TD n°4 : langages et automates option informatique, Lycée Chaptal

Alphabets, mots, langages

Exercice 1 (lemme de Levi)

Soit ¥ un alphabet.

1. Soient u,v,x,y des mots sur X.. Montrer que uv = zy. si et seulement s’il existe un mot m tel que (x = um et
v =my) ou (u = xm et mv = y). Montrer que m est unique.

2. Soient u et v deux mots sur X. Montrer que u et v commutent si et seulement s’il existe un mot w, deux entiers p
et q tels que u = wP et v = wi.

Exercice 2 (lemme d’Arden)

Soit un alphabet .

1. Soient A et B des langages sur Y. Montrer que A*B est le plus petit langage au sens de 'inclusion solution de

léquation L = A.L U B. Montrer que, si A #), cette solution est unique.

2. Soient, pour tout 1 <7 < n, 1 < j < n, A;; des langages non vides, B; des langages. Montrer que ’équation
n

V1<i<n,L;= |J A ;L; UB; posséde une unique solution.
=1

]:
3. Résoudre l'équation Ly = {1}.L; U{0}Ly U {e}, Ly = {0}.L1 U {1} Lo.

Exercice 3
Soient Ly, Lo, L3 des langages sur un alphabet . Dire parmi les égalités suivantes celle qui sont vraies en vous
justifiant :
1. J LY = L3\ {e}.
i>0
2. Li.L7 = L\ {e}.
3. Ly ={e}UL;.L}.
4. (Ly.L1)*Lo = Lo(Ly Lo)*.
5. (Ly U Ls).Ly = (Ly.L3) U (Lo.L3).

Exercice 4

Soit ¥ un alphabet & deux éléments a et b (ou (,)). On appelle mot de Dyck tout mot m sur ¥ qui contient autant
de a que de b et tel que tout préfixe de m contient au moins autant de a que de b. On note, pour tout n € IN, C,, le
nombre de mots de Dyck de taille 2n.

1. Déterminer Cy, C;, Cs, Cs.
n
2. Montrer que, pour tout n € N, Cr11 = > CrpChp_.
k=0

3. On considére f la somme de la série entiére > Cp,z™ et R son rayon de convergence.

a. Montrer que, pour tout €] — R, R[, f(z) = 1+ af(x)%.

b. En déduire une expresion de f sur | — R, R].

4. Soit g : x> AT
+oo 9

a. Montrer que g est développable en série entiére sur] — 1, [et que, pour tout = €] — 1, 1[, g(z) = 3 %ﬂ (™)an.
n=0

b. Montrer que, pour tout n € N, C,, = %_H(%?)

Exercice 5

On dit que deux mots u et v sont conjugués s’il existe deux mots z, y tels que u = xy et v = yx.
1. Montrer que la relation de conjugaison est une relation d’équivalence sur ’ensemble des mots.
2. Montrer que u et v sont conjugués si et seulement s’il existe un mot w tel que vw = ww.

Expressions réguliéres
Exercice 6

Soit ¥ = {a, b}. Trouver des expressions réguliéres dénotant les langages suivant :
1. L’ensemble des mots.

. L’ensemble des mots non vides.

. L’ensemble des mots contenant (au moins) un a.

. L’ensemble des mots contenant exactement un a.

. L’ensemble des mots se terminant par b.

. L’ensemble des mots dont tout a est suivi directement d’un b.

. L’ensemble des mots dont tout b n’est pas suivi directement d’un a.
. L’ensemble des mots dont tout b n’a aucun a a sa droite.

0 O U W

Exercice 7

Soient 3 un alphabet et w un mot. Donner des expressions réguliéres qui dénote les langages suivants :
1. L’ensemble des mots qui contient w comme facteur.

. L’ensemble des mots qui contient une unique fois w comme facteur.

. L’ensemble des mots qui contiennent (au moins) deux occurrences disjointes de w.

. L’ensemble des mots qui contiennent (au moins) deux occurrences non nécessairement disjointes de w.
. L’ensemble des sous-mots de w.

. L’ensemble des mots dont w est un sous-mot.

S U W N

Automates

Exercice 8

Soient ¥ = {a,b} et A = (Q,i,F,) Pautomate fini défini par @ = {0, 1,2}, i = {0}, F = {1,2}, §(0,a) = 6(0,b) =1,
0(1,a) =6(1,b) =2, 6(2,a) = 6(2,b) = 0.

1. Dessiner ’automate.

2. Trouver une expression réguliére qui dénote le langage reconnu par I’automate.

Exercice 9

Soient ¥ = {a,b} et A = (Q, I, F,J) lautomate fini défini par Q@ = {0,1,2,3}, I = {0,1}, F = {2,3}, §(0,a) = {1, 3},
8(0,b) =0, 6(1,a) = {0,2}, 6(1,b) =0, 6(2,a) = {3}, §(2,b) = {1}, 6(3,a) = {1}, §(3,b) = 0.

1. Dessiner ’automate.

2. Trouver une expression réguliére qui dénote le langage reconnu par I’automate.

Exercice 10

Soient ¥ = {a,b,c} et A = (Q,I,F,d) 'automate fini sur ¥ définie par @ = {0,1,2,3}, I = {0}, F = {2,3},
6(0,a) = {0,1}, 6(0,b) = {0}, 6(0,¢) = {3}, §(1,a) = {2}, 6(1,b) = {2}, 6(1,¢) = {3}, 6(2,a) = 6(2,b) = 0,
0(2,¢) = {3}, 6(3,a) = 46(3,b) = §(3,¢) = {3}.

1. Dessiner 'automate.

2. Trouver une expression réguliére qui dénote le langage reconnu par ’automate.

Exercice 11
Eliminer les transitions spontanées de 'automate A = (Q, I, F,6) sur ¥ = {a, b, c} défini par Q = {1,2,3}, I = {1},
F=1{3},6(1,a) =1, §(2,b) =2, (3,c) =3, 6(1,¢) =2, §(2,¢) = 3.

Exercice 12

Soient ¥ = {a,b} et A = (Q, 1, F,) 'automate fini non déterministe défini par @ = {0, 1,2
6(0,a) = {1,2}, 6(0,b) = {3}, 6(1,a) = 0, 6(1,b) = {3}, 6(2,a) = {4}, §(2,b) =0, 6(3,a)
0(4,b) = {1}, 6(3,¢) = {2}, 6(2,¢) = {4}.

1. Dessiner cet automate.

2. Représenter un automate fini déterministe reconnaissant le méme langage.

:3,4}, I ={0}, F ={0,3},
=5(3,0) =0, 5(4,a) = 0,

Exercice 13

Soit e lexpression réguliére b(ab)*|(ba)*b.

1. Trouver un automate reconnaissante le langage dénoté par cette expression.
2. Déterminiser cet automate.

Exercice 14
Soit 3 = {a,b}.
1. Trouver un automate reconnaissant le langage des mots sur > comportant un nombre pair de a.

2. Trouver une expression réguliére dénotant ce langage.

Exercice 15

Soit ¥ un alphabet.

1. Trouver, pour chacun des langages {€}, 0, {a} pour a € ¥, un automate fini déterministe le reconnaissant.

2. Soient Ly et Lo deux langages reconnus par les automates finis déterministes A; et A,. Trouver un automate fini
non déterministe reconnaissante Li.Ls et Ly U Lo. Quelle condition garantit que cet automate soit déterministe ?

3. Trouver un automate non déterministe reconnaissant L. Est-il déterministe ? Si non, & quelle condition l’est-il 7
4. Donner une nouvelle preuve de I'une des implications du théoréme de Kleene.

Exercice 16

Soit ¥ un alphabet. Soit A = (Q, I, F, §) un automate fini non déterministe. Pour tout ¢ € @, on note L, I’ensemble
des mots reconnus par 'automate (Q, {q}, F,). Pour tout (q,7) € Q*x, on note A,, = {w € X /r € §(¢,w)}. Enfin,
pour tout ¢ € Q, on pose By ={e}sige Fet B,=0siq¢F.

1. Exprimer le langage reconnu par A & I'aide des L.

2. Montrer que, pour tout ¢ € Q, Ly = |J Aqr.Lr U By.
q€eQ
3. A l'aide du lemme d’Arden, montrer que le langage reconnu par A est régulier.

4. En déduire une implication du théoréme de Kleene.
Langages réguliers

Exercice 17

Soient ¥ un alphabet et w un mot.Si w = w;---w,, on note w' = w,---w;. Soit L un langage. On note
LT = {w" /w € L}, P(L) 'ensemble des préfixes de mots de L, S(L) I’ensemble des suffixes de mots de L, F(L)
I’ensemble des facteurs de mots de L.

Montrer que, si L est régulier, LT, P(L), S(L), F(L) sont réguliers.

Exercice 18

Soit ¥ un alphabet.

1. Montrer que ’ensemble des langages réguliers sur X est dénombrable.
2. Montrer que P(X*) n’est pas dénombrable.

3. En déduire que tous les langages ne sont pas réguliers.

Exercice 19

Soit ¥ = {a, b} un langage a deux lettres. Déterminer si les langages suivants sont réguliers :
.A{a™/n =0 mod 2}.
.{a" /n =2 mod 3}.

.A{a"b™ /n e IN}.

Aa"ba™ / (n,m) € IN?}.
Aa™ba™ /n < m}.

.{a"ba™ /n < m}.

{a? / p premier}.

8. {a™v™ /n < m}.

9. {w e X* /|wly < |w|p}-

10. {a"b™ /n+m mod 2}.

11. {a"d™ /n =m mod 3}.

12. L’ensemble des palindromes.

S T W N =

=

Implémentation en OCaml

Exercice 20

Dans tout I’exercice, on cherchera & représenter une lettre par son numéro d’apparition dans 1’ordre lexico-graphique.
1. La fonction int_of_char associe & une lettre son code ASCII.

a. Ecrire une fonction entier_vers_lettre : int -> char qui associe & un entier ¢ la i-éme lettre de 'alphabet.
b. Ecrire une fonction lettre_vers_entier réciproque de la précédente.

On considérera un alphabet ¥ de m lettres constitué des m premiéres lettres de ’alphabet. On représentera un

automate fini déterministe complet & n états sur ¥ par un enregistrement de trois champs : un champ initial qui
est un entier entre 0 et n — 1 représentant 1’état initial, un champ finals qui est une liste d’entiers entre 0 et n — 1, un
champ transitions qui est une matrice nxm tel que transitions. (i) . (j) est la transition depuis i étiquetée par j.

On déclare donc le type suivant :

type afd = {initial : int ; finals : int list ; tramns : int array array }

1. On suppose dans cette question que ¥ = {a, b, ¢, d, e} et on identifie une lettre de I’alphabet & sa place dans I'ordre
usuel des lettres.
a. Représenter 'automate défini par

let a= { initial=0 ; finals=[2] ;
transitions = [| [1 ;0 ;0 ;4 ;411 ; [l 2;4;4;1;4]1],;
(135232 ;4;411 ;0 0;4;4;4;311; 0 4;4;4;4;41]1 11}

b. Définir via le type précédent 'automate de ’exercice 8.

2. Définir une fonction delta : afd -> int -> char -> int prenant en argument un automate fini déterministe,
un état ¢, une lettre [renvoyant 6(q,).

3. Ecrire une fonction delta_etoile : afd -> int -> string -> int prenant en argument un automate fini dé-
terministe, un état ¢, un mot w renvoyant 6* (g, w).

4. Ecrire une fonction reconnait : afd -> string -> bool prenant en argument un automate A, un mot w et
renvoyant vrai si w € L(A), faux sinon.

Pour représenter un automate fini non déterministe sans transitions spontanées, on utilisera un enregistrement de
trois champs : un champ initiaux qui sera la liste des états initiaux, un champ finals qui sera la liste des états fi-
nals, transitions qui sera une matrice de taille nxm telle que transitions. (i) . (j) sera la liste des états de 4(¢, 7).

On déclaire donc le type suivant :

type afnd = {initiaux : int list ; finals : int list ; transitions : int list array array }

5. On suppose dans cette question que X = {a, b, ¢} et on utilise la méme identifications qu’a la question 1.
a. Représenter 'automate défini par

let a={ initiaux = [0 ; 1] ; finals = [1 ; 2] ;
transitions = [| [[1 ; [1;2] ; [0l I1; CI [1; [11; [0;11 11
(00 ; [o0;1;21 5 01 11 5 O 0O ; [1;253]1 5 [31 11 11 }

b. Définir un objet de type afnd représentant I’automate de ’exercice 10.

6. Ecrire une fonction est_deterministe : afnd -> bool prenant en argument un automate fini non déterministe
indiquant si 'automate représente un automate fini déterministe.

7. Ecrire une fonction enleve_doublons : ’a list -> ’a list prenant en argument une liste qui renvoie une liste
ayant le méme ensemble d’éléments que la liste en argument et telle que chaque élément n’apparaisse qu’au plus une
fois.

8. Ecrire une fonction delta : afnd -> int -> char -> int prenant en argument un automate fini non détermi-
niste, un état et une lettre qui renvoie la liste sans doublons des états atteints depuis I’état en argument par la lettre
en argument.

9. Ecrire une fonction delta_ens : afnd -> int list -> char -> int prenant en argument un automate fini non
déterministe, un ensemble d’états et une lettre qui renvoie la liste sans doublons des états atteints depuis les états
en argument par la lettre en argument.

10. Ecrire une fonction delta_etoile : afnd -> int list -> string -> int prenant en argument un automate
fini non déterministe, un état et un mot qui renvoie la liste sans doublons des états atteints depuis ’état en argument
par le mot en argument.

11. Ecrire une fonction reconnait : afnd -> string -> bool prenant en argument un automate fini non déter-
ministe, un mot renvoyant vrai si le mot est reconnu par I’automate, faux sinon.

12. Ecrire une fonction determinise : afnd -> afd prenant en argument un automate fini non déterministe ren-
voyant un automate fini déterministe reconnaissant le méme langage.

