$.

 $\underline{\mathbf{Ex}} \ \mathbf{153} : [\mathrm{IMT}] \ \mathrm{Montrer} \ \mathrm{que} \ S : x \mapsto \sum_{k=1}^{+\infty} \left(\ln \left(1 + \frac{x}{n} \right) - \frac{x}{n} \right) \ \mathrm{est} \ \mathrm{bien} \ \mathrm{définie} \ \mathrm{et} \ \mathrm{de} \ \mathrm{classe} \ \mathcal{C}^1 \ \mathrm{sur} \ [0,1] \ \mathrm{et} \ \mathrm{calculer} \ S'(1).$

 $\underline{\mathbf{Ex}} \ \mathbf{154} : [\mathrm{IMT}] \ \mathrm{Montrer} \ \mathrm{que} \ f : x \mapsto \sum_{k=1}^{+\infty} (-1)^k \ln \left(1 + \frac{x}{k}\right) \ \mathrm{est} \ \mathrm{de} \ \mathrm{classe} \ \mathcal{C}^1 \ \mathrm{sur} \ \mathbb{R}^+.$

Ex 155: [IMT] On pose $f(x) = \sum_{i=1}^{\infty} \frac{\exp(-nx)}{n^2}$.

- 1. Montrer que f(x) est continue sur \mathbb{R}_+ .
- 2. Montrer que f est $C^1(\mathbb{R}_+^*)$.
- 3. Montrer que f est $C^2(\mathbb{R}_+^*)$.
- 4. Calculer f'' sur \mathbb{R}_+^* et en déduire une expression de f sur \mathbb{R}_+

 $\underline{\mathbf{Ex}\ \mathbf{156}}: [\mathrm{IMT}]\ \mathrm{Soit}\ f: x \mapsto \sum_{n\geqslant 1} nxe^{-nx^2}.$

- 1. Déterminer le domaine de définition de f.
- 2. Étudier les modes de convergence de cette série de fonctions.

3. Donner une expression simplifiée de f(x).

$$\underline{\mathbf{Ex}}\ \mathbf{157}: [\mathrm{IMT}]\ \mathrm{Soit}\ f: x \mapsto \sum_{n=0}^{+\infty} \frac{1}{1+x^n}.$$

- 1. Étudier la convergence simple de la série sur l'intervalle $[1, +\infty[$.
- 2. Étudier la convergence uniforme de la série.
- 3. La série converge-t-elle uniformément sur l'intervalle $]1, +\infty[?]$

Ex 158: [IMT] On définit, pour tout $n \in \mathbb{N}^*$, $f_n : x \mapsto \frac{2x}{x^2 + n^2}$. On pose

$$S = \sum_{n=1}^{+\infty} f_n.$$

- 1. Étudier la converge simple de la série de fonctions $\sum f_n$.
- 2. Étudier la condituité de S sur son ensemble de définition.
- 3. Déterminer les limites de S en $+\infty$ et $-\infty$.

Ex 159: [IMT] Soit
$$(a,b) \in (\mathbb{R}_+^*)^2$$
 et $f: t \mapsto \frac{t^{a-1}}{1+t^b}$.

- 1. Justifier l'intégrabilité de f sur]0,1].
- 2. Montrer que :

$$\int_0^1 f(t) dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a + nb}.$$

On fixe
$$b > 0$$
 et on pose $F(a) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb}$.

3. Déterminer un équivalent de F(a) quand a tend vers $+\infty$.

 $\underline{\mathbf{Ex}} \ \mathbf{160} : [\mathrm{IMT}]$ Existence et calcul de $\int_0^1 \frac{\ln(t) \ln(1-t)}{t} \, \mathrm{d}t$ (on pourra faire appaître une somme).

Ex 161: [IMT] Montrer que :
$$\int_0^{2\pi} e^{2\cos(x)} dx = \sum_{n=0}^{\infty} \frac{2\pi}{(k!)^2}$$

 $\underline{\mathbf{Ex}} \ \mathbf{162} : [\mathrm{IMT}] \ \mathrm{On} \ \mathrm{considère} \ \sum_{n\geqslant 1} \frac{1}{n} \exp(-nx) : \mathrm{montrer} \ \mathrm{que} \ \mathrm{la} \ \mathrm{somme} \ \mathrm{de} \ \mathrm{cette} \ \mathrm{série} \ \mathrm{est} \ \mathrm{intégrable} \ \mathrm{sur} \ \mathbb{R}_+^*.$

Ex 163: [IMT] $\forall n \in \mathbb{N}$, on pose $a_n = \int_0^{\frac{\pi}{4}} \tan^n(t) dt$.

- 1. déterminer la limite de (a_n) .
- 2. Déterminer une relation entre a_n et a_{n+2} .
- 3. Quel est le rayon de convergence de $\sum a_n x^n$?
- 4. Calculer la somme de cette série entière.

Ex 164 : [IMT] Déterminer le rayon de convergence de la série entière $\sum_{n\geqslant 2}u_nx^n$, puis l'ensemble de définition de sa somme où : $u_n = \ln\left(\frac{(-1)^n + \sqrt{n}}{\sqrt{n+1}}\right)$.

Ex 165: [IMT] On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}$ $a_n=\int_0^1\left(\frac{1+t^2}{2}\right)^n\,dt$.

- 1. Donner le rayon de convergence de $\sum a_n x^n$.
- 2. Calculer $\sum_{n=0}^{+\infty} (-1)^n a_n$.

Ex 166: [IMT] On pose $\forall n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{k}$

1. Déterminer le rayon de convergence de la série entière $\sum S_n x^n$. On note R un tel rayon de convergence.

On définit f par la fonction suivante : $f: \left\{ \begin{array}{ccc}]-R; R[& \to & \mathbb{R} \\ & x & \mapsto & \sum_{n=1}^{\infty} S_n x^n \end{array} \right.$

2. Déterminer f. (On pourra remarquer que $\forall n \in \mathbb{N}^* x^n = A_n - A_{n-1}$ avec $A_n = \sum_{k=0}^n x^k$)

Ex 167: [IMT] Rayon de convergence et somme de la série $\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$.

 $\mathbf{\underline{Ex}\ 168}:[\mathrm{IMT}]$

- 1. Démontrer que $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$.
- 2. Donner une valeur approchée de π à 10^{-10} près.

Ex 169: [IMT] Soit
$$f(x) = \sum_{n=1}^{+\infty} x^{n^2}$$

- 1. Déterminer l'Iitervalle de définition de f.
- 2. Trouver un équivalent simple de f(x) quand x tend vers 1.

 $\underline{\mathbf{Ex}} \ \mathbf{170} : [\mathrm{IMT}] \ \mathrm{Soit} \ f : z \mapsto \sum_{n=0}^{+\infty} a_n z^n \ \mathrm{une} \ \mathrm{s\acute{e}rie} \ \mathrm{enti\grave{e}re} \ \mathrm{de} \ \mathrm{rayon} \ \mathrm{de} \ \mathrm{convergence} \ \mathrm{infini}.$

- 1. Montrer que pour r > 0 et $n \in \mathbb{N}$, on a $a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(re^{it}\right) e^{-int} dt$.
- 2. Montrer que si f est bornée alors elle est constante.

 $\underline{\mathbf{Ex}} \ \mathbf{171} : [\mathrm{IMT}] \ \mathrm{Soit} \ \alpha \in \mathbb{R}. \ \mathrm{On \ pose, \ pour} \ n \in \mathbb{N}, I_n = \int_0^1 t^n |\ln(1-t)|^{\alpha} \mathrm{d}t.$

- 1. Pour quelles valeurs du réel α l'intégrale I_n converge-t-elle?
- 2. Déterminer la limite de (I_n) .
- 3. La série $\sum I_n$ converge-t-elle?

 $\underline{\mathbf{Ex}}$ 172 : [IMT] Déterminer toutes les fonctions f développables en série entière sur $\mathbb R$ qui vérifient (E): 2xy'' + y' - y = 0, y(0) = 1.

Ex 173: [IMT] On pose $a_n = \frac{4^n}{(2n+1)!} (n!)^2$ pour tout $n \in \mathbb{N}$ et $f(x) = \sum_{n=0}^{+\infty} a_n x^{2n+1}$.

- 1. Justifier que f est définie et de classe \mathcal{C}^{∞} sur]-1,1[.
- 2. En déterminant une relation de récurrence entre a_{n+1} et a_n , montrer que f vérifie l'équation différentielle $f'(x) = 1 + x^2 f'(x) + x f(x)$. En déduire l'expression de f.

 $\underline{\mathbf{Ex}} \ \mathbf{174} : [\mathrm{IMT}] \ \mathrm{Soit} \ I_n = \int_0^{\pi/4} \tan(x)^n \ \mathrm{d}x.$

- 1. Montrer que $\lim_{n\to\infty} I_n = 0$.
- 2. Calculer $I_n + \stackrel{n \to \infty}{I_{n+2}}$.
- 3. Calculer $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$. Ind. On fera apparaı̂tre un télescopage.
- 4. Retrouver directement ce résultat.

 $\underline{\mathbf{Ex}} \ \mathbf{175} : [\mathrm{IMT}] \ \mathrm{En} \ \mathrm{se} \ \mathrm{ramenant} \ \mathrm{\grave{a}} \ \mathrm{une} \ \mathrm{\acute{e}quation} \ \mathrm{diff\acute{e}rentielle}, \ \mathrm{calculer} \ \int_0^{+\infty} \cos(xt) e^{-t^2} \ \mathrm{d}t \ \mathrm{pour} \ x \in \mathbb{R}.$

 $\underline{\mathbf{Ex}} \ \mathbf{176} : [\mathrm{IMT}] \ \mathrm{Soit} \ \varphi : x \longmapsto \int_0^{+\infty} \frac{\sin(t)}{t} e^{-tx} dt.$

- 1. Montrer que φ est \mathcal{C}^1 sur $]0; +\infty[$.
- **2.** Calculer $\varphi'(x)$ pour tout $x \in \mathbb{R}_+^*$.
- 3. En déduire $\varphi(x)$.

$\mathbf{\underline{Ex}} \ \mathbf{177} : [\mathbf{IMT}]$

- 1. Pour x > 0, montrer que $F(x) = \int_0^{+\infty} e^{-xt} dt$ converge et la calculer.
- 2. Montrer que F est de classe \mathcal{C}^{∞} et trouver deux expressions de $F^{(n)}$ pour $n \in \mathbb{N}$.

$$\underline{\mathbf{Ex}} \ \mathbf{178} : [\mathrm{IMT}] \ \mathrm{Soit} \ f : x \in \mathbb{R}_+ \longmapsto \int_0^{+\infty} \frac{\mathrm{e}^{-t}}{x+t} \, \mathrm{d}t.$$

- 1. Déterminer le domaine de définition de f.
- 2. f est-elle continue? Est-elle de classe C^1 ?
- 3. Donner un équivalent de f en $+\infty$, puis en 0^+ .

Ex 179: [IMT]

- 1. Déterminer le domaine de définition D_F de $F: x \mapsto \int_0^{+\infty} e^{-xt} \frac{\sinh t}{t} dt$.
- 2. Montrer que F est de classe C^1 et calculer sa dérivée.
- 3. En déduire F(x) pour tout $x \in D_F$.

$$\underline{\mathbf{Ex}} \ \mathbf{180} : [\mathrm{IMT}] \ \mathrm{Soit} \ F : x \mapsto \int_0^{+\infty} e^{-x \mathrm{ch}(t)} dt.$$

- 1. Donner le domaine de définition de F.
- 2. Montrer que F est C^2 sur ce domaine de définition.
- ${\it 3.}$ Déterminer une équation différentielle vérifiée par ${\it F.}$

Ex 181: [IMT] Soit
$$f: x \mapsto \int_{-\infty}^{+\infty} \exp(-\pi t^2 - 2i\pi xt) dt$$
.

- 1. Montrer que f est de classe C^1 .
- 2. Trouver une équation différentielle vérifiée par f puis simplifier l'expression de f(x).

 $\underline{\mathbf{Ex}}\ \mathbf{182}: [\mathrm{IMT}]$ Soient $a \in \mathbb{R}^{+*}$ et $h: \mathbb{R}^+ \to \mathbb{R}$ continue et bornée. Montrer que l'équation différentielle x' - ax = h a une unique solution bornée sur \mathbb{R}^+ .

1. Déterminer les solutions développables en série entière de : 4xy'' + 6y' + y = 0. Soient $(E): x^{(3)} + 2x'' - x' - 2x = 0$. Soit G l'ensemble des solutions de classe C^3 de (E). **2.** Montrer que $G \subset \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

Soit $\Delta: f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \mapsto f'$.

3. Déterminer un polynôme P tel que $G = \operatorname{Ker} P(\Delta)$.

4. Montrer que $G = \text{Ker}(\Delta^2 - id) \oplus \text{Ker}(\Delta + 2id)$.

 $\boldsymbol{5}$. Résoudre (E).

 $\underline{\mathbf{Ex}}$ 183 : [IMT] On note S l'ensemble des solutions sur \mathbb{R}_+^* de l'équation définit par :

$$\forall x \in]0; +\infty[, xy'' + 2y' - xy = 0$$

1. Déterminer les fonctions développables en série entière appartenant à S. On note

$$f: x \to \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n+1)!}$$

2. Exprimer f à l'aide de fonction(s) usuelle(s).

3. Justifier que $f \in S$.

4. Déterminer S à l'aide du changement de variable u=xy.

 $\underline{\mathbf{Ex} \ \mathbf{184}} : [\text{IMT}] \ \text{Résoudre} : \begin{cases} y'' + xy' + y = 1 \\ y''(0) = y'(0) = 0 \end{cases} .$

Ex 185: [IMT] Soit (E): $\ln(x)y' + \frac{y}{x} = 1$.

- 1. Résoudre (E) sur]0,1[et $]1,+\infty[$.
- 2. On pose $g: x \mapsto \frac{\ln(1+x)}{x}$ définie sur $]-1, +\infty[\setminus\{0\}]$. Montrer que g est prolongeable en une fonction de classe \mathcal{C}^{∞} sur $]-1, +\infty[$.
- 3. Montrer que (E) admet une unique solution de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .

 $\underline{\mathbf{Ex}}\ \mathbf{186}$: [IMT] On considère l'équation différentielle suivante :

$$xy' + 3y = \frac{\exp(-1/x^2)}{x^5}$$

- 1. Résoudre dans \mathbb{R}^* , puis dans \mathbb{R} .
- 2. Déterminer un développement limité de la solution à l'ordre 4.

<u>**Ex 187**</u> : [IMT] Soient a > 0 et $h \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$. L'équation (E) : y' - ay = h(t) admet-elle une solution bornée dans \mathbb{R}_+ ? Donner ses solutions.

Ex 188: [IMT] Trouver toutes les fonctions définies et dérivables sur \mathbb{R} telles que $\forall x \in \mathbb{R}$, f'(x) = f(1-x).

Ex 189: [IMT] On considère \mathbb{R}^n comme étant euclidien canonique. Pour $A \in \mathfrak{M}_n(\mathbb{R})$, montrer que les assertions suivantes sont équivalentes :

- (1): A est antisymétrique;
- (2): Les solutions de X' = AX sont de norme constante.

 $\underline{\mathbf{Ex}} \ \mathbf{190} : [\mathrm{IMT}] \ \mathrm{Soit} \ A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$. à quelle condition sur a la suite $(a^n A^n)$ converget -elle vers une limite non nulle?

- 1. Soit $A \in \mathcal{M}_3(\mathbb{R}) \setminus \{0\}$ telle que $A^2 = 0$. Dimension du commutant de A?
- **2.** Soit $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.
 - a. Sans calcul, montrer que A est diagonalisable.
 - \boldsymbol{b} . Calculer les valeurs propres et les vecteurs propres de A.
 - c. Résoudre le système différentiel X' = AX.

Ex 191: [IMT] Étudier les extrema sur \mathbb{R}^2 de la fonction $(x,y) \mapsto x^4 + y^4 + 4xy + 1$.

Ex 192 : [IMT] Soit X et Y deux variables indépendantes de loi uniforme $\mathcal{U}([1; n])$. On pose $S = \max(X, Y)$ et $T = \min(X, Y)$.

- 1. Déterminer la loi de S et son espérance.
- 2. Déterminer la loi de T.
- 3. S et T sont-elles indépendantes?

 $\underline{\mathbf{Ex}}$ 193 : [IMT] Une urne contient n boules blanches numérotées de 1 à n et 2 boules noires numérotées 1 et 2. On tire successivement sans remise toutes les boules de l'urne.

- 1. On note X la variable aléatoire égale au rang de tirage de la première boule blanche. Déterminer la loi de X.
- 2. On note Y la variable aléatoire égale au rang de tirage de la première boule numérotée 1. Déterminer la loi de Y.

<u>Ex 194</u>: [IMT] Soit X une variable aléatoire suivant une loi de poisson de paramètre $\lambda \geq 0$. Soit Y une variable aléatoire indépendante de X telle que $Y(\Omega) = \{1, 2\}$ et P(Y = 1) = P(Y = 2). On pose Z = XY.

- ${\it 1.}$ Donner l'espérance de ${\it Z.}$
- 2. Donner la loi de Z.

<u>Ex 195</u> : [IMT] Une urne contient n boules numérotées de 1 à n. X est le numéro de la boule tirée au hasard. 1. Calculer $\mathbb{E}(X)$.

On considère désormais une urne contenant k boules numérotées k pour chaque k de 1 à n.

2. Calculer $\mathbb{E}(X)$.

<u>**Ex 196**</u>: [IMT] Dans une urne comportant n boules numérotées de 1 à n, on tire trois boules simultanément et on note X le plus petit numéro tiré. Déterminer $X(\Omega)$ puis les probabilités $\mathbf{P}(X=1), \mathbf{P}(X=2), \mathbf{P}(X=n)$.

<u>Ex 197</u> : [IMT] On dispose initialement d'une urne constituée d'une boule blanche, et d'une pièce de monnaie équilibrée. On effectue des lancers de la pièce selon la règle suivante :

- si on obtient « Face » on ajoute une boule noire dans l'urne;
- si on obtient « Pile » on tire une boule dans l'urne et on arrête l'expérience.

Soit X la variable aléatoire donnant le nombre de lancers de la pièce.

- 1. Quelle est la loi de X?
- 2. Quelle est la probabilité d'obtenir une boule blanche à la fin de l'expérience?

Ex 198: [IMT] Soient $n \in \mathbb{N}^*$ et : $\forall i \in [1, n], m_i \in \mathbb{N}, p_i \in]0,1[$.

Les X_i sont des variables aléatoires mutuellement indépendantes suivant la loi binomiale : $\mathcal{B}(m_i, p_i)$ et on note $S = \sum_{i=1}^{n} X_i$.

Montrer que S suit une loi binomiale si et seulement si tous les p_i sont égaux. Préciser les paramètres de la loi de S.

 $\underline{\mathbf{Ex}}$ 199 : [IMT] Soient X une variable aléatoire suivant une loi de Bernoulli et Y une variable aléatoire suivant une loi de Poisson, avec X et Y indépendantes. On pose Z = XY.

- 1. Déterminer E(Z).
- 2. Quelle est la loi de Z?
- 3. Quelle est la variance de Z?

<u>Ex 200</u>: Soient X et Y deux variables aléatoires indépendantes qui suivent la loi $\mathcal{U}(\llbracket 1, n \rrbracket)$. Soit $S = \max(X, Y)$ et $T = \min(X, Y)$.

- 1. Loi et espérance de S.
- 2. espérance de T.
- 3. S et T sont-elles indépendantes?

Ex 201 : Soient deux variables aléatoire discrètes S et N.

 $N \sim \mathcal{P}(\lambda)$ et représente le nombre de particule de fumée dans une pièce.

S représente le nombre de particules détectées par un détecteur de fumée.

Chaque particule a une probabilité p d'être détectée (avec $p \in]0,1[$).

- 1. Déterminer la loi de S sachant (N = n). En déduire la loi de S.
- 2. Déterminer la loi suivie par N-S. Montrer que S et N-S sont indépendantes.
- 3. N et S sont-elles indépendantes?

 $\underline{\mathbf{Ex}}$ 202 : [IMT] Soient X_1 , X_2 des variables aléatoires indépendantes suivant une même loi. Soit Y une variable aléatoire indépendante de X_1 et de X_2 telle que

$$Y(\Omega) = \{-1, 1\} \text{ et } \mathbb{P}(Y = 1) = p \in]0, 1[.$$

On pose
$$M = \begin{pmatrix} X_1 & X_2 \\ YX_2 & X_1 \end{pmatrix}$$
.

- 1. On suppose que $(X_1+1) \sim \mathcal{G}\left(\frac{1}{3}\right)$. Calculer la probabilité que M soit inversible.
- **2.** On suppose que $X_1 \sim \mathcal{P}(\lambda)$ où $\lambda \in \mathbb{R}$. Calculer la probabilité que M soit diagonalisable.

- 1. Supposons que la variable aléatoire $X_1 1$ suit une loi géométrique de paramètre $\frac{1}{3}$. Quelle est la probabilité que M soit inversible?
- 2. Supposons que la variable aléatoire X_1 suit une loi de Poisson de paramètre 3. Quelle est la probabilité que M soit inversible?

 $\underline{\mathbf{Ex}}\ \mathbf{204}$: [IMT] On pose $A = \begin{pmatrix} X & 1 \\ 0 & Y \end{pmatrix}$ où X,Y sont des variables aléatoires indépendantes et suivent la loi géométrique de paramètre p. Déterminer la probabilité que A soit inversible? diagonalisable?

 $\underline{\mathbf{Ex}} \ \mathbf{205} : [\mathrm{IMT}] \ \mathrm{Soit} \ A \in \mathcal{M}_n(\mathbb{R}) \ \mathrm{tel} \ \mathrm{que}$

$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}.$$

- 1. Sous quelle condition sur a, b et c cette matrice est-elle diagonalisable?
- Z. Soient X, Y et Z des variables aléatoires mutuellement indépendantes suivant une loi de probabilité géométrique de paramètre p. Quelle est la probabilité que la matrice

$$A = \begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix}$$

soit diagonalisable?

<u>Ex 206</u>: [IMT] Soit X une variable alétoire discrète définie sur Ω telle que $X(\Omega) = \mathbb{Z}$ et : $\forall n \in \mathbb{N}$, P(X = n) = P(X = -n) et |X| suit une loi de Poisson de paramètre $a \in \mathbb{R}_+^*$.

On pose
$$A = \begin{pmatrix} 0 & X & 1 \\ X & 0 & 1 \\ X & 1 & 0 \end{pmatrix}$$
.

- 1. Trouver la loi de X.
- 2. Quel est le rang de A.
- 3. Quelle est la loi de rg(A)?

<u>Ex 207</u>: [IMT] Soient X et Y deux variables aléatoires indépendantes suivant la loi géométrique de paramètre p. On pose Z = X/Y.

- 1. Montrer que $Z \leq X$ puis montrer que Z admet une espérance et une variance.
- **2.** Calculer $\mathbf{E}(Z)$.
- 3. Donner la loi de Z.

<u>Ex 208</u>: [IMT] Soient X_1, X_2, X_3 trois variables aléatoires qui suivent une loi géométrique de paramètre p. On pose $Z = \max(X_1, X_2, X_3)$.

- 1. Déterminer $(Z \leq n)$ pour tout n de \mathbb{N}^* .
- 2. On lance trois pièces. À chaque lancer, on met de côté les pièces ayant donné « Pile » et on relance les autres.

Déterminer l'espérance de Z, avec Z la variable aléatoire qui compte le nombre de lancers.

Ex 209 : [IMT] On se donne trois variables aléatoires X_1, X_2, X_3 indépendantes, suivant la loi géométrique de paramètre p. Déterminer la loi de $Z = \min(X_1, X_2, X_3)$.

<u>**Ex 210**</u>: [IMT] Soit $S: t \mapsto \sum_{n=0}^{+\infty} \frac{n^2 + n + 1}{n!} t^n$.

- 1. Donner le rayon de convergence R de cette série entière .
- 2. Calculer S(t) sur]-R,R[.

Soit X une variable aléatoire à valeurs dans \mathbb{N} telle que, $\forall t \in [-1, 1], G_X(t) = \lambda S(t)$ avec $\lambda \in \mathbb{R}$.

- 3. Que vaut λ ?
- **4.** Calculer $\mathbf{P}(X = n)$ pour $n \in \mathbb{N}$.
- $\boldsymbol{5}$. Calculer l'espérance et la variance de X.

 $\underline{\mathbf{Ex}}$ 211 : [IMT] Soit $X_1,...,X_n$ des variables aléatoires identiquement distribuées indépendantes qui suivent toutes une loi $\mathcal{U}(\{-1,1\})$. On note $S_n = \sum_{i=1}^n X_i$.

- 1. Soient $n \in \mathbb{N}^*$ et $t \in \mathbb{R}_+^*$. Calculer $E(tS_n)$.
- **2.** Montrer que : $\forall t \in \mathbb{R}$, $\operatorname{ch}(t) \leq \exp(t^2/2)$.
- 3. Pour $n \in \mathbb{N}^*$ et $a \in \mathbb{R}_+^*$, montrer que : $P(|S| \ge a) \le 2e^{-\frac{a^2}{2n}}$.

Ex 212 : [ENSEA] Déterminez l'ensemble des points z du plan complexe tels que

$$\frac{z+i}{z-2i} \in i\mathbb{R}$$

Ex 213 : [ENSEA] Soit

$$J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

- \boldsymbol{a} . Diagonaliser J.
- **b.** Résoudre l'équation $X^2 + X = J$.

<u>**Ex 214**</u>: [ENSEA] Soit $a_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$.

- 1. Étudier la convergence de (a_n) et calculer a_0 .
- **2.** Déterminer un équivalent simple de (a_n) .
- 3. Nature de la série $\sum a_n$.
- 4. Déterminer le rayon de convergence de la série entière $\sum a_n x^n$.

 $\mathbf{Ex} \ \mathbf{215} : [\mathbf{ENSEA}]$

- 1. Développement limité de $f(x) = \frac{\sinh(x)}{\sin(x)}$ à l'ordre 4 en 0
- 2. En déduire un certain nombre de propriétés

Ex 216: [ENSEA] L'intégrale $\int_{2}^{+\infty} \frac{\sin x}{\sin x + \sqrt{x}} dx$ est-elle définie?

Ex 217: [ENSEA] Rayon de convergence de la série entière $\sum {n+1 \choose 2} z^{2n}$.

Ex 218 : [ENSEA]

- 1. Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} .
- 2. i. Donner, en utilisant des quantificateurs, la définition de la continuité de f en (0,0).
 - ii. Donner la définition de « f est différentiable en (0,0) ».
- 3. On considère l'application définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} xy \frac{x^2 y^2}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$

- i. Montrer que f est continue sur \mathbb{R}^2 .
- ii. Montrer que f est de classe C^1 sur \mathbb{R}^2 .

Ex 219: [ENSEA] Soit $n \in \mathbb{N}^*$. Une urne contient n boules blanches numérotées de 1 à n et deux boules noires numérotées 1 et 2. On effectue le tirage une à une, sans remise, de toutes les boules de l'urne. On suppose que tous les tirages sont équiprobables. On note X la variable aléatoire égale au rang d'apparition de la première boule blanche. On note Y la variable aléatoire égale au rang d'apparition de la première boule numérotée 1.

- 1. Déterminer la loi de X.
- 2. Déterminer la loi de Y.

 $\underline{\mathbf{Ex}}$ 220 : [ENSEA] Une urne contient des boules numérotées de 1 à n. On effectue des tirages avec remise.

Soit X le numéro de la première boule et Y le numéro de la deuxième boule. On note $U = \min(X, Y)$ et $V = \max(X, Y)$.

- 1. Déterminer les lois de U et V.
- **2.** Déterminer E(U) et E(V).
- 3. Donner une relation entre X, Y, U + V.
- 4. Calculer P(X + Y = k).

Navale, Saint-Cyr MP 2024

Ex 221 : [Navale] Déterminer l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec les matrices de rang 1.

Ex 222 : [Navale] Soit $M \in \mathcal{M}_n(\mathbb{R})$, montrer l'équivalence entre :

- i. $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \operatorname{Tr}(MAB) = \operatorname{Tr}(MBA),$
- ii. M est une homothétie (c'est-à-dire de la forme λI_n avec $\lambda \in \mathbb{R}$).

Ex 223: [Navale] Soit $n \in \mathbb{N}$,

$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

Calculer A^n .

Ex 224: [Navale] Soient E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer que f est un projecteur si et seulement si rg $f + \text{rg}(f - \text{id}) = \dim E$. $\underline{\mathbf{Ex}}$ 225 : [St-Cyr] Soit $J \in \mathfrak{M}_n(\mathbb{R})$ la matrice carrée de taille n remplie de 1. Soit $A \in \mathfrak{M}_n(\mathbb{R})$ telle que $A^2 + A - (1+p)I_n = J$, avec $p \in \mathbb{N}$.

- 1. Montrer que J est diagonalisable et donner ses éléments propres.
- 2. Soit $U = (1...1)^{\top} \in \mathfrak{M}_{n,1}(\mathbb{R})$. Soit X un vecteur propre de A associé à une valeur propre λ telle que (U,X) soit libre. Montrer que $\lambda^2 + \lambda = 1 + p$.

Pour la suite de l'exercice, on suppose A symétrique, d'éléments dans $\{0,1\}$, telle que $\operatorname{Tr} A = 0$.

- 3. Montrer que AU = pU.
- **4.** Montrer que $\sum_{1 \le i,j \le n} a_{i,j}^2 = n(p+2)$.

Ex 226: [Navale] Soient E un K-espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$.

- 1. Montrer que f est diagonalisable si et seulement si tout sous-espace vectoriel de E possède un supplémentaire stable par f.
- 2. On suppose $\mathbb{K}=\mathbb{C}$. Montrer que f est diagonalisable si et seulement si tout sous-espace stable possède un supplémentaire stable.
- 3. Que dire de l'énoncé de la question précédente si $\mathbb{K} = \mathbb{R}$?

Ex 227: [Navale] Soient $A, B \in \mathbb{R}_n[X]$. On suppose que $A \wedge B = 1$ et que B est scindé à racines simples. On écrit $B = \prod_{i=1}^p (X - x_i)$. On note $\phi : P \in \mathbb{R}_n[X] \mapsto R$ où R désigne le reste de la division euclidienne de AP par B.

- 1. Montrer que ϕ est un endomorphisme de $\mathbb{R}_n[X]$. Est-ce un isomorphisme?
- ${\it 2.}\,$ Montrer que 0 est valeur propre de $\phi.$ Déterminer le sous-espace propre associé.
- 3. Prouver que, pour tout $k \in [1, n]$, $P_k = \prod_{i \neq k} (X x_i)$ est vecteur propre de ϕ .
- 4. L'endomorphisme ϕ est-il diagonalisable?

Ex 228: [Saint-Cyr] Soient $n \in \mathbb{N}^*$, E un \mathbb{C} -espace vectoriel de dimension finie, $u_1, \ldots, u_n \in \mathcal{L}(E)$ vérifiant $u_1 + \cdots + u_n = \mathrm{id}$ et $u_i \circ u_j = 0$ pour tous $i \neq j$. Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ distincts et $f = \lambda_1 u_1 + \cdots + \lambda_n u_n$.

- **1.** Calculer u_i^2 pour tout $i \in [1, n]$. En déduire f^2 puis f^p pour tout $p \in \mathbb{N}^*$.
- 2. Justifier la diagonalisabilité de f.

Ex 229: [Navale] Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

- 1. On suppose que 0 est la seule matrice de $\mathcal{M}_n(\mathbb{C})$ vérifiant : AM MB = 0. Montrer que toute matrice de $\mathcal{M}_n(\mathbb{C})$ peut s'écrire de façon unique sous la forme AN NB.
- 2. On suppose que $\operatorname{Sp} A \cap \operatorname{Sp} B = \emptyset$. Montrer que 0 est la seule matrice vérifiant AM MB = 0.
- 3. Cela reste-t-il vraie dans $\mathcal{M}_n(\mathbb{R})$?

 $\underline{\mathbf{Ex}\ 230}$: [Navale] Soient E un espace euclidien et F un sous-espace de E. Soient $u\in\mathcal{S}(E)$ et p la projection orthogonale sur F. Montrer que $p\circ u$ est autoadjoint si et seulement si F est stable par

 $\underline{\mathbf{Ex}\ \mathbf{231}} : [\text{Navale}] \ \text{Soit} \ E = \mathcal{C}^0([0,1],\mathbb{R}). \ \text{Pour} \ f \in E, \ \text{on note} \ N_1(f) = \int_0^1 |f|. \ \text{Une suite} \ (f_n) \ \text{d'éléments}$ de E est dite de Cauchy si : $\forall \varepsilon > 0, \exists n \in \mathbb{N}, \forall p,q \geqslant n, N_1\left(f_p - f_q\right) \leqslant \varepsilon.$

- 1. Vérifier que N_1 est bien une norme sur E.
- 2. Prouver que toute suite convergente au sens de N_1 est de Cauchy.
- 3. On pose, pour $n \in \mathbb{N}^*$ et $x \in [0,1]$, $f_n(x) = \sum_{k=1}^n \frac{x^k}{k}$. Montrer que (f_n) est de Cauchy.
- 4. Converge-t-elle au sens de N_1 ?

 $\underline{\mathbf{Ex}\ 232}$: [St-Cyr] Soit E un espace vectoriel normé. Soit C un convexe de E. Montrer que l'intérieur et l'adhérence de C sont convexes

Ex 233: [Saint-Cyr] Soit $n \in \mathbb{N}^*$. On note (E_n) l'équation $x^n + x - 1 = 0$.

- 1. Montrer que (E_n) admet une unique solution sur \mathbb{R}^{+*} , notée par la suite x_n .
- 2. Montrer que (x_n) est croissante et majorée. Qu'en déduire?

Python Afficher les 100 premières valeurs approchées de (x_n) en procédant par dichotomie.

Python Représenter graphiquement les valeurs et conjecturer la limite.

3. Démontrer cette conjecture.

 $\underline{\mathbf{Ex}}$ 234 : [Navale] Soit (u_n) une suite de réels positifs qui converge vers 0 . Montrer que cette suite possède une sous-suite décroissante.

 $\underline{\mathbf{Ex}\ 235}$: [Navale] Soit (u_n) une suite réelle ou complexe. On suppose que $\sum u_n$ est convergente. Montrer que $\sum \frac{u_n}{n}$ est une série convergente.

Ex 236: [Navale] Soient $a, b \in \mathbb{R}$ avec a < b. Soient $f, g : [a, b] \to \mathbb{R}$ continues. On suppose f > 0.

- 1. On suppose que : $\forall x \in \mathbb{R}, \int_a^b (f(t) + xg(t)) dt \ge \int_a^b f(t) dt$. Déterminer $\int_a^b g(t) dt$.
- **2.** On suppose que : $\forall x \in \mathbb{R}$, $\int_a^b |f(t) + xg(t)| dt \ge \int_a^b f(t) dt$. Déterminer $\int_a^b g(t) dt$. La conclusion reste-t-elle vraie avec seulement $f \ge 0$?

 $\underline{\mathbf{Ex}\ 237}$: [Navale] Pour $n \geqslant 1$, on pose $u_n : x \mapsto \frac{x}{(1+n^2x)^2}$ étudier la convergence simple puis uniforme de $\sum u_n$ et $\sum u'_n$ sur \mathbb{R}^+ .

Ex 238: [Navale] Pour tout $n \in \mathbb{N}$, on définit :

$$u_n \colon \mathbb{R}_+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{x}{(1+n^2x)^2}$$

- 1. Montrer que $\sum u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que $S: x \longmapsto \sum_{n=0}^{+\infty} u_n(x)$ est continue sur \mathbb{R}_+ .
- 3. Montrer que S est \mathcal{C}^1 sur \mathbb{R}_+ .

 $\underline{\mathbf{Ex}}$ 239 : [St-Cyr] Soit $(p_n)_{n\in\mathbb{N}}$ une suite telle d'entiers naturels strictement croissante telle que $n=o(p_n)$ quand n tend vers $+\infty$. Soit la série entière $\sum x^{p_n}$ et f sa somme.

- 1. Donner le rayon de convergence R de cette série entière.
- **2.** Montrer que $\lim_{x \to 1^{-}} (1 x) f(x) = 0$.
- 3. Exemple pour $p_n = n^2$: trouver un équivalent en 1⁻.

 $\underline{\mathbf{Ex}\ 240}: [\text{Navale}]\ \text{Soit}\ (a_n)_n \geqslant 0 \in \mathbb{C}^{\mathbb{N}}.$ On pose, pour $n \in \mathbb{N}, S_n = a_0 + \cdots + a_n.$ On suppose que $\sum a_n$ converge. Soient $f: t \mapsto \sum_{n=0}^{+\infty} \frac{a_n}{n!} t^n$ et $g: t \mapsto \sum_{n=0}^{+\infty} \frac{S_n}{n!} t^n.$

- 1. Déterminer le rayon de convergence de f et g.
- **2.** Montrer que : $\forall t \in \mathbb{R}^+, f'(t) = g'(t) g(t)$ et $\int_0^t f(u)e^{-u} du = (g(t) f(t))e^{-t}$.
- 3. En déduire : $\int_0^{+\infty} f(u)e^{-u} du = \sum_{n=0}^{+\infty} a_n.$

 $\underline{\mathbf{Ex}} \ \mathbf{241} : [\text{Navale}] \ \text{Soit} \ x > 0. \ \text{Montrer que} \ \int_0^{+\infty} \frac{\mathrm{e}^{-t}}{\sqrt{t}} \sin(xt) \mathrm{d}t \ \mathrm{est} > 0.$

Ex 242: [Navale] Pour tout $x \in \mathbb{R}$, on pose : $F(x) = \int_0^x e^{-u^2} du$ et $G(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

- 1. Exprimer G en fonction de F.
- 2. En déduire la valeur de l'intégrale $\int_0^{+\infty} e^{-u^2} du$.

 $\underline{\mathbf{Ex}\ 243}$: [Navale] Les clients A_1,A_2 et A_3 arrivent à deux guichets au temps 0. Le client A_3 doit donc attendre. On note X_i la durée de passage de A_i au guichet. On note aussi Y l'instant auquel A_1 ou A_2 libère son guichet et Z l'instant auquel A_3 part du guichet.

Les variables aléatoires X_1, X_2, X_3 sont indépendantes et suivent chacune la loi géométrique de paramètre $p \in]0,1[$.

- 1. Exprimer Y en fonction de X_1 et X_2 . Déterminer la loi de Y.
- 2. Déterminer la loi de Z.
- 3. Calculer $\mathbf{E}(Z)$.

 $\underline{\mathbf{Ex}}$ 244 : [Navale] Soient X_1 et X_2 deux variables aléatoires à valeurs dans \mathbb{R}^{+*} , indépendantes et suivant la même loi. On pose $U=X_1+X_2, T=X_1-X_2, Y_1=X_1/U$ et $Y_2=X_2/U$.

- 1. Montrer que Y_1 et Y_2 suivent la même loi.
- 2. Montrer que Y_1 et Y_2 admettent un moment à tout d'ordre et calculer $\mathbf{E}(Y_1)$ et $\mathbf{E}(Y_2)$.
- 3. Montrer que T/U admet un moment à tout d'ordre et calculer $\mathbf{E}(T/U)$.
- **4.** Exprimer V(T/U) en fonction de $V(Y_1)$.

BECEAS MP 2024

 $\mathbf{Ex} \ \mathbf{245} : [BECEAS] \ Soit \ E \ un \ espace \ euclidien \ et \ n \ un \ entier \ naturel \ non \ nul.$

On considère une famille (u_1, \ldots, u_n) de n vecteurs de E.

Pour tout réel $\mu \geq 1$, on dit que la famille (u_1, \ldots, u_n) est μ -presque orthogonale si :

- Tous ses vecteurs sont unitaires
- Pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$, on a:

$$\frac{1}{\mu} \sum_{i=0}^{n} x_i^2 \le \left\| \sum_{i=0}^{n} x_i u_i \right\|^2 \le \mu \sum_{i=0}^{n} x_i^2 \quad (*)$$

- 1. Soit un réel $\mu \geq 1$, montrer que si (u_1, \ldots, u_n) est μ -presque orthogonale, alors (u_1, \ldots, u_n) est une famille libre de vecteurs de E.
- **2.** Montrer que (u_1, \ldots, u_n) est 1-presque orthogonale si et seulement si (u_1, \ldots, u_n) est une famille orthonormée.
- 3. Soit F un sous-espace vectoriel de E.
 - **a.** Soit f un endomorphisme de F. Montrer qu'il existe un réel $k \geq 0$ tel que :

$$\forall x \in F, ||f(x)|| \le k||x||$$

b. Soit f un automorphisme de F. Montrer qu'il existe un réel $\lambda > 0$ tel que :

$$\forall x \in F, \frac{1}{\lambda}||x|| \le ||f(x)|| \le \lambda||x||$$

4. Montrer que si (u_1, \ldots, u_n) est une famille libre de vecteurs unitaires de E, alors il existe un réel $\mu \geq 1$ tel que (u_1, \ldots, u_n) est μ -presque orthogonale.

CCINP MP 2023

Ex 246 : Soit $P \in \mathbb{R}[X]$ un polynôme unitaire de degré $n \in \mathbb{N}^*$, à coefficients dans $\{-1,0,1\}$. On suppose que $P(0) \neq 0$ et que P est scindé sur \mathbb{R} , et on note x_1, \ldots, x_n ses racines. On note également

$$\sigma_1 = \sum_{i=1} x_i,$$

$$\sigma_2 = \sum_{1 \le i < j \le n} x_i x_j \text{ et } \sigma_n = \prod_{i=1}^n x_i.$$

1. Montrer que
$$\ln\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}\right) \geqslant \frac{1}{n}\sum_{i=1}^{n}\ln\left(x_{i}^{2}\right)$$
, puis que $\left(\frac{n}{n}\sum_{i=1}^{n}x_{i}^{2}\right)^{1/n}$

$$\left(\prod_{i=1}^n x_i^2\right)^{1/n} \leqslant \frac{1}{n} \sum_{i=1}^n x_i^2.$$

- 2. Quelles sont les valeurs possibles de $\sigma_1, \sigma_2, \sigma_n$?
- 3. Montrer que $\sum_{i=1}^{n} x_i^2 \leq 3$.
- 4. Déterminer tous les polynômes $P \in \mathbb{R}[X]$ scindés sur \mathbb{R} et à coefficients dans $\{-1,0,1\}$.

Ex 247: On note S l'espace vectoriel des suites complexes. On considère l'endomorphisme (de décalage) de S défini par $L\left((u_n)_{n\in\mathbb{N}}\right)=(u_{n+1})_{n\in\mathbb{N}}$.

- 1. Soit $\lambda \in \mathbb{C}$. Trouver le noyau de $L \lambda$ id et celui de $(L \lambda \mathrm{id})^2$.
- 2. On note F le sous-espace vectoriel de S des suites (u_n) vérifiant :

$$\forall n \in \mathbb{N}, u_{n+4} = \frac{1}{2}u_{n+3} + 3u_{n+2} - \frac{7}{2}u_{n+1} + u_n.$$

Montrer que $F = \text{Ker}(2L - \text{id}) \oplus \text{Ker}(L + 2\text{id}) \oplus \text{Ker}(L - \text{id})^2$.

3. Déterminer la dimension de F et une base de F.

Ex 248: Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$. Soit $f \in \mathcal{L}(E)$ de rang un.

- 1. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que : $f^2 = \lambda f$.
- 2. A-t-on : $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$?
- 3. Montrer que les assertions suivantes sont équivalentes :
 - i. Il existe un scalaire c non nul tel que cf soit un projecteur;
 - ii. $f \circ f \neq 0$;
 - iii. $E = \operatorname{Im}(f) \oplus \operatorname{Ker}(f)$.

Ex 249 : Soit $f: \mathbb{C} \to \mathbb{C}$.

- 1. Montrer que f est un endomorphisme de \mathbb{C} considéré comme un \mathbb{R} -espace vectoriel si et seulement s'il existe deux nombres complexes a, b tels que $\forall z \in \mathbb{C}, f(z) = az + b\bar{z}$.
- 2. Montrer l'unicité du couple (a, b).
- 3. Montrer que f est un projecteur si et seulement si $a^2 + |b|^2 = a$ et $b(a + \bar{a}) = b$.
- 4. Montrer que f est un projecteur différent de l'endomorphisme nul et de l'identité si et seulement si $\text{Re}(a) = \frac{1}{2}$ et |a| = |b|.

 $\mathbf{Ex} \ \mathbf{250} : \mathbf{Soit} \ E \ \mathbf{un} \ \mathbf{espace} \ \mathbf{vectoriel}.$

Soient p et q deux projecteurs de E tels que $\operatorname{Im}(p) \subset \operatorname{Ker}(q)$.

- 1. Montrer que $\text{Im}p \cap \text{Im}q = \{0_E\}.$
- 2. Soit $r = p + q p \circ q$. Montrer que r est un projecteur sur Im(p) + Im(q) parallèlement à $\text{Ker}(p) \cap \text{Ker}(q)$.

Ex 251: Soit E un espace vectoriel de dimension $n, f, g \in \mathcal{L}(E)^2$ et $p \in \mathbb{N}$.

- 1. i. Si $\operatorname{Ker}(f^p) = \operatorname{Ker}(f^{p+1})$, montrer que : $\forall k \ge p$, $\operatorname{Ker}(f^p) = \operatorname{Ker}(f^k)$.
 - ii. En déduire que si f est non injective, $(\text{Ker}(f^k))_{k\geq 0}$ est strictement croissante puis stationnaire à partir d'un certain indice p. Que peut-on dire de p?
- 2. i. Montrer qu'il existe un sous-espace vectoriel H de E tel que : $Ker(f \circ g) = Ker(g) \oplus H$.
 - ii. On considère : $h: \left\{ \begin{array}{ll} H & \longrightarrow & E \\ x & \longmapsto & g(x) \end{array} \right.$ Montrer que $h(H) \subset \operatorname{Ker}(f)$ et $\dim(h(H)) = \dim(H)$.

- iii. En déduire que dim $\operatorname{Ker}(f \circ g) \leq \dim \operatorname{Ker}(f) + \dim \operatorname{Ker}(g)$;
- 3. On suppose que dim Ker(f) = 1 et que f est nilpotente.
 - i. Préciser la suite $(\dim(\operatorname{Ker}(f^k)))_{k\geq 0}$.
 - ii. Montrer que p = n.

$$\underline{\mathbf{Ex}\ \mathbf{252}} : \text{Soient } A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}.$$

- 1. Quel est le rang de A? Donner une base de l'image de A.
- 2. Donner une équation de l'image de A. Le vecteur B appartient-il à l'image de A?

Ex 253: Soit $u \in \mathcal{L}(\mathbb{R}^3)$ non nul tel que $u^3 + u = 0$.

- 1. Montrer que $\mathbb{R}^3 = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$ et que $\operatorname{Im}(u) = \operatorname{Ker}(u^2 + \operatorname{id})$.
- 2. Montrer que u n'est pas injective, puis que rg(u) = 2.
- 3. Montrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de u est $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

Ex 254: Soient $\varphi \in \mathbb{R}$ et $M_n = (m_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ définie par $m_{i,j} = 2\cos(\varphi)$ si $i = j, m_{i,j} = 1$ si |i-j| = 1 les autres coefficients étant puls |i-j|=1, les autres coefficients étant nuls.

- 1. On suppose que $\varphi \notin \pi \mathbb{Z}$. Trouver une relation de récurrence vérifiée par $D_n = \det (M_n)$ et exprimer D_n .
- 2. Déterminer D_n lorsque $\varphi \in \pi \mathbb{Z}$.

Ex 255: Soient E un K-espace vectoriel de dimension n et $u \in \mathcal{L}(E)$.

- 1. Montrer que si u est nilpotent, alors $u^n = 0$.
- 2. On suppose u d'indice de nilpotence n. Montrer qu'il existe une base \mathcal{B} de E telle que : A =

$$Mat_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 0 & & & 0 \\ 1 & 0 & & & (0) & \vdots \\ 0 & 1 & & & \\ & & \ddots & & \vdots \\ (0) & & 1 & 0 \end{pmatrix}.$$

3. Déterminer les matrices X de $\mathcal{M}_n(\mathbb{K})$ telles que $X^2 = A$.

Ex 256: On pose
$$A = \begin{pmatrix} 0_n & \mathbf{I}_n & 0_n \\ 0_n & 0_n & \mathbf{I}_n \\ 0_n & 0_n & 0_n \end{pmatrix}$$

- 1. Calculer le polynôme caractéristique, le polynôme minimal et le rang de A
- 2. Soit u un endomorphisme, montrer que $\dim(\operatorname{Ker}(u^2)) \leq 2\dim(\operatorname{Ker}(u))$
- 3. Soit $B \in \mathcal{M}_{3n}(\mathbb{R})$ telle que $B^3 = 0$ et $\operatorname{rg}(B) = 2n$
 - i. Montrer que $\operatorname{Im}(B^2) \subset \operatorname{Ker}(B)$
 - ii. En déduire la dimension de $Im(B^2)$
 - iii. Soit $(E_1; ...; E_m)$ une base d'un supplémentaire de $Ker(B^2)$. Montrer que $(B^2E_1; ...; B^2E_m; BE_1; ...; BE_m; E_1; ...; E_m)$ est une famille libre
 - iv. Montrer que A et B sont semblables.

$$\mathbf{\underline{Ex\ 257}} : \text{Soit } A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 5 & 5 & 9 \end{pmatrix}.$$

- 1. Donner les conditions de diagonalisabilité concernant les polynômes annulateurs et caractéritstiques.
- 2. Montrer que pour $B \in \mathcal{M}_3(\mathbb{R})$ qui vérifie $B^2 = A$, alors B est diagonalisable.
- 3. Trouver toutes les matrices B de $\mathcal{M}_3(\mathbb{R})$ qui vérifient $B^2 = A$.

Ex 258 : Soit

$$A = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$$

- 1. Déterminer le spectre de A de trois façons :
 - i. En utilisant la définition des valeurs propres et des vecteurs propres.
 - ii. En calculant son polynôme caractéristique χ_A .
 - iii. En calculant son polyn
me minimal $\mu_A.$
- 2. La matrice A est-elle trigonalisable dans $\mathcal{M}_{2n}(\mathbb{R})$?
- 3. La matrice A est-elle trigonalisable dans $\mathcal{M}_{2n}(\mathbb{C})$? Dans ce cas, déterminer $P \in GL_{2n}(\mathbb{C})$ telle que $P^{-1}AP$ soit diagonale.

Ex 259:

- 1. Localiser les racines réelles de $X^3 X 1$.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Déterminer $\chi_A(0)$, $\lim_{+\infty} \chi_A$ et $\lim_{-\infty} \chi_A$.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 = A + I_n$. Montrer que $\det(A) > 0$.

Ex 260 : Soit
$$A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$$
.

1. Diagonaliser A.

- 2. Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 + M = A$.
 - i. Trouver un polynôme annulateur de A de degré 2, puis un polynôme annulateur de M de degré 4.
 - ii. Montrer que M est diagonalisable, et préciser les valeurs possibles de son spectre.
 - iii. Donner les différentes formes possibles de M.

Ex 261: Soit $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant $A^2 + A^T = I_n$.

- 1. Justifier que, pour tout $M \in \mathcal{M}_n(\mathbb{C})$, $\operatorname{Sp} M = \operatorname{Sp} M^T$.
- 2. Montrer que A est inversible si et seulement si $1 \notin \operatorname{Sp} A$.
- 3. Montrer que le polynôme $X^4 2X^2 + X$ est annulateur de A. La matrice A est-elle diagonalisable?

$\underline{\mathbf{Ex}}\ \mathbf{262}$: Soient $n \in \mathbb{N}^*$, $(\lambda, \mu) \in \mathbb{C}^{*2}$, $(M, A, B) \in \mathcal{M}_n(\mathbb{C})^3$ telles que $A + B = I_n$, $M = \lambda A + \mu B$, $M^2 = \lambda^2 A + \mu^2 B$.

- 1. Déterminer $M^2 (\lambda + \mu)M + 2\lambda\mu I_n$.
- 2. Montrer que M est inversible et calculer M^{-1} .
- 3. Montrer que A et B sont des matrices de projecteurs.
- 4. La matrice M est-elle diagonalisable? Déterminer son spectre.

Ex 263: Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$.

- 1. Montrer que, pour $P \in \mathbb{R}[X], P(B) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix}$.
- 2. Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

$\underline{\mathbf{Ex}\ \mathbf{264}}$: Soit a,b,c,d,e,f des réels et

$$A = \begin{pmatrix} 1 & a & b & c \\ 0 & -1 & 0 & 0 \\ 0 & d & 1 & e \\ 0 & f & 0 & -1 \end{pmatrix}$$

- 1. Montrer que A est trigonalisable.
- 2. Trouver une condition nécessaire et suffisante pour que la matrice A soit diagonalisable.
- 3. Dans ce cas, trouver une base de vecteur propres

Ex 265:

1. Soit $A = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ si et seulement si ab > 0 ou a = b = 0.

2. Soit
$$n \in \mathbb{N}$$
 pair et $A = \begin{pmatrix} 0 & \cdots & 0 & a_n \\ \vdots & & \ddots & 0 \\ 0 & a_2 & & \vdots \\ a_1 & 0 & \cdots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

- i. Déterminer un espace de dimension deux stable par A.
- ii. Montrer que A soit diagonalisable si et seulement si : $\forall i \in [1, n], \ a_i = a_{n+1-i} = 0 \text{ ou } a_i a_{n+1-i} > 0.$

Ex 266: Soient $a, b \in \mathbb{R}$ distincts, $n \in \mathbb{N}$ et $u : P \in \mathbb{C}_n[X] \mapsto (X - a)(X - b)P' - nXP$.

- 1. Montrer que $u \in \mathcal{L}(\mathbb{C}_n[X])$.
- 2. Pour $P \in \mathbb{C}_n[X]$, donner la décomposition en éléments simples de P'/P.
- 3. Montrer que u est diagonalisable et donner ses vecteurs propres.

<u>Ex 267</u>: Soit $E = \mathbb{R}_{2n+1}[X]$. Soit $P \in E$ et on pose f(P) = Q, avec $Q = (X^2 - 1)P'(X) - (2n + 1)XP(X)$.

- 1. Montrer que f est un endomorphisme de E.
- 2. Donner les valeurs propres et les sous-espaces propres de f (on pourra résoudre une équation différentielle).
- 3. Montrer que f est diagonalisable.

Ex 268 : Soit f l'application de $M_2(\mathbb{R})$ dans lui-même donnée par $f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & 2b \\ 2c & a \end{pmatrix}$.

- 1. Montrer que f est un endomorphisme.
- 2. Redéfinir la base canonique de $M_2(\mathbb{R})$. Écrire la matrice de f dans cette base.
- 3. Donner les éléments propres de f.
- 4. L'application f est-elle inversible? Est-elle diagonalisable? Si c'est le cas, exprimer la matrice de f dans la base canonique en fonction d'une matrice diagonale.
- 5. Pour n dans \mathbb{N} , définir f^n .

Ex 269: Soient $A, B \in \mathfrak{M}_n(\mathbb{K})$ telles que : AB - BA = B.

- 1. Montrer que : $\forall k \in \mathbb{N}, \ AB^k B^k A = kB^k$.
- 2. Montrer que : $\forall k \in \mathbb{N}, \ det(B^k) \cdot \det(A + kI_n) = \det(B^k) \cdot \det A.$
- 3. i. Montrer que A admet un nombre limité de valeurs propres.
 - ii. Montrer que $\det B = 0$.
 - iii. Supposons B inversible. Soit λ une valeur propre de A. Montrer que $\lambda+1$ est aussi une valeur propre de A (on pourra utiliser la relation AB-BA=B). En déduire le résultat précédent.

 $\underline{\mathbf{Ex\ 270}}$: Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie $n \geq 2$. On suppose que E est le seul sous-espace vectoriel stable par u non réduit à $\{0\}$.

- 1. Que dire du spectre de u?
- 2. Montrer que, pour tout vecteur $x \neq 0_E$, $(x, u(x), u^2(x), \dots, u^{n-1}(x))$ est une base de E. Quelle est la forme de la matrice de u dans cette base?
- 3. Montrer que cette matrice ne dépend pas du vecteur x choisi.

Ex 271: Soit $\phi: M \in \mathcal{M}_n(\mathbb{R}) \mapsto M + \operatorname{tr}(M)I_n$.

- 1. Montrer que ϕ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Cet endomorphisme est-il diagonalisable?
- 3. Trouver une base des sous-espaces propres de ϕ .
- 4. Déterminer $\operatorname{tr} \phi$ et $\det \phi$.
- 5. L'endomorphisme ϕ est-il inversible? Si oui, déterminer ϕ^{-1} .

Ex 272: Soient $n \in \mathbb{N}^*$ et N_n l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$.

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que les propositions suivantes sont équivalentes :

- i. A est diagonalisable;
- ii. $\forall P \in \mathbb{C}[X], P(A) \in N_n \Leftrightarrow P(A) = 0.$

 $\underline{\mathbf{Ex}}\ \mathbf{273}$: Soient $a \in \mathbb{R}^*, U = \left(a^{j-i}\right)_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ et $u \in \mathcal{L}\left(\mathbb{R}^n\right)$ canoniquement associé à U.

- 1. Déterminer le rang de u et son déterminant.
- 2. Déterminer la dimension du noyau de u ainsi qu'une équation de ce noyau.
- 3. Déterminer la dimension de l'image de u et une base de cette image.
- 4. Étudier la diagonalisabilité de u.
- 5. Pour $k \in \mathbb{N}^*$, exprimer U^k en fonction de U.
- 6. Déterminer le polynôme minimal de u et retrouver le résultat de la question précédente.

Ex 274: Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ ainsi que deux endomorphismes u et v de E. On suppose que u et v commutent et u diagonalisable avec n valeurs propres distinctes.

- 1. Montrer que tous les vecteurs propres de u sont également vecteurs propres de v.
- 2. Montrer que v est diagonalisable dans une même base que u.
- 3. Montrer qu'il existe $(a_k)_{0 \le k \le n-1} \in \mathbb{K}^n$ telle que $v = \sum_{k=0}^{n-1} a_k u^k$.

Ex 275: Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$, où $a_{1,i} = a_{i,1} = 1$ pour $1 \leq i \leq n$, les autres coefficients étant nuls. On note f l'endomorphisme canoniquement associé à A.

- 1. Quel est le rang de A?
- 2. Trouver les valeurs propres et sous-espaces propres de A.
- 3. Donner la matrice de la projection orthogonale de \mathbb{R}^n sur l'image de f pour la structure euclidienne canonique.

Ex 276: Soit $n \ge 2$ et on munit \mathbb{R}^n du produit scalaire usuel : pour $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ dans \mathbb{R}^n , on pose : $(x|y) = \sum_{i=1}^n x_i y_i$.

Soit $F = \{x = (x_1, ..., x_n) \in \mathbb{R}^n / x_1 = x_n\}.$

- 1. Montrer que F est un hyperplan.
- 2. Trouver une base orthonormée de F.
- 3. Déterminer F^{\perp}
- 4. Écrire la matrice de la projection orthogonale sur F dans la base canonique de \mathbb{R}^n .
- 5. Calculer $d(e_1, F)$.

Ex 277: On considère le produit scalaire suivant : $\langle P|Q\rangle = \int_0^{+\infty} P(x)Q(x)e^{-x} dx$.

- 1. Vérifier qu'il s'agit bien d'un produit scalaire.
- 2. Calculer $\langle X^p | X^q \rangle$ pour tout $(p,q) \in \mathbb{N}^2$.
- 3. Déterminer le projeté orthogonal de X^3 sur $F = \mathbb{R}_2[X]$.

 $\underline{\mathbf{Ex}}$ 278 : On définit trois fonctions sur le segment $[0,1]:f_0:t\mapsto 1, f_1:t\mapsto t$ et $f_2:t\mapsto e^t$, et on note $E=\mathrm{Vect}_{\mathbb{R}}$ $(f_0,f_1,f_2).$

- 1. Montrer que $(f,g) \mapsto \int_0^1 f(t)g(t)dt$ est un produit scalaire sur E.
- 2. Trouver une base orthonormée de $F = \text{Vect}(f_0, f_1)$.
- 3. Trouver a et b tels que la distance de f_2 à $t\mapsto at+b$ soit minimale.

Ex 279: Soient $(E, \langle ., . \rangle)$, un espace euclidien, $v \in \mathcal{L}(E)$ tel que $\forall x \in E, ||v(x)|| \leq ||x||$.

- 1. Montrer que $\operatorname{Ker}(v \operatorname{id}) \oplus \operatorname{Im}(v \operatorname{id}) = E$. Ind. Considérer l'application $t \mapsto \|x + ty\|^2 - \|v(x + ty)\|^2$.
- 2. Soit, pour $x \in E$ et $p \in \mathbb{N}$, $w_p(x) = \frac{1}{p+1} \sum_{k=0}^p v^k(x)$.

Montrer que, pour tout $x \in E$, la suite $(w_p(x))$ converge. Déterminer sa limite.

Ex 280: Soient u et v deux endomorphismes autoadjoints d'un espace euclidien $(E, \langle \rangle)$.

- 1. Montrer que u et v commutent si et seulement si $u \circ v$ est autoadjoint.
- 2. Montrer que u et v commutent si et seulement s'il existe une base orthonormée de vecteurs propres communs à u et v.
- 3. Soit s la symétrie orthogonale par rapport au plan x+y+z=0. Caractériser les symétries orthogonales de \mathbb{R}^3 qui commutent avec s.

Ex 281 : Soit E un espace euclidien de dimension n. On note S(E) l'ensemble des endomorhpismes autoadjoints de E.

- 1. Soit $v \in S(E)$ tel que : $\forall x \in E, (v(x)|x) = 0$. Montrer que v = 0.
- 2. i. Montrer qu'un projecteur orthogonal de E est autoadjoint.
 - ii. Montrer qu'un projecteur de S(E) est un projecteur orthogonal.

3. Soient $u_1, ..., u_p \in S(E)$ tels que $rg(u_1) + ... + rg(u_p) = n$ et :

$$\forall x \in E, \ \sum_{i=1}^{p} (u_i(x)|x) = (x|x).$$

- i. Montrer que $u_1 + ... + u_p = Id_E$.
- ii. Montrer que $\operatorname{Im}(u_1) \oplus ... \oplus \operatorname{Im}(u_p) = E$.
- iii. Montrer que pour tout i de [1, p], u_i est la projection sur $\text{Im}(u_i)$ parallèlement à $\operatorname{Im}(u_1) \oplus ... \oplus \operatorname{Im}(u_{i-1}) \oplus \operatorname{Im}(u_{i+1}) \oplus ... \oplus \operatorname{Im}(u_p).$
- iv. Montrer que les $\text{Im}(u_i)$ sont orthogonaux entre eux deux à deux.

Ex 282: Soient $(E, \langle ., . \rangle)$ un espace euclidien de dimension $n \ge 2, f$ un endomorphisme autoadjoint de E, a sa plus petite valeur propre et b sa plus grande valeur propre.

- 1. Montrer que, pour tout $x \in E$, $a||x||^2 \leqslant \langle x, f(x) \rangle \leqslant b||x||^2$,
- 2. Soient $k \in \mathbb{R}$ et $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ où $a_{i,j} = k$ si $i = j, a_{i,j} = 1$ si |i j| = 1, les autres coefficients étant nuls.

Montrer que la plus grande valeur propre b de A vérifie $k+2 \ge b$,

$\mathbf{Ex}\ \mathbf{283}$:

1. Soit $n \in \mathbb{N}$ avec $n \ge 2$. Soient u et v deux vecteurs non nuls de \mathbb{R}^n muni du produit scalaire canonique noté $\langle \cdot, \cdot \rangle$.

On pose : $\forall x \in \mathbb{R}^n$, $(u \otimes v)(x) = \langle x, v \rangle u$.

- i. Déterminer $rg(u \otimes v)$.
- ii. Donner les éléments propres de $u \otimes v$.
- iii. $u \otimes v$ est-il diagonalisable?
- 2. Calculer $(u \otimes v)^2$ et retrouver le résultat de la question 2a.iii).
- 3. Soit g un endomorphisme de \mathbb{R}^n . On note g^* son adjoint. Montrer que g commute avec $u \otimes v$ ssi il existe $\alpha \in \mathbb{R}$ tel que $g(u) = \alpha u$ et $g^*(v) = \alpha v$.

Ex 284 : Soient E un espace euclidien, a et b deux vecteurs linéairement indépendants. Soit $u: x \mapsto \langle a, x \rangle a + \langle b, x \rangle b$.

- 1. Montrer que u est un endomorphisme autoadjoint.
- 2. Déterminer son noyau.
- 3. Déterminer les éléments propres de u,

Ex 285: Soit $(E, \|\cdot\|)$ un espace euclidien et $f \in \mathcal{L}(E)$ autoadjoint.

- 1. Montrer que:

 - i. $f \in S_n^+(\mathbb{R}) \iff \operatorname{Sp}(f) \subset \mathbb{R}_+$. ii. $f \in S_n^{++}(\mathbb{R}) \iff \operatorname{Sp}(f) \subset \mathbb{R}_+^*$.
- 2. Soit f symétrique positive, montrer qu'il existe un endomorphisme g autoadjoint et positif tel que $f = g^2$. Que dire si f est défini positif?
- 3. Soit f défini positif et g positif, montrer que $f \circ g$ est diagonalisable.

$$\mathbf{\underline{Ex\ 286}}: \text{Soit } A = \frac{1}{7} \left(\begin{array}{cccc} -1 & 4 & 4 & 4 \\ 4 & 5 & -2 & -2 \\ 4 & -2 & 5 & -2 \\ 4 & -2 & -2 & 5 \end{array} \right).$$

- 1. Calculer $A^T A$.
- 2. Sans utiliser χ_A , trouver les valeurs propres de A et les multiplicités associées.
- 3. Calculer π_A et χ_A .
- 4. Trouver $P \in \mathcal{O}_4(\mathbb{R})$ telle que P^TAP soit diagonale.
- 5. Trouver le commutant de A.

$$\underline{\mathbf{Ex}\ \mathbf{287}}: \mathrm{Soit}\ M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

1. Donner les relations entre a, b, c pour que M soit dans $SO_3(\mathbb{R})$.

On donne l'identité :
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)^3 - 3(a + b + c)(ac + ab + cb)$$
.

- 2. On pose $\alpha = a + b + c$ et $\beta = ac + ab + cb$. D'après la question précédente, quelles sont les valeurs de α et β pour que M soit dans $SO_3(\mathbb{R})$?
- 3. Montrer que M est dans $SO_3(\mathbb{R})$ si et seulement s'il existe $k \in [0, 4/27]$ tel que a, b, c soient les racines de $X^3 X^2 + k$.
- 4. Déterminer les triplets (a, b, c) tels que a = b et $M \in O_3(\mathbb{R})$.

$$\underline{\mathbf{Ex}}$$
 288 : On note $E = \mathbb{C}[X]$. Pour $P \in E$ d'écriture développée $P = \sum_{k \geqslant 0} a_k X^k$, on pose $\|P\| = \sup_k |a_k|$.

- 1. Montrer que $\|.\|$ est une norme de E.
- 2. Soit $b \in \mathbb{C}$, on souhaite étudier la continuité de l'application $f: P \in E \mapsto P(b) \in \mathbb{C}$.
- 3. Montrer que, si |b| < 1, alors f est continue.
- 4. Étudier la continuité de f si |b|=1 en utilisant la suite de polynôme $(P_n)_n\geqslant 0$, où, pour $n\in\mathbb{N}, P_n=\sum_{k=0}^n \bar{b}^k X^k$.
- 5. Montrer que, si |b| > 1, alors f n'est pas continue.

Ex 289: On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=\frac{\pi}{2}$ et $\forall n\in\mathbb{N}, u_{n+1}=\sin(u_n)$.

- 1. Montrer que la suite (u_n) converge vers 0.
- 2. Montrer que $\sum \ln \left(\frac{u_{n+1}}{u_n}\right)$ et $\sum u_n^2$ sont de même nature. En déduire la nature de la série $\sum u_n^2$.
- 3. Montrer que $\sum (u_{n+1} u_n)$ et $\sum u_n^3$ sont de même nature. En déduire la nature de la série $\sum u_n^3$.
- 4. En déduire la nature de la série $\sum u_n^k$ pour tout $k \in \mathbb{N}^*$.

Ex 290: Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n (-1)^k \sqrt{k}$.

- 1. Montrer que : $u_{2n} = \sum_{\ell=1}^{n} \frac{1}{\sqrt{2\ell} + \sqrt{2\ell 1}}$.
- 2. En déduire que $u_{2n} \underset{n \to +\infty}{\sim} \frac{\sqrt{2n}}{2}$.
- 3. Déterminer un équivalent simple de u_n quand n tend vers $+\infty$.
- 4. Pour $n \in \mathbb{N}^*$, on pose $v_n = u_n + u_{n+1}$. Justifier que la série $\sum_{n \ge 1} (v_{n+1} v_n)$ est convergente de somme strictement négative.
- 5. Trouver la nature de $\sum_{n>1} \frac{1}{u_n}$.

Ex 291 : Soient a et b, deux réels strictements positifs.

- 1. Calculer l'intégrale suivante : $\int_a^b \frac{1}{t^{3/2} + t^{1/2}} dt$. Indication : Poser $u = \sqrt{t}$.
- 2. Justifier l'existence de $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{3/2} + k^{1/2}}$.
- 3. Montrer l'inégalité suivante : 2 Arctan $(\frac{1}{\sqrt{n+1}}) \le R_n \le 2$ Arctan $(\frac{1}{\sqrt{n}})$.
- 4. En déduire un équivalent simple de R_n au voisinage de $+\infty$.

$\mathbf{Ex} \ \mathbf{292}$:

- 1. Soit M > 0 et $u : [1, +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ tel que } : \forall x \in [1, +\infty[, |u(x)| \leqslant M.$ Montrer que $\int_1^\infty \frac{u'(t)}{t} dt$ converge.
- 2. Montrer que $\int_{1}^{\infty} \frac{\sin t}{t} dt$ et $\int_{1}^{\infty} \sin(t^2) dt$ convergent.
- 3. Montrer que $\int_{1}^{\infty} \sin(t^3) dt$ converge.

 $\underline{\mathbf{Ex}} \ \mathbf{293} : \mathrm{Soit} \ f \in \mathcal{C}^0(\mathbb{R}^+, \mathbb{R}).$

On définit la fonction T(f) sur \mathbb{R}_+ par $T(f)(x) = \frac{1}{x} \int_0^x f(t)dt$ si x > 0, et T(f)(0) = f(0).

- 1. Montrer que T est un endomorphisme de $C^0(\mathbb{R}^+, \mathbb{R})$.
- 2. Montrer que 0 n'est pas valeur propre de T; T est-il injectif?
- 3. Montrer que 1 est valeur propre de T, et donner le sous espace propre associé.
- 4. Donner le spectre de T et les éléments propres associés.

$$\underline{\mathbf{Ex}} \ \mathbf{294} : \text{On note } I = \int_0^{+\infty} \frac{t \sin(t)}{t^2 + 1} dt.$$

- 1. Montrer que I converge.
- 2. On pose $\forall x \in \mathbb{R}$, $J(x) = \int_0^x \frac{t |\sin(t)|}{t^2 + 1} dt$.

Montrer que :
$$\forall n \in \mathbb{N}^*, \ J(n\pi) = \sum_{k=0}^{n-1} \int_0^{\pi} \frac{(u+k\pi)\sin(u)}{(u+k\pi)^2 + 1} \, du.$$

3. I converge-t-elle absolument?

Ex 295: Soit, pour *n* un entier naturel non nul, $I_n = \int_0^{+\infty} \frac{1}{(1+t^4)^n} dt$.

- 1. Monter que I_n est défini, puis que la suite $(I_n)_{n>0}$ converge vers une limite à déterminer.
- 2. Trouver une relation de récurrence entre I_n et I_{n+1} . En déduire une seconde façon de déterminer la limite de la suite $(I_n)_{n>0}$.

Ex 296: Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^3)^n}$.

- 1. Justifier que I_n est bien définie pour tout $n \ge 1$.
- 2. Montrer que $I_{n+1} = \left(1 \frac{1}{3n}\right)I_n$.
- 3. On pose $u_n = n^{1/3} I_n$. étudier la convergence de la suite (u_n) . Ind. Poser $v_n = \ln (u_n)$.
- 4. Étudier la convergence de la série $\sum I_n$.

Ex 297: On pose, pour tous $n \in \mathbb{N}^*$ et $t \in [0,1], g_n(t) = e^t \left(1 - \frac{t}{n}\right)^n$.

- 1. Montrer que : $\forall (t,n) \in [0,1] \times \mathbb{N}^*, |g'_n(t)| \leqslant \frac{e^t}{n}$.
- $2. \ \text{Montrer que}: \forall (t,n) \in [0,1] \times \mathbb{N}^*, \left| e^{-t} \left(1 \frac{t}{n}\right)^n \right| \leqslant \frac{t}{n}.$
- 3. Étudier la convergence simple et uniforme sur [0,1] de la suite de fonctions $(G_n)_{n\in\mathbb{N}^*}$ définie par $G_n: x\in [0,1]\mapsto \int_0^x g_n(t)\mathrm{d}t.$

Ex 298: Pour $n \in \mathbb{N}$, on pose $f_n : x \in [0, \pi/2] \mapsto n \cos^n(x) \sin(x)$.

- 1. Étudier la convergence simple de (f_n) .
- 2. (a) La suite converge-t-elle uniformément sur $[0, \pi/2]$? Indication Considérer $\int_0^{\pi/2} f_n(t) dt$.
 - (b) Soit $0 < \alpha < \frac{\pi}{2}$, La suite converge-t-elle uniformément sur $[\alpha, \pi/2]$?

3. Soit
$$g \in \mathcal{C}^0([0, \pi/2], \mathbb{R})$$
. Montrer que $\lim_{n \to +\infty} \int_0^{\pi/2} f_n(t)g(t)dt = g(0)$.

Ind. Utiliser
$$\left| \int_0^{\pi/2} \left[f_n(t)g(t) - f_n(t)g(0) + f_n(t)g(0) \right] dt - g(0) \right|$$

Ex 299: Pour
$$n \in \mathbb{N}^*$$
 et $x \in \mathbb{R}$, on pose $f_n(x) = \frac{2x}{x^2 + n^2}$.

1. Justifier la convergence simple sur $\mathbb R$ de la série de fonctions $\sum_{n\geqslant 1} f_n$. On note S la fonction somme :

$$\forall x \in \mathbb{R}, \ S(x) = \sum_{n=1}^{+\infty} f_n(x).$$

- 2. Justifier la continuité de S sur \mathbb{R} .
- 3. Démontrer que : $\lim_{x\to +\infty} S(x)=\pi$ (on pourra considérer, pour $x\in \mathbb{R}_+^*$, la fonction $t\mapsto \frac{2x}{x^2+t^2}$).

<u>Ex 300</u>: Soit $(a_n)_{n\geqslant 0}$ une suite décroissante de réels positifs qui converge vers 0, Pour tout $t\in [0,1]$, on pose $u_n(t)=a_n(1-t)t^n$.

- 1. Montrer que la série de fonctions $\sum u_n$ converge simplement sur [0,1].
- 2. Trouver une condition nécessaire et suffisante pour que cette série converge normalement.
- 3. Montrer que la série $\sum u_n$ converge uniformément sur [0,1].

Ex 301: On pose $f_n(t) = \frac{(t^2 - 1)^{n+1}}{n+1}$ pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$.

- 1. Déterminer l'intervalle de convergence de $\sum u_n$, noté D.
- 2. Déterminer $\sum_{n=0}^{+\infty} f_n(t)$ pour $t \in D$.
- 3. Étudier la convergence normale sur [0,1] de $\sum f_n$
- 4. Convergence uniforme?
- 5. Soit $u_n = \int_0^1 \frac{(t^2-1)^{n+1}}{n+1} dt$. Montrer que $\sum u_n$ converge.
- 6. Calculer $\sum_{n=0}^{+\infty} u_n$.

Ex 302: Pour tout
$$(n,x) \in \mathbb{N} \times \mathbb{R} \setminus \{-1\}$$
, on pose $f_n(x) = \frac{1-x^{2n+2}}{1+x}$.

- 1. Étudier la convergence simple de (f_n) .
- 2. Étudier la convergence uniforme de (f_n) sur son intervalle de convergence simple.

- 3. Calcular $\lim_{n\to+\infty}\int_0^1 f_n(t)dt$.
- 4. Montrer que : $\forall (n, x) \in \mathbb{N} \times]-1, 1[, f_n(x) = \sum_{k=0}^n x^{2k} \sum_{k=0}^n x^{2k+1}.$
- 5. Montrer que $\sum \frac{(-1)^k}{k+1}$ converge et calculer sa somme à l'aide des questions précédentes.

$\underline{\mathbf{Ex}} \ \mathbf{303} : \mathrm{Soit} \ S : x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}.$

- 1. Montrer que S est définie sur $]0, +\infty[$. Calculer S(1) et en déduire $xS(x) = \frac{1}{e} + S(x+1)$.
- 2. Montrer que $S(x) \sim \frac{1}{x}$ quand $x \to 0$.
- 3. Montrer S est de classe \mathcal{C}^{∞}

Ex 304:

- 1. Calculer $\sum_{k=0}^{n} (-1)^k t^{3k}$ pour $n \in \mathbb{N}$ et $t \in [0,1]$, puis démontrer que : $\lim_{n \to +\infty} \int_0^1 \frac{t^{3n}}{1+t^3} dt = 0$
- 2. En déduire que $\sum_{k=0}^{+\infty} \frac{(-1)^k}{1+3k} = \int_0^1 \frac{1}{1+t^3} dt$.
- 3. Calculer $\int_0^1 \frac{2t-1}{1-t+t^2} dt$. En déduire la valeur de $\sum_{k=0}^{+\infty} \frac{(-1)^k}{1+3k}$.

Ex 305: On définit pour $n \ge 1$, $f_n: t \mapsto \frac{t^{n-1}\ln(t)}{n}$ sur I = [0,1] avec la convention $f_n(0) = 0$.

- 1. Déterminer $||f_n||_{\infty,I}$.
- 2. On pose $g: t \mapsto \frac{\ln(1-t)\ln(t)}{t}$ sur J =]0,1[.
 - i. Montrer que g est intégrable sur J. Indication : on pourra rappeler la valeur de $\lim_{t\to 1^-} \frac{\ln(t)}{t-1}$.
 - ii. Montrer que : $\int_{0}^{1} g(t)dt = \sum_{k=1}^{+\infty} \frac{1}{k^{3}}$.

Ex 306:

- 1. Justifier l'existence de $I = \int_0^{+\infty} \frac{\sqrt{t}}{e^t 1} dt$.
- 2. Montrer que $I = \frac{\sqrt{\pi}}{2} \sum_{n=1}^{+\infty} \frac{1}{n\sqrt{n}}$. On admet que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

$$\underline{\mathbf{Ex}} \ \mathbf{307} : \mathrm{Pour} \ (p,q) \in \mathbb{N}^2$$
, on pose $I_{p,q} = \int_0^1 x^p \ln(x)^q \ \mathrm{d}x$.

1. Montrer la convergence des intégrales $I_{p,q}$ et les calculer.

2. Montrer que
$$\int_0^1 e^{x \ln(x)} dx = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{1}{n^n}$$
.

 $\underline{\mathbf{Ex}} \ \mathbf{308} : \text{Pour } n \in \mathbb{N}^*, \text{ soit } f_n : x \in]0, +\infty \left[\mapsto \frac{2 \operatorname{sh}(x)}{\operatorname{e}^{nx} - 1} \right] \text{ et sous réserve d'existence, on pose } I_n = \int_0^{+\infty} f_n(x) \mathrm{d}x.$

- 1. Montrer que I_n existe.
- 2. Montrer que $I_n = 2\sum_{k=1}^{+\infty} \int_0^{+\infty} \operatorname{sh}(x) e^{-knx} dx$,
- 3. En déduire la valeur de $\sum_{k=1}^{+\infty} \frac{1}{4k^2 1}.$

Ex 309: Pour $x \in \mathbb{R}_+^*$ et $n \in \mathbb{N}$, on pose $f_n : x \mapsto \frac{(x \ln(x))^n}{n!}$.

- 1. Montrer que $\sum_{n>0} f_n$ converge simplement sur \mathbb{R}_+^* et calculer sa somme.
- 2. Montrer que $\int_0^1 f_n(t)dt$ converge et calculer cette intégrale.
- 3. Montrer que $\int_0^1 t^t dt$ converge et exprimer cette intégrale sous la forme d'une série.

Ex 310:

- 1. Donner le rayon de convergence de la série entière : $\sum_{n\geq 2} (-1)^n (\ln n) \, x^n$. On notera S sa somme.
- 2. Montrer que : $\forall x \in]-1, 1[, S(x) = \frac{1}{1+x} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1}.$
- 3. Montrer que la limite de S en 1^- est égale à $\frac{1}{2}\sum_{n=1}^{+\infty}(-1)^{n+1}\ln\left(1+\frac{1}{n}\right)$.
- 4. Calculer cette limite en utilisant la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$.

Ex 311: On pose, pour $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{4}} \tan^n(t) dt$.

- 1. Montrer que, pour $n \in \mathbb{N}$, $0 \leq I_n \leq \frac{\pi}{4}$. En déduire que le rayon de convergence de $\sum I_n x^n$ est $\geqslant 1$.
- 2. Montrer, pour $n \in \mathbb{N}$, que $I_{n+2} + I_n = \frac{1}{n+1}$.
- 3. Donner un équivalent simple de I_n .
- 4. Déterminer le rayon de convergence R de $\sum I_n x^n$. Calculer $\sum_{n=0}^{+\infty} I_n x^n$ pour $x \in]-R, R[$.

Ex 312:

- 1. étudier la convergence simple de la série entière $\sum_{n\geqslant 1} \sin\left(\frac{1}{\sqrt{n}}\right) x^n$. On note D l'ensemble de convergence et S(x) la somme sur D. L'application S est-elle continue sur D?
- 2. Montrer que $\sum_{n\geq 1} \left(\sin \frac{1}{\sqrt{n}} \sin \frac{1}{\sqrt{n-1}} \right) x^n$ converge normalement sur [-1,1].
- 3. En déduire la valeur de $\lim_{x\to 1^-} (1-x)S(x)$.

 $\underline{\mathbf{Ex}}$ 313 : Soit $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ une série entière définie sur $\mathbb C$ tout entier.

- 1. Soient $n \in \mathbb{N}$ et $r \in \mathbb{R}^+$. Montrer que $a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f\left(re^{it}\right) e^{-int} dt$.
- 2. Montrer que si f est bornée alors f est constante.

$$\underline{\mathbf{Ex 314}} : \text{ On donne } d_0 = 1, \ d_1 = \frac{1}{2} \text{ et } d_n = \begin{vmatrix} \frac{n}{n+1} & \sqrt{\frac{1}{n+1}} & 0 & \dots & 0 \\ -\sqrt{\frac{1}{n+1}} & \frac{n-1}{n} & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \frac{2}{3} & \sqrt{\frac{1}{3}} \\ 0 & \dots & 0 & -\sqrt{\frac{1}{3}} & \frac{1}{2} \end{vmatrix}.$$

- 1. Calculer d_2 et d_3 .
- 2. Montrer que $\forall n \geq 2, (n+1)d_n = nd_{n-1} + d_{n-2}$.
- 3. Montrer que $\forall n \in \mathbb{N}^*$, $|d_n| \leq 1$ et en déduire une information sur le rayon de convergence R de $\sum_{n \geq 0} d_n x^{n+1}$; on notera S la fonction somme définie sur]-R,R[.
- 4. Déterminer une équation différentielle vérifiée par S. En déduire une expression simple de S.
- 5. Déterminer d_n .

Ex 315: Soit
$$h(x) = \int_0^{+\infty} e^{(-t^2 - \frac{x^2}{t^2})} dt$$

- 1. Montrer que $t\mapsto \frac{a}{t^2}\mathrm{e}^{-t^2-\frac{b}{t^2}}$ est intégrable sur]0; $+\infty[$ pour a>0 et b>0.
- 2. Montrer que h est continue sur \mathbb{R} et dérivable sur \mathbb{R}_+^* .
- 3. Montrer que h'(x) = -2h(x), en déduire une expression de h en fonction de x et de h(0).

Ex 316: Soit
$$F: x \longmapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t} dt$$
.

1. Montrer que le domaine de définition de F est \mathbb{R}_{+}^{*} .

- 2. Montrer que, pour tout x > 0, $F(x) \le \int_0^{+\infty} e^{-xt} dt$. En déduire $\lim_{x \to +\infty} F(x)$.
- 3. Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , puis que, pour tout x > 0, $F(x) F'(x) = \frac{1}{x}$. En déduire que F est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* .
- 4. Montrer que, pour tout x > 0, on a : $F(x) = e^x \int_x^{+\infty} \frac{e^{-t}}{t} dt$. En déduire $\lim_{x \to 0^+} F(x)$.
- 5. Montrer que $F(x) \sim -\ln x$.

Ex 317: Soit $F: x \in \mathbb{R} \longmapsto \int_0^\infty \frac{\ln(t)}{x^2 + t^2} dt$.

- 1. Donnez le domaine de définition D de F.
- 2. Calculez F(1). On pourra poser $u = \frac{1}{t}$.
- 3. En déduire la valeur de F(x) pour tout $x \in D$.

$\underline{\mathbf{Ex 318}}$: Soit $f: x \mapsto \int_0^{+\infty} \frac{\operatorname{Arctan}(xt) - \operatorname{Arctan}(t)}{t} dt$.

- 1. Montrer que f est bien définie sur \mathbb{R}^{+*} .
- 2. Montrer que f est continue sur \mathbb{R}^{+*} , puis que f est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} . En déduire l'expression de f' puis de f.
- 3. Calculer $\int_0^{+\infty} \frac{\operatorname{Arctan}(at) \operatorname{Arctan}(bt)}{t} dt$ pour $(a, b) \in (\mathbb{R}^{+*})^2$.

Ex 319:

- 1. Montrer que G est bien définie pour x > 0.
- 2. Soit $n \in \mathbb{N}^*$. Montrer que $\int_0^y \frac{t \lfloor t \rfloor}{t(n+t)} dt = \frac{1}{n} \left(\int_0^n \frac{t \lfloor t \rfloor}{t} dt \int_y^{y+n} \frac{t \lfloor t \rfloor}{t} dt \right)$.
- 3. On pose H(n) = nG(n). Montrer que la série de terme général $H(n+1) H(n) \frac{1}{2n}$ converge. En déduire un équivalent de G(n).

$$\underline{\mathbf{Ex 320}}: \text{On pose}: \forall x \in [0, +\infty[, F(x) = \int_0^1 \frac{\mathrm{e}^{-x^2}(1+t^2)}{1+t^2} \, \mathrm{d}t \text{ et } G(x) = \int_0^x \mathrm{e}^{-u^2} \, \mathrm{d}u.$$

- 1. Montrer que F est \mathcal{C}^{∞} sur $[0, +\infty[$ et exprimer F'(x).
- 2. Montrer que $G^2(x) = \frac{\pi}{4} F(x)$.
- 3. En déduire la valeur de $\int_0^{+\infty} e^{-u^2} du$.

Ex 321:

- 1. Soient a, b > 0. Donner les primitives sur \mathbb{R} de $u \mapsto \frac{1}{au^2 + b}$.
- 2. Exprimer $\cos(t)$ en fonction de $u = \tan\left(\frac{t}{2}\right)$ lorsque $\cos\left(\frac{t}{2}\right) \neq 0$.
- 3. Soit $f: x \in]1, +\infty$ $\mapsto \int_0^{\pi} \ln(\cos(t) + x) dt$. Montrer que f est de classe \mathcal{C}^1 , puis exprimer f'sans intégrale.
- 4. En déduire une expression de f.

Ex 322: Soit $(E): (1-x^2)y' - xy = f(x)$.

- 1. Résoudre l'équation homogène associée à (E) sur]-1,1[.
- 2. Soit $h: x \mapsto \sqrt{1-x^2}$ Arccos x. Démontrer que h est dérivable sur un intervalle à préciser et calculer h'.
- 3. Résoudre (E) sur]-1,1[pour f(x)=1-x.
- 4. Montrer que s'il existe une solution de (E) sur [-1,1], alors $\int_{-\pi}^{\frac{\pi}{2}} f(\sin t) dt = 0$.
- 5. Soit f(x) = ax + b avec $(a, b) \in \mathbb{R}^2$. Montrer qu'il existe une solution de (E) sur [-1, 1] si, et seulement si, b = 0.

Ex 323: On recherche les fonctions
$$x, y, z, u : \mathbb{R} \to \mathbb{R}$$
 de classe C^1 vérifiant le système
$$\begin{cases} x' = x + 2y - 2z \\ y' = x - y + u \\ z' = x - z + u \\ u' = 2y - 2z + u \end{cases}$$

On note
$$A = \begin{pmatrix} 1 & 2 & -2 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & 1 \\ 0 & 2 & -2 & 1 \end{pmatrix}$$
 et f l'endomorphisme canoniquement associé à A .

- 1. Déterminer le polynôme caractéristique et le polynôme minimal de f.
- 2. Justifier avec un minimum de calcul que f n'est pas diagonalisable.
- 3. Déterminer une base de \mathbb{R}^4 dans laquelle la matrice de f vaut $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$.
- 4. Résoudre le système différentiel.

Ex 324: Soit l'application $f: U \to \mathbb{C}$, avec U un ouvert non vide de \mathbb{C} .

Pour $z = x + iy \in U$, avec x et y réels, on pose $f(z) = \tilde{f}(x,y) = P(x,y) + iQ(x,y)$, avec P(x,y) et Q(x,y) réels.

On dit que f est dérivable en $z_0 \in U$ si $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ existe. Si f est dérivable en $z_0 = x_0 + iy_0 \in U$, on a alors l'expression :

$$f'(z_0) = \frac{\partial P}{\partial x}(x_0, y_0) + i\frac{\partial Q}{\partial x}(x_0, y_0) = \frac{\partial Q}{\partial y}(x_0, y_0) - i\frac{\partial P}{\partial y}(x_0, y_0).$$

1. Montrer que f est continue en $z_0 \in U$ si et seulement si P et Q sont continues en (x_0, y_0) .

- 2. Montrer que f est dérivable en $z_0 \in U$ si et seulement si P et Q sont différentiable en (x_0, y_0) et $\frac{\partial P}{\partial x}(x_0, y_0) = \frac{\partial Q}{\partial y}(x_0, y_0)$ et $\frac{\partial Q}{\partial x}(x_0, y_0) = -\frac{\partial P}{\partial y}(x_0, y_0)$.
- 3. On suppose que f est deux fois dérivable sur U et que f'' est continue sur U. Déterminer l'expression de f''.
- 4. En déduire que si f est deux fois dérivable sur U et que f'' est continue sur U, alors $\Delta(P)=\frac{\partial^2 P}{\partial x^2}+\frac{\partial^2 P}{\partial y^2}=0$ et $\Delta(Q)=\frac{\partial^2 Q}{\partial x^2}+\frac{\partial^2 Q}{\partial y^2}=0$

 $\underline{\mathbf{Ex}\ 325}: \mathrm{Soit}\ f: \mathbb{R}^2 \longrightarrow \mathbb{R}\ \mathrm{de\ classe}\ \mathcal{C}^1\ \mathrm{telle}\ \mathrm{que}\ f(0,0) = 0\ \mathrm{et}\ \forall (x,y) \in \mathbb{R}^2, \quad \frac{\partial f}{\partial y}(x,y) > \left|\frac{\partial f}{\partial x}(x,y)\right|.$ On pose : $u: x \longmapsto f(x,x),\ v: x \longmapsto f(x,-x)\ \mathrm{et}\ w_x: y \longmapsto f(x,y).$

- 1. Calculer les dérivées de u, v et w_x .
- 2. Montrer que pour tout $x \in \mathbb{R}$, il existe un unique $y_x \in \mathbb{R}$ tel que $|y_x| \leq |x|$ et $w_x(y_x) = 0$.
- 3. On pose $\varphi: x \longmapsto y_x$ (on suppose que φ est dérivable). Exprimer $\varphi'(x)$ en fonction des dérivées partielles de f en $(x, \varphi(x))$. Montrer que φ est de classe \mathcal{C}^1 .

Ex 326: On note, pour tous réels x et $y: f(x,y)=y^2\sin(x/y)$ si $y\neq 0$ et f(x,0)=0.

- 1. On pose $X_0 = (x_0, 0)$ où $x_0 \in \mathbb{R}$.
 - i. Montrer que f est continue en X_0 .
 - ii. Montrer que f est continue sur \mathbb{R}^2 .
- 2. On considère $X_1 = (x_1, y_1) \in \mathbb{R}^2$ avec $y_1 \neq 0$.
 - i. Calculer les dérivées partielles de f en X_1 .
 - ii. f est-elle différentiable en X_1 ? Si oui, donner la différentielle de f en X_1 , puis en (0,1).
- 3. Calculer les dérivées partielles de f en X_0 . Si on suppose que f est différentiable en X_0 , que vaut sa différentielle?

$\mathbf{Ex} \ \mathbf{327}$:

- 1. Déterminer les extrema de $f:(u,v)\in[0,1]^2\mapsto uv(1-u-v)$.
- 2. Soit (A,B,C) un triangle d'aire égale à 1 . Soit M un point dans le triangle. Maximiser le produit des distances de M aux côtés du triangle.
- 1. Justifier que F est de classe \mathcal{C}^1 . Montrer que, pour $H \in \mathcal{M}_n(\mathbb{R})$, $\mathrm{d} f_{I_n}(H) = H^T + H$.
- 2. Déterminer Ker (df_{I_n}) .
- 3. En déduire que l'espace tangent à $\mathcal{O}_n(\mathbb{R})$ en I_n est $\mathcal{A}_n(\mathbb{R})$.

<u>Ex 328</u>: On obtient aléatoirement un entier strictement positif n avec une probabilité de $\frac{1}{2^n}$ On note A_k l'événement : « n est un multiple de k ».

- 1. Montrer qu'il s'agit bien d'une loi de probabilité sur \mathbb{N}^* .
- 2. Calculer $P(A_k)$.
- 3. Calculer $P(A_2 \cup A_3)$.
- 4. Soient p, q dans $\mathbb{N} \setminus \{0, 1\}$.

- (a) Montrer que $A_p \cap A_q = A_m$, avec $m = p \vee q$.
- (b) Montrer que A_p et A_q ne sont pas indépendantes.

Ex 329: Soient $n \in \mathbb{N}^*$ et X et Y deux variables aléatoires à valeurs dans [1, n+1].

Soient $i, j \in [1, n+1]$. On donne $P(X = j, Y = i) = \lambda \binom{n}{i-1} \binom{n}{j-1}$.

- 1. Déterminer λ .
- 2. Donner les lois de X et Y.
- 3. X et Y sont-elles indépendantes?
- 4. Déterminer la loi de Z = X 1 et en déduire E(X) et V(X).
- 5. Soit $B = [P(Y = i | X = j)]_{1 \le i,j \le n+1}$. Expliciter B, puis calculer B^p pour $p \in \mathbb{N}^*$.
- 6. B est-elle diagonalisable? Déterminer ses valeurs propres et les sous-espaces propres associés.

Ex 330 : Soit X une variable aléatoire réelle discrète à valeurs dans \mathbb{N} . On définit le taux de panne de X comme la suite (x_n) telle que : $\forall n \in \mathbb{N}$, $x_n = \mathbb{P}(X = n | X \ge n)$. Soit $Y : \Omega \to \mathbb{N}^*$ telle que : $\forall n \in \mathbb{N}^*$, $\mathbb{P}(Y = n) = \frac{1}{n(n+1)}$.

- 1. Montrer que la loi de Y est bien une loi de probabilité.
- 2. Soit X une variable aléatoire réelle discrète telle que $X(\Omega) = \mathbb{N}^*$.
 - i. Montrer que $\forall n \in \mathbb{N}^*$, $\mathbb{P}(X \ge n) = \prod_{k=0}^{n-1} (1 x_k)$.
 - ii. Pour $n \in \mathbb{N}^*$, exprimer $\mathbb{P}(X = n)$ en fonction des x_k .
- 3. Déterminer les variables aléatoires réelles discrètes ayant un taux de panne constant.
- 4. Déterminer le taux de panne de Y.

Ex 331: Une personne sur une échelle est en train de peindre un bâtiment. La probabilité qu'un passant reçoive une goutte de peinture est $p \in]0,1[$. On note X (resp. Y) le nombre de passants ayant reçu une goutte de peinture (resp. n'ayant pas reçu de goutte.)

- 1. On suppose que n personnes sont passées. Donner les lois de X et de Y. Sont-elles indépendantes ?
- 2. On note à présent N le nombre de passants dans la journée. On suppose que N suit une loi de Poisson de paramètre λ . Donner la loi de X et de Y. Donner l'espérance et la variance de X.
- 3. Montrer que X et Y sont indépendantes. Calculer Cov(X,Y).

Ex 332 : Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires suivant la loi de Bernoulli de paramètre $p\in]0,1$ [. En posant $\min\emptyset=+\infty$, on définit $T_1=\min\{n\in\mathbb{N}^*,X_n=1\}$ et $T_2=\min\{n>T_1,X_n=1\}$.

- 1. Que représente T_1 ? Préciser sa loi, son espérance et sa variance.
- 2. Que représente T_2 ? Calculer $\mathbf{P}(T_2 T_1 = k, T_1 = n)$.
- 3. Vérifier que $T_2 T_1$ et T_1 sont indépendantes. En déduire la loi de T_2 .

 $\underline{\mathbf{Ex\ 333}}$: Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 tel qu'il existe $\alpha \in \mathbb{R}$ vérifiant, $\forall (k,\ell) \in \mathbb{N}^2, \mathbf{P}(X=k,Y=\ell) = \frac{\alpha}{2^{k+\ell}}$.

- 1. Trouver α . Les variables X et Y sont-elles indépendantes?
- 2. Calculer $G_X(t)$, $\mathbf{E}(X)$, V(X) et cov(X, Y).
- 3. Calculer $\mathbf{P}(X \ge k)$ pour tout $k \in \mathbb{N}$ et retrouver $\mathbf{E}(X)$.
- 4. On pose $Z = \min(X, Y)$. Déterminer la loi de Z.
- 5. Calculer $\mathbf{P}(X \ge Y)$.

ENSEA MP 2023

Ex 334: Factoriser dans $\mathbb{R}[X]: P = X^6 + 1$.

 $\underline{\mathbf{Ex\ 335}}$: Factoriser dans $\mathbb C$ les polynômes X^2+X+1 et $X^2-X+1.$ Montrer que X^2-X+1 divise $(X-1)^{n+2}+X^{2n+1}.$

Ex 336: $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Soient $n, k \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$ telle que : $A^k = I_n$.

- 1. Montrer que A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.
- 2. Donner un exemple d'une matrice M de $\mathcal{M}_3(\mathbb{R})$ telle que $M^4 = I_3$ et qui ne soit pas diagonalisable sur $\mathcal{M}_3(\mathbb{R})$. Réduire cette matrice dans $\mathcal{M}_3(\mathbb{C})$.
- 3. Quelles sont les matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que $A^k = I_n$ diagonalisables sur $\mathcal{M}_n(\mathbb{R})$?

$$\underline{\mathbf{Ex 337}}: \text{Déterminer les valeurs propres de la matrice } M = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & \vdots \\ 1 & \cdots & \cdots & 1 \end{pmatrix}.$$

Ex 338: Soit
$$n \in \mathbb{N}$$
 et on note $\varphi_n : \left\{ \begin{array}{ll} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P & \mapsto & (X-1)^2 P' - nXP \end{array} \right.$

- 1. Montrer que φ_n est bien un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Déterminer les valeurs propres et les vecteurs propres de φ_n .

<u>Ex 339</u>: Soit E un espace euclidien de dimension d > 0. Soient a et b deux vecteurs unitaires et linéairement indépendants de E.

Soit u l'endomorphisme de E défini par u(x) = (a|x)a + (b|x)b pour tout x.

- 1. Montrer que u est un endomorphisme autoadjoint.
- 2. Déterminer Ker(u) et Im(u).
- 3. Déterminer les valeurs propres et les vecteurs propres de u.

Ex 340: Donner un développement limité à l'ordre 5 en 0 de $e^{\cos(x)}$.

Ex 341: Pour tout
$$n \in \mathbb{N}$$
, soit $S_n = \sum_{k=0}^n \frac{1}{(k+1)(2k+1)}$.

- 1. Montrer que la suite (S_n) converge.
- 2. Montrer que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$, où γ est une constante que l'on ne cherchera pas à exprimer.
- 3. Calculer la limite de (S_n) .

Ex 342: Pour $n \in \mathbb{N}$, on pose $a_n = \frac{(-1)^n}{n+1}$.

1. Donner le rayon de convergence de $\sum_{n\geq 1} a_{n-1}x^n$.

On note f la somme de cette série entière

- 2. Donner l'expression de f(x) pour x dans]-1,1[.
- 3. f est-elle définie en -1? Que dire alors de f sur] -1,1[?
- 4. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=0}^{n-1} a_k = \sum_{k=0}^{n-1} (-1)^k \int_0^1 t^k dt$.
- 5. Calculer f(1).

$\underline{\mathbf{Ex}}$ 343 : Résoudre l'équation différentielle :

$$t\frac{d\theta}{dt} - (1+t)\theta = \frac{t^2}{\operatorname{ch}(t)}$$

Ex 344 : Étudier les extrema de la fonction :

$$f: \left\{ \begin{array}{ccc}]0; +\infty[\times\mathbb{R} & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & x(y^2 + \ln(x)^2) \end{array} \right.$$

Navale, Saint-Cyr MP 2023

Ex 345: [St Cyr] Soit A l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ s'écrivant $t \mapsto a_0 + \sum_{k=1}^n a_k \cos(kt)$, avec $n \in \mathbb{N}$ et a_0, \ldots, a_n constantes réelles.

- 1. Montrer que A est un sous-anneau de $\mathbb{R}^{\mathbb{R}}$.
- 2. Calculer en fonction des a_k l'intégrale $\int_0^{2\pi} f(t) \cos(nt) dt$.
- 3. En déduire que A est intègre.

<u>Ex 346</u>: [St Cyr] Soit $P \in \mathbb{C}[X]$ un polynôme unitaire de degré 3 dont les racines z_1, z_2, z_3 sont les affixes de points M_1, M_2, M_3 d'un plan affine euclidien. Montrer que P' a une racine double si et seulement si le triangle $M_1M_2M_3$ est équilatéral.

$$\mathbf{\underline{Ex 347}} : [St Cyr] Soit A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}.$$

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $\alpha_n, \beta_n \in \mathbb{R}$ tels que $A^n = \alpha_n A + \beta_n A^2$.
- 2. Programmer une fonction Python puissance(n) renvoyant A^n .
- 3. Déterminer α_n et β_n grâce à cette fonction.
- 4. Tracer $n \mapsto \frac{\alpha_n}{\beta_n}$. Conjecture?
- 5. Prouver cette conjecture.

 $\underline{\mathbf{Ex}} \ \mathbf{348} : [\mathrm{St} \ \mathrm{Cyr}] \ \mathrm{Soit} \ \phi : \mathcal{M}_2(\mathbb{C}) \to \mathbb{C} \ \mathrm{v\'erifiant} :$

- i. $\forall A, B \in \mathcal{M}_2(\mathbb{C}), \phi(AB) = \phi(A)\phi(B);$
- ii. $\forall \lambda \in \mathbb{C}, \phi\left(\left(\begin{array}{cc} \lambda & 0 \\ 0 & 1 \end{array}\right)\right) = \lambda.$

Montrer que $\phi = \det$

 $\underline{\mathbf{Ex}\ 349}$: [St Cyr] Soit $n \in \mathbb{N}$, avec $n \geqslant 3$. On note U l'application qui à un polygone P constitué de n points M_1, \ldots, M_n du plan complexe associe le polygone : $\frac{M_1 + M_2}{2}, \ldots, \frac{M_{n-1} + M_n}{2}, \frac{M_n + M_1}{2}.$

- 1. Écrire une fonction Python calculant U(P).
- 2. L'application U est visiblement linéaire. Donner sa matrice dans la base canonique. C'est une matrice stochastique que l'on notera M.
- 3. Montrer que les valeurs propres de M sont de module au plus égal à 1 .
- 4. Montrer que 1 est la seule valeur propre de M de module 1 .

Ex 350: [Navale] Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $\phi : M \in \mathcal{M}_n(\mathbb{C}) \mapsto AM$.

- 1. Donner une condition nécessaire et suffisante portant sur A pour que ϕ soit diagonalisable.
- 2. Décrire les éléments propres de ϕ .

 $\underline{\mathbf{Ex\ 351}}$: [St Cyr] On munit \mathbb{R}^n de sa structure euclidienne canonique. Soit (e_1,\ldots,e_n) une base orthonormée de \mathbb{R}^n et (f_1,\ldots,f_n) une famille de vecteurs telle que :

$$\forall k \in [1, n], ||f_k - e_k|| < \frac{1}{\sqrt{n}}.$$

- 1. Montrer que (f_1, \ldots, f_n) est une base de \mathbb{R}^n .
- 2. Montrer que le résultat précédent serait en défaut en remplaçant l'inégalité stricte par une inégalité large.

 $\underline{\mathbf{Ex\ 352}}: [\mathrm{St\ Cyr}]$ Soient $(E, \langle \ .\ ,\ .\rangle)$ un espace euclidien et x_1, \ldots, x_n des éléments de E. On note $G = (\langle x_i, x_j \rangle)_{1 \leq i,j \leq n}.$

- 1. Montrer que $G \in \mathcal{S}_n^+(\mathbb{R})$.
- 2. Montrer l'existence d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que $G = A^T A$.
- 3. En déduire que le rang de G et égal à celui de la famille (x_1, \ldots, x_n) .

Ex 353: [Navale] Soit E un espace euclidien et $u \in \mathcal{L}(E)$:

- 1. Montrer que si $\operatorname{Im} u = \operatorname{Ker} u$, alors $u + u^*$ est inversible.
- 2. Montrer la réciproque si $u \circ u = 0$.

 $\underline{\mathbf{Ex}\ \mathbf{354}}$: [Navale] On munit $E = \mathbb{R}_n[X]$ du produit scalaire défini par : $\forall P, Q \in \mathbb{R}_n[X]$, $(P|Q) = \int_0^1 PQ$.

- 1. Montrer que l'application u définie sur E par : $u(P) = \int_0^1 (X+t)^n P(t) dt$ est un endomorphisme autoadjoint de E.
- 2. En déduire qu'il existe une base orthonormée $(P_0, ..., P_n)$ formée de vecteurs propres de u. On note $\lambda_1, ..., \lambda_n$ les valeurs propres associées.
- 3. Montrer que : $\forall x, y \in \mathbb{R}^2$, $(x+y)^n = \sum_{k=0}^n \lambda_k P_k(x) P_k(y)$. En déduire tr(u).

 $\underline{\mathbf{Ex\ 355}} : [\text{St\ Cyr}] \ \text{Soit} \ E = \mathcal{C}^0([0,1],\mathbb{R}). \ \text{On munit} \ E \ \text{du produit scalaire} \ \langle \ . \ , \ . \rangle \ \text{défini par} : \\ \langle f,g\rangle = \int_0^1 f(t)g(t)\mathrm{d}t. \ \text{Soit} \ K : [0,1]^2 \to \mathbb{R} \ \text{une fonction continue et symétrique c'est-àdire telle} \\ \text{que} \ \forall (x,t) \in [0,1]^2, K(x,t) = K(t,x). \ \text{Soit} \ u \ \text{l'application qui à} \ f \in E \ \text{associe la fonction} \ u(f) : x \in [0,1] \mapsto \int_0^1 K(x,t)f(t)\mathrm{d}t.$

On admet le théorème de Fubini : $\forall \phi \in \mathcal{C}^0 \left([0,1]^2, \mathbb{R} \right), \int_0^1 \left(\int_0^1 \phi(x,t) dt \right) dx = \int_0^1 \left(\int_0^1 \phi(x,t) dt \right) dt.$

- 1. Montrer que u est un endomorphisme de E.
- 2. Montrer que u est autoadjoint.
- 3. Montrer que u est continu.

 $\underline{\mathbf{Ex 356}}$: [St Cyr] Pour $t \in \mathbb{R}$, on note $M_t = \begin{pmatrix} \operatorname{ch}(t) & \operatorname{sh}(t) \\ \operatorname{sh}(t) & \operatorname{ch}(t) \end{pmatrix}$.

- 1. Montrer que les matrices M_t sont diagonalisables et trouver une base de vecteurs propres indépendante de t.
- 2. Montrer que l'application $\theta : \mathbb{R} \to \mathcal{M}_2(\mathbb{C})$ définie par $\theta(t) = M_t$ est injective. Montrer que $\theta(t + t') = \theta(t)\theta(t')$.

3. Soient $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E = \mathbb{R}^2$, \mathfrak{b} sa base canonique, $f \in \mathcal{L}(E)$ et $q : (x,y) \in \mathbb{R}^2 \mapsto x^2 - y^2$. Montrer que, si $q \circ f = q$, alors $M = \operatorname{Mat}_{\mathfrak{b}}(f)$ vérifie $(*) : M^T J M = J$. Montrer que les matrice M_t , avec $t \in \mathbb{R}$, vérifient (*) et trouver toutes les matrices vérifiant (*).

$\mathbf{Ex} \ \mathbf{357} : [Navale]$

- 1. Rappeler l'algorithme de Gram-Schmidt.
- 2. On note $T_n^+(\mathbb{R})$ l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ triangulaires supérieures, à coefficients diagonaux strictement positifs. Soit $A \in \mathrm{GL}_n(\mathbb{R})$. Montrer qu'il existe un unique couple $(O,T) \in \mathcal{O}_n(\mathbb{R}) \times T_n^+(\mathbb{R})$ tel que A = OT.

- 1. Que dire de I si F est de dimension 1?
- 2. Dans le cas général, montrer que I est un intervalle inclus dans $[1, +\infty[$.
- 3. On suppose F de dimension finie. Montrer que I est fermé.

Ex 359 : [Navale] Montrez que toute suite réelle admet une sous suite monotone.

Ex 360: [St Cyr] Pour $n \in \mathbb{N}^*$, soit l'équation $(E_n): x^n + x - 1 = 0$.

- 1. Montrer que (E_n) a une solution unique dans $]0, +\infty[$. On la note x_n .
- 2. Montrer que la suite (x_n) est croissante et majorée.
- 3. (Python) écrire un programme qui renvoie une valeur approchée de x_n à ε près obtenue par dichotomie.
- 4. (Python) Afficher les 100 premières valeurs de x_n et conjecturer la limite de la suite.
- 5. Démontrer la conjecture.

Ex 361: [St Cyr] Pour $n \in \mathbb{N}^*$, on note $P_n = X^n + X^{n-1} + \cdots + X - 1$.

- 1. Montrer que, pour tout $n \in \mathbb{N}^*, P_n$ a une unique racine réelle positive que l'on notera a_n .
- 2. Écrire une fonction Python qui renvoie une valeur approchée de a_n .
- 3. Afficher un graphe représentant les 20 premières valeurs de la suite (a_n) . Conjecturer la nature de (a_n) .
- 4. Montrer la convergence de (a_n) et déterminer sa limite.

Ex 362 : [Navale]

- 1. Pour m > 1, montrer qu'il existe un unique $x_m \in]-1, -2[$ tel que $m \ln \left(1 + \frac{x_m}{m+1}\right) = x_m$.
- 2. Étudier la suite $(x_m)_{m>1}$,

Ex 363: [St Cyr] Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^3)^n}$.

- 1. Justifier l'existence de I_n pour $n \in \mathbb{N}^*$. Montrer que, pour $n \in \mathbb{N}^*$, $I_{n+1} = \left(1 \frac{1}{3n}\right)I_n$.
- 2. Programmer sur Python la méthode des trapèzes pour calculer une valeur approchée de I_1 .
- 3. Programmer une fonction Python qui calcule les 20 premières sommes partielles des séries $\sum I_n^{\alpha}$ pour $\alpha = 1, 2, 3, 4$.
- 4. Soit $\sum x_n$ une série à termes strictement positifs et $\sum y_n$ une série absolument convergente. On suppose qu'il existe λ tel que $\frac{x_{n+1}}{x_n} = 1 \frac{\lambda}{n} + y_n$.
 - (a) Montrer que $\ln\left(\frac{x_{n+1}}{x_n}\right) = -\frac{\lambda}{n} + z_n$, où z_n est le terme général d'une série absolument convergente.
 - (b) Montrer l'existence d'une constante C telle que $\ln(x_n) = -\lambda \ln n + C + o(1)$ quand $n \to +\infty$ et en déduire un équivalent de x_n .
 - (c) Étudier la nature de la série $\sum I_n^{\alpha}$ en fonction de α .

 $\mathbf{\underline{Ex~364}}$: [St Cyr] Pour un entier n, on note r_n le reste de la division euclidienne de n par 5.

- 1. Montrer que la série de terme général $\frac{r_n}{n(n+1)}$ converge.
- 2. On note $S_n = \sum_{k=1}^n \frac{r_k}{k(k+1)}$. Déterminer S_{5n} en fonction de termes de la suite (H_p) , où $H_p = \sum_{k=1}^p \frac{1}{k}$.
- 3. En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{r_n}{n(n+1)}.$

Ex 365 : [St Cyr] Soient $\alpha \in \mathbb{R}^{+*}$ et $f : \mathbb{R}^+ \to \mathbb{R}^+$ une fonction deux fois dérivable et majorée. On suppose que $\forall t \in \mathbb{R}^+, f''(t) \geqslant \alpha^2 f(t)$.

- 1. Montrer que f est convexe.
- 2. Montrer que f' est négative.
- 3. Montrer que f admet une limite finie en $+\infty$, déterminer sa valeur.
- 4. Montrer que f' admet une limite finie en $+\infty$, déterminer sa valeur.
- 5. Montrer que $\alpha^2 f^2 f'^2$ est négative.
- 6. En déduire que $\forall t \in \mathbb{R}^+, f(t) \leqslant f(0)e^{-\alpha t}$.

Ex 366: [St Cyr] Soit $f:[0,1] \to \mathbb{R}$ une fonction continue et concave.

- 1. Montrer que $\forall x \in [0, 1], x f(x) \leqslant \int_0^x f(t) dt x$.
- 2. En déduire $\int_0^1 x f(x) dx \leq \frac{2}{3} \int_0^1 f(x) dx$.

Ex 367: [St Cyr] On définit une suite de fonctions $f_n: I = [1, +\infty [\to \mathbb{R} \text{ par } f_n(x) = \frac{(-1)^n}{\sqrt{1+nx}}]$

- 1. Étudier la convergence simple de $\sum f_n$.
- 2. La série converge-t-elle normalement sur I? uniformément sur I?
- 3. Déterminer $\lim_{x \to +\infty} \sum_{n=0}^{+\infty} f_n(x)$.

Ex 368: [St Cyr] Soit $f:[0,1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit une suite de fonctions (f_n) sur [0,1] par $f_n(x) = f\left(x + \frac{x(1-x)}{n}\right)$ pour $n \ge 1$ et $f_0(x) = 0$.

- 1. Étudier la convergence simple et la convergence uniforme de (f_n) .
- 2. Montrer que les résultats restent valides pour une fonction f seulement lipschitzienne.

 $\underline{\mathbf{Ex} \ \mathbf{369}}$: [Navale] Étudier la convergence simple et la convergence uniforme des séries de fonctions $\sum u_n$ et $\sum u'_n$ définies sur \mathbb{R}^+ par $u_n(x) = \frac{x}{(1+n^2x)^2}$.

<u>Ex 370</u>: [St Cyr] Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}^+$, on pose $f_n(x) = \frac{x}{n(1+n^2x^2)}$.

- 1. Étudier la convergence simple de $\sum f_n$ -
- 2. Étudier la continuité de la somme $f = \sum_{n=1}^{+\infty} f_n$.
- 3. Donner un équivalent de f en 0^+ .

<u>Ex 371</u> : [Navale] Soit la fonction G définie sur \mathbb{R} par $G(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$

- 1. Exprimer G(x) en fonction en fonction de $F: x \mapsto \int_0^x e^{-u^2} du$.
- 2. En déduire la valeur de $\int_0^{+\infty} e^{-u^2} du$.

Ex 372 : [Navale] On considère une suite $(X_n)_{n\geqslant 1}$ i.i.d. suivant la loi de Bernoulli de paramètre $p\in]0,1[$. On note q=1-p. On note $L_1=\sup\{n\in \mathbb{N}^*, X_1=X_2=\cdots=X_n\}$ la longueur de la première séquence et $L_2=\sup\{n\in \mathbb{N}^*, X_{L_1+1}=\cdots=X_{L_1+n}\}$ la longueur de la seconde séquence. Montrer que $\mathrm{Cov}\,(L_1,L_2)=-\frac{(p-q)^2}{pq}$.

Ex 373: [Navale] Soient X_1, \ldots, X_n des variables aléatoires i.i.d. ayant une variance. On pose, pour $i \in [1, n], Y_i = X_1 + \cdots + X_i$. On note $M = (\text{Cov}(Y_i, Y_j))_{1 \le i, j \le n}$.

- 1. Relier M à la matrice $A^T A$, où $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}$.
- 2. Encadrer les valeurs propres de M.

Ex 374 : [St Cyr] On considère une répétition d'expériences de Bernoulli indépendantes et de même probabilité de succès $p \in]0,1$ [. Soient $r \in \mathbb{N}^*$ et X la variable aléatoire comptant le nombre de répétitions avant d'obtenir le r succès.

- 1. Écrire une fonction pascal (p, r) qui simule X et renvoie le nombre d'épreuves avant le $r^{\rm e}$ succès.
- 2. Écrire une fonction moyenne (p, r, k) qui renvoie une valeur moyenne pour k répétitions de la fonction précédente.
- 3. Calculer la loi de X.
- 4. Calculer l'espérance de X.

Ex 375 : [St Cyr] On considère une urne contenant N_1 boules blanches et N_2 boules rouges. On tire simultanément dans l'urne n boules, avec $1 \le n \le N_1 + N_2$. On note X le nombre de boules blanches tirées.

- 1. Déterminer la loi de X,
- 2. Retrouver l'identité de Vandermonde : $\sum_{k=0}^{n} \binom{N_1}{k} \binom{N_2}{n-k} = \binom{N_1+N_2}{n}.$
- 3. (Python) Définir une fonction $Hypergeom(N_{1}, N_{2}, n)$ qui reproduit l'expérience et renvoie une valeur de X.
- 4. Exprimer l'espérance de X en fonction de N_1, N_2 et n,
- 5. (Python) Définir une fonction $Moyenne(N_{1}, N_{2}, n, k)$ qui reproduit k expériences et renvoie la moyenne des valeurs de X obtenues.
- 6. On choisit $N_1 = 10, N_2 = 13, n = 5$, et k = 100. Comparer la moyenne empirique et l'espérance théorique.

Dauphine, ISUP MP 2023

Ex 376: [Dauphine] Soient $P, Q \in \mathbb{R}[X]$ non nuls tels que $P = \prod_{i=1}^{n} (X^2 + a_i X + b_i)$ et

 $Q = \prod_{i=1}^{n} (X^2 + c_i X + d_i), \text{ avec les } X^2 + a_i X + b_i \text{ et } X^2 + c_i X + d_i \text{ irréductibles dans } \mathbb{R}[X].$

On suppose que $\frac{P(X)}{Q(X)} = \frac{P(0)}{Q(0)}$.

- 1. Montrer que P et Q ont les mêmes racines complexes.
- 2. Montrer qu'il existe $\sigma \in S_n$ tel que : $\forall \in [1, n]$, $c_i = a_{\sigma(i)}$ et $d_i = b_{\sigma(i)}$.

Ex 377: [Dauphine]

- 1. Montrer que : $\forall x \in E, \|p(x)\| \le \|x\|$.
- 2. En déduire que toute valeur λ propre de $p \circ q$ vérifie : $|\lambda| \leq 1$.
- 3. Montrer que : $\forall x \in E$, $(x|p(x)) = ||p(x)||^2$. En déduire que toute valeur λ propre de $p \circ q$ vérifie : $\lambda \geq 0$.
- 4. Soit $f = p \circ q \circ p$.
 - (a) Montrer que f est un endomorphisme autoadjoint, puis que $\operatorname{Im}(p)$ est stable par f.
 - (b) Soient G et H des sous-espaces vectoriels de E. Montrer que $(G+H)^{\perp}=G^{\perp}\cap H^{\perp}$. En déduire $(\operatorname{Im}(p)+\operatorname{Ker}(q))^{\perp}$.
 - (c) Soit $x \in [\text{Ker}(q) + (\text{Ker}(p) \cap \text{Im}(q))]$. Déterminer pq(x).
 - (d) Montrer que $p \circ q$ est diagonalisable.

Ex 378: [ISUP] Soit f une application continue de [-1,1] dans \mathbb{R} .

On pose:
$$\forall n \in \mathbb{N}, \ U_n = \inf_{P \in \mathbb{R}_n[X]} \int_{-1}^1 (f(t) - P(t) - P(-t))^2 dt.$$

- 1. Montrer que la suite (U_n) est bien définie.
- 2. Déterminer la monotonie de la suite (U_n) .

 $\underline{\mathbf{Ex}}$ 379 : [Dauphine] Trouver la limite de la suite de terme général $\sum_{k=1}^{n} \tan\left(\frac{1}{k+n}\right)$.

 $\underline{\mathbf{Ex}}$ 380 : [Dauphine] Soit (x_n) une suite de réels strictement positifs qui tend vers 0 .

- 1. Montrer qu'il existe une infinité de n tels que $x_n = \min(x_0, \dots, x_n)$.
- 2. Montrer qu'il existe une infinité de n tels que $x_n = \max\{x_k, k \ge n\}$.

Ex 381: [Dauphine] Pour $n \in \mathbb{N}$, on pose $P_n = \sum_{k=0}^n \frac{X^k}{k!}$. Soit R > 0. Montrer qu'il existe $N \in \mathbb{N}^*$ tel que, pour tout $n \ge N$, toutes les racines complexes de P_n sont de module supérieur ou égal à R.

Ex 382 : [ISUP] Soit X une variable aléatoire telle que $X(\Omega) \subset [a,b]$ avec 0 < a < b.

- 1. Majorer la variance V(X). Cette valeur peut-elle être atteinte?
- 2. Dans quel cas V(X) est-elle maximale? Quelle est sa valeur?