
TP no 4 : couplages maximum dans les graphes bipartis MP-MP*, Lycée Chaptal

I. Graphes bipartis équilibrés

On appelle graphe biparti équilibré tout graphe non orienté G = (S,A) tel qu’il existe une partition (S1, S2) de S
(c’est-à-dire que S1 ∪ S2 = S, S1 6= ∅, S2 6= ∅ et S1 ∩ S2 = ∅) telle qu’il n’existe aucune arête entre sommets de S1 et
entre sommets de S2 et telle que card(S1) = card(S2).

Dans toute la suite on considèrera un graphe biparti équilibré G = (S,A) et (S1, S2) une partition comme ci-dessus. On
notera n le cardinal de S1 et S2, si,1, 0 ≤ i ≤ n− 1, les éléments de S1 et si,2, 0 ≤ i ≤ n− 1, ceux de S2. On représentera
un graphe biparti par un tableau (gi,j)0≤i,j≤n−1 de booléens tels que gi,j est vrai si et seulement s’il existe une arête
entre si,1 et sj,2.

Un couplage de ce graphe est un ensemble d’arêtes tel que tout sommet du graphe est au plus sur une arête. Un
couplage du graphe biparti G = (S,A) peut être représenté par un tableau t d’entiers de taille n tel que, si si,1 est couplé
à s2,j , la valeur t.(i) vaut j et, si si,1 n’est couplé à aucun sommet, t.(i) vaut −1.

Q1. a. Déclarer une matrice représentant le graphe biparti tel que card(S1) = card(S2) = 4 et les arête de G sont
{{s0,1, s0,2}, {s0,1, s1,2}, {s0,1, s2,2}, {s1,1, s3,2}, {s2,1, s0,2}, {s2,1, s1,2}, {s2,1, s2,2}, {s2,1, s3,2}, {s3,1, s3,2}}.
b. Déclarer un tableau représentant le couplage {{s0,1, s0,2}, {s2,1, s3,2}}.

Q2. On souhaite pouvoir vérifier si un tableau de taille n est bien un couplage d’un graphe biparti de cardinal 2n,
c’est-à-dire si les arêtes proposées par le tableau sont bien des arêtes du graphe biparti. Ecrire une fonction de type
verifie : int array array -> int array -> bool prenant en argument une matrice (gi,j)0≤i,j≤n−1 représentant
un graphe biparti, un tableau (ci)0≤i≤n−1 représentant un couplage vérifiant si les arêtes du couplage sont bien dans le
graphe.

Q3. Ecrire une fonction cardinal : int array -> int renvoyant le nombre d’arêtes d’un couplage.

II. Un premier algorithme

On rappelle que le degré d’un sommet dans un graphe est le nombre d’arêtes dont il est une extrémité.

Pour trouver un couplage maximum C (c’est-à-dire de plus grand cardinal) d’un graphe biparti équilibré G, on pro-
pose pour commencer l’algorithme suivant :

C:=Vide
tant que G possède au moins une arête faire

{s,s’}:=arête dont la somme des degrés des extrémités est minimal
ajouter à C l’arête {s,s’}
retirer de G les arêtes adjacentes à s et s’

fin faire
renvoyer C

Q4. Ecrire une fonction arete_min : int array array -> int*int prenant en argument un graphe biparti équilibré
renvoyant, si le graphe possède au moins une arête, une arête (i, j) dont la somme des degrés est minimal (i étant le
sommet de S1, j celui de S2), le couple (−1,−1) si le graphe n’a pas d’arête.

Q5. Ecrire une fonction supprime : int array array -> int*int -> unit qui prend en argument un graphe bi-
parti équilibré, une arête qui modifie le graphe en supprimant toutes les arêtes dont un sommet est l’un des sommets de
l’arête en argument.

Q6. Ecrire une fonction couplage_maximum1 : int array array -> int array prenant en argument un graphe bi-
parti équilibré renvoyant un couplage donné par l’algorithme proposé.

1



Q7. Etudier la complexité de cet algorithme et prouver qu’il renvoie un couplage maximum.

III. Chemins augmentants et couplages maximums

On rappelle l’algorithme vu en cours de recherche de couplage maximum dans un graphe biparti :

C:=Vide
chemin:=chemin augmentant pour C et G
tant que chemin<>Vide faire

C:= différence symétrique de C et chemin
chemin:= chemin augmentant pour C et G

fin faire
renvoyer C

Pour trouver un chemin augmentant pour le couplage C, on va procéder de la façon suivante :
- on considère comme atteints tous les sommets non couplés de S1 et on leur attribue comme antécédent −1
- si s2 ∈ S2 est voisin d’un sommet s1 atteint et {s1, s2} n’est pas dans C, s2 est atteint et son antécédent est s1
- si s1 ∈ S1 est voisin d’un sommet s2 atteint et {s1, s2} est dans C, s1 est atteint et son antécédent est s2.
Si un sommet non couplé s2 ∈ S2 est atteint, on aura un chemin augmentant en remontant les antécédents successifs
depuis s2.
S’il n’y a plus de sommets non atteints pouvant être atteint et si aucun sommet non couplé de S2 n’est atteint, il n’y a
pas de chemin augmentant.

Q8. Essayer l’algorithme sur le graphe donné dans la question 1.

On considèrera quatre tableaux :
- un tableau noté c représentant le couplage
- un tableau noté r (comme réciproque) de taille n dont l’élément d’indice j est −1 si sj,2 n’est pas couplé et i si sj,2 est
couplé avec si,1
- un tableau p1 de taille n contenant les prédécesseurs des sommets de S1

- un tableau p2 de taille n contenant les prédécesseurs des sommets de S2.

Q9. Ecrire une fonction couplage_reciproque : int array -> int array prenant en argument un tableau repré-
sentant le couplage c renvoyant le tableau r tel que r.(j) vaut i si c.(i) vaut j et -1 si j n’est pas couplé.

Q10. Ecrire une fonction augmenter_couplage : int array -> int array -> int array -> int array -> int ->
unit prenant en arguments un couplage c, son couplage réciproque r, des tableaux de prédécesseurs p1 et p2 et fin
l’indice de fin d’un chemin augmentant (donc d’un élément de S2). Cette fonction modifiera les couplages c et r par le
chemin augmentant issu de fin.

On rappelle que si un sommet s est atteint, ses voisins non encore atteints seront atteints et auront pour prédéces-
seur s selon la procédure décrite plus haut.

Q11. Ecrire des fonctions récursives croisées cherche1 et cherche2 prenant en argument une matrice g codant un
graphe biparti et quatres tableaux c, r, p1, p2, un sommet s qui modifie les tableaux p1, p2 et s’arrête lorsqu’un sommet
non couplé de S2 a été atteint ou lorsque tous les sommets qui peuvent être atteints l’ont été sans atteindre aucun
sommet non couplé de S2. Lorsqu’on découvre un sommet non couplé de S2, on renverra l’indice de ce sommet, sinon on
renverra −1.

Q12. Ecrire une fonction chemin_augmentant prenant en argument une matrice représentant un graphe biparti équilibré,
quatre tableaux représentant un couplage, son couplage réciproque, deux tableaux de prédécesseurs de valeurs initiales
−1. Cette fonction renverra −1 s’il n’existe pas de chemin augmentant, l’indice de fin d’un chemin augmentant s’il en
existe un ; elle modifiera les tableaux de prédécesseurs afin de pouvoir récupérer un chemin augmentant s’il existe.

Q13. Ecrire une fonction couplage_maximum2 prenant en argument une matrice représentant un graphe biparti équilibré
renvoyant un couplage maximum.

Q14. Etudier la complexité de cet algorithme.

2


