Sujet Mines-Ponts 2018 : correction

1. Oui. Par exemple, dans la chaine t = aaa, la chaine s = aa a comme occurrences y = 2 et 3’ = 3. Cependant, 2 > 3 — 2 + 1.

2. Il ne peut y avoir d’occurrence ¢ < k — 1. Une occurrence est donc comprise entre k et n. Il y en a au plus n — k + 1. Supposons que
s et t sont constituées de k et n lettres identiques. Alors, il y a bien n — k 4+ 1 occurrences de s dans ¢.

3.

let rec longueur 1 = match 1 with
I 1 ->0
| x::q -> 1+longueur q;;

4.

let rec prefixe s t = match s with
| [1 -> true
| x::q -> if t=[] then false
else let t=y::r in x=y && prefixe q r;;

La relation de récurrence pour la complexité Cy pour une chaine de longueur k est Cy, = O(1) + Cx_1. On a donc Cy, = O(k).
5.

let recherche_naive s t =
let rec aux 1 k = match 1 with
I 0 ->10
| x::q -> if prefixe s 1 then k:: aux q (k+1)
else aux q (k+1)
in aux t (longueur s);;

6. Cette fonction appelle n — k + 1 fois la fonction préfixe. Sa complexité est donc (n — k 4 1) x O(k) = O(nk).

7. Soit @ € ¥ et ¢ € Q fixés. Si la suite (p?(g)); n’atteint pas 0, elle est strictement décroissante et minorée par 0, ce qui est absurde
pour une suite d’entiers. Ainsi, il existe j tel que p?(q) = 0. Dans ce cas, §(p?(q), @) est défini. Ainsi, il existe j > 0 tel que §(p? (q), @)
est défini.

8. On reprend 'automate A; auquel on ajoute une transition de 1 vers 1 étiquetée par a, une transition de 2 vers 0 étiquetée par b, une
transition de 3 vers 2 étiquetée par b, une transition de 3 vers 1 étiquetée par a.

9. Aj reconnait le langage des mots qui se terminent par aba.

10.

let copie_afdr a= let n=Array.length a.final in
let f=Array.copy a.final and t=Array.make_matrix n lambda -1 and r=Array.copy a.repli in
for i=0 to n-1 do
for j=0 to lambda-1 do
t.(1).(j)<-a.tramsition. (i).(j)
done;
done;
{final=f;transition=t;repli=r};;

11.

let enleve_repli A = let Al=copie_afdr A in
let T=Al.transition in
let k=Array.length T in
for i=0 to k-1 do
for j=0 to lambda-1 do
if T.(i).(j)=-1 then
T.(i).(§)<-T.(Al.repli.(i)).(3)
done
done;
Al
Il y a deux boucles "for" imbriquées, I'une de taille k, Pautre de taille A. En outre, pour chaque passage de boucle, il y a au plus O(1)
opérations effectuées. La complexité est donc O(kX).
12. On calcule 6(0,uq - - - u;) pour tout 1 < ¢ < mn. Si §(0,uy---u;) € F, alors on ajoute ¢ & la liste des occurrences.
13.

let occurrences A u =
let rec aux q u = match u with
| [1 -> if A.final.(q) then [q] else []
| t::v -> let gprime=A.transition.(q).(t) in
if A.final.(q) then q::(aux gprime v) else aux gprime v in
aux 0 u;;

La complexité est en O(n).

14. Il y a les états 0,1,2,3,4,5. Les transitions vont de 0 vers 1 étiquetée par a, 1 vers 2 étiquetée par b, 2 vers 3 étiquetée par a, 3 vers
4 étiquetée par b, 4 vers 5 étiquetée c.

Enfin, p(1) =0, p(2) =0, p(3) =1, p(4) =2, p(5) = 0.

15. Ce langage est celui des mots qui se termine par s.

16. On démontre par récurrence forte que les suffixes stricts du type w1 ---u; de uy ---u; sont les suffixes de u; - - - Uk 3y pour k>1.
C’est vrai pour l’entier 1.

Par définition, ug - - - Up(;) est le plus long préfixe st de uy - - - u; de ce type. Les suffixes stricts du type uj - - - ug de uj - - - u; sont donc
u1 -+ up,(g) et les suffixes stricts de uq - - - u, ;). Par récurrence, ce sont donc les ug - - - Uy (j) pour j>1

En particulier, uy - - - Up(i)—1 est un préfixe de uy - - - u;j—1. Ainsi, uy ---u;, 1 est un suffixe de uy ---uj, .

En particulier, le suffixe le plus long de w1 ---u; du type uj---u; est le suffixe le plus long de w1 ---u;_1 du type ui---uy tel que
Ug1 = u;. Ainsi, ce suffixe est du type u1 - S U1 tel que k = p7(i — 1) et ugy1 = u;. Cet entier k est donc le plus petit tel que
uy - - - ug est un suffixe de uy est suivi de u;. C’est donc le plus petit j tel que 6(p? (p(i — 1)), u;) est défini.

17.

let automate_kmp u =
let k=longueur u in
let f=Array.make (k+1) false and t=Array.make_matrix (k+1) lambda -1
and r=Array.make (k+1) O in

f.(k)=true;
let rec aux i m = match m with
I 0->0
| ar:q -> t.(i).(a) <- i+1l; aux (i+l) q in
aux 0 u;
let rec aux2 i m = match m with
| 1 ->0

| a::q -> let j=ref i-1 in
while t.(!j).(a)=-1 do
jr=r.('3)
done;
r.(i) <- t.('j).(a); aux (i+1) q
in aux2 1 m;
{final=f;transition=t;repli=r};;

18. Pour tout k, d(k,u) =k +1 si d(k, u) est défini. On a donc p(i) = 3(p%i (p(3 — 1)), u;) = pIi(p(i — 1)) + 1. De plus, p(k) < k — 1 pour
tout k donc, par récurrence, p? (k) < k — j donc p(i) < pli(p(i — 1)) +1 < p(i —1) —j; + 1.

k k k
D’aprés ce qui précede, > j; < > (14 p(i — 1) — p(2)) = k + p(0) — p(k) = k. Ainsi) j; = O(k).
=1 =1 i=1

k
19. Les créations des tableaux sont en O(k), la modification de f et ¢t en O(k). Enfin, la modification de r est en O(> j;) = O(k).
i=1
La complexité globale est en O(k).
20.

let recherche_kmp s t = occurences (enleve_repli (automate_kmp s)) t;;

La complexité est, d’aprés les calculs de complexité précédents, en O(k) + O(kX) + O(n) = O(kX) + O(n).

21. 1l s’agit du langage des mots qui se terminent par aa, ab ou ba.

22. On considére 'automate & 6 états : 0,1,2,3,4,5. Il y a une transition de 0 vers 1 étiquetée par b et des transitions de 0 vers 0
étiquetées par a et c¢; une transition de 1 vers 2 étiquetée par a, une transition de 1 vers 3 étiquetée par ¢, une transition de 2 vers 4
étiquetée par a, une transition de 2 vers 5 étiquetée par b. Les états finals sont 3, 4 et 5. Enfin, le repli de 1,2,3 et 4 est 0, celui de 5
est 1.

23.

let rec recherche_dictionnaire_kmp S t = match S with
I0->10

| s::80 -> (recherche_kmp s t)@recherche_dictionnaire_kmp SO t;;

La complexité est en O(Ak)+ O(n) pour chaque motif. Globalement, il faut additionner cette complexité pour chaque motif. Cela donne
O(|S|kX) + O(n]S)).

24. On peut créer un AFDR qui reconnaissent les mots qui se terminent par I’'un des motifs. Pour cela, il suffit de construire un automate
KMP pour chaque motif. Ensuite, on fait en sorte que I’état initial de chacun d’entre eux soit le méme et que les états suivants soient
les premiers états de chaque automate, puis les seconds... Les replis doivent également étre recalculés.

