
Sujet Mines-Ponts 2018 : correction

1. Oui. Par exemple, dans la chaîne t = aaa, la chaîne s = aa a comme occurrences y = 2 et y′ = 3. Cependant, 2 ≥ 3− 2 + 1.
2. Il ne peut y avoir d’occurrence i ≤ k − 1. Une occurrence est donc comprise entre k et n. Il y en a au plus n− k + 1. Supposons que
s et t sont constituées de k et n lettres identiques. Alors, il y a bien n− k + 1 occurrences de s dans t.
3.

let rec longueur l = match l with
| [] -> 0
| x::q -> 1+longueur q;;

4.

let rec prefixe s t = match s with
| [] -> true
| x::q -> if t=[] then false

else let t=y::r in x=y && prefixe q r;;

La relation de récurrence pour la complexité Ck pour une chaîne de longueur k est Ck = O(1) + Ck−1. On a donc Ck = O(k).
5.

let recherche_naive s t =
let rec aux l k = match l with
| [] -> []
| x::q -> if prefixe s l then k:: aux q (k+1)

else aux q (k+1)
in aux t (longueur s);;

6. Cette fonction appelle n− k + 1 fois la fonction préfixe. Sa complexité est donc (n− k + 1)×O(k) = O(nk).
7. Soit α ∈ Σ et q ∈ Q fixés. Si la suite (ρj(q))j n’atteint pas 0, elle est strictement décroissante et minorée par 0, ce qui est absurde
pour une suite d’entiers. Ainsi, il existe j tel que ρj(q) = 0. Dans ce cas, δ(ρj(q), α) est défini. Ainsi, il existe j ≥ 0 tel que δ(ρj(q), α)
est défini.
8. On reprend l’automate A1 auquel on ajoute une transition de 1 vers 1 étiquetée par a, une transition de 2 vers 0 étiquetée par b, une
transition de 3 vers 2 étiquetée par b, une transition de 3 vers 1 étiquetée par a.
9. A1 reconnaît le langage des mots qui se terminent par aba.
10.

let copie_afdr a= let n=Array.length a.final in
let f=Array.copy a.final and t=Array.make_matrix n lambda -1 and r=Array.copy a.repli in
for i=0 to n-1 do

for j=0 to lambda-1 do
t.(i).(j)<-a.transition.(i).(j)
done;

done;
{final=f;transition=t;repli=r};;

11.

let enleve_repli A = let A1=copie_afdr A in
let T=A1.transition in
let k=Array.length T in
for i=0 to k-1 do

for j=0 to lambda-1 do
if T.(i).(j)=-1 then

T.(i).(j)<-T.(A1.repli.(i)).(j)
done

done;
A1;;

Il y a deux boucles "for" imbriquées, l’une de taille k, l’autre de taille λ. En outre, pour chaque passage de boucle, il y a au plus O(1)
opérations effectuées. La complexité est donc O(kλ).
12. On calcule δ(0, u1 · · ·ui) pour tout 1 ≤ i ≤ n. Si δ(0, u1 · · ·ui) ∈ F , alors on ajoute i à la liste des occurrences.
13.

let occurrences A u =
let rec aux q u = match u with

| [] -> if A.final.(q) then [q] else []
| t::v -> let qprime=A.transition.(q).(t) in

if A.final.(q) then q::(aux qprime v) else aux qprime v in
aux 0 u;;

1

La complexité est en O(n).
14. Il y a les états 0, 1, 2, 3, 4, 5. Les transitions vont de 0 vers 1 étiquetée par a, 1 vers 2 étiquetée par b, 2 vers 3 étiquetée par a, 3 vers
4 étiquetée par b, 4 vers 5 étiquetée c.
Enfin, ρ(1) = 0, ρ(2) = 0, ρ(3) = 1, ρ(4) = 2, ρ(5) = 0.
15. Ce langage est celui des mots qui se termine par s.
16. On démontre par récurrence forte que les suffixes stricts du type u1 · · ·uj de u1 · · ·ui sont les suffixes de u1 · · ·uρk(i) pour k ≥ 1.
C’est vrai pour l’entier 1.
Par définition, u1 · · ·uρ(i) est le plus long préfixe st de u1 · · ·ui de ce type. Les suffixes stricts du type u1 · · ·uk de u1 · · ·ui sont donc
u1 · · ·uρ(i) et les suffixes stricts de u1 · · ·uρ(i). Par récurrence, ce sont donc les u1 · · ·uρj(i) pour j ≥ 1.
En particulier, u1 · · ·uρ(i)−1 est un préfixe de u1 · · ·ui−1. Ainsi, u1 · · ·uji−1 est un suffixe de u1 · · ·uji−1 .
En particulier, le suffixe le plus long de u1 · · ·ui du type u1 · · ·uj est le suffixe le plus long de u1 · · ·ui−1 du type u1 · · ·uk tel que
uk+1 = ui. Ainsi, ce suffixe est du type u1 · · ·uρj(i−1 tel que k = ρj(i − 1) et uk+1 = ui. Cet entier k est donc le plus petit tel que
u1 · · ·uk est un suffixe de uk est suivi de ui. C’est donc le plus petit j tel que δ(ρj(ρ(i− 1)), ui) est défini.
17.

let automate_kmp u =
let k=longueur u in
let f=Array.make (k+1) false and t=Array.make_matrix (k+1) lambda -1
and r=Array.make (k+1) 0 in
f.(k)=true;
let rec aux i m = match m with

| [] -> ()
| a::q -> t.(i).(a) <- i+1; aux (i+1) q in

aux 0 u;
let rec aux2 i m = match m with

| [] -> ()
| a::q -> let j=ref i-1 in

while t.(!j).(a)=-1 do
j:=r.(!j)

done;
r.(i) <- t.(!j).(a); aux (i+1) q

in aux2 1 m;
{final=f;transition=t;repli=r};;

18. Pour tout k, δ(k, u) = k+ 1 si δ(k, u) est défini. On a donc ρ(i) = δ(ρji (ρ(i− 1)), ui) = ρji (ρ(i− 1)) + 1. De plus, ρ(k) ≤ k− 1 pour
tout k donc, par récurrence, ρj(k) ≤ k − j donc ρ(i) ≤ ρji (ρ(i− 1)) + 1 ≤ ρ(i− 1)− ji + 1.

D’après ce qui précède,
k∑
i=1

ji ≤
k∑
i=1

(1 + ρ(i− 1)− ρ(i)) = k + ρ(0)− ρ(k) = k. Ainsi
k∑
i=1

ji = O(k).

19. Les créations des tableaux sont en O(k), la modification de f et t en O(k). Enfin, la modification de r est en O(
k∑
i=1

ji) = O(k).

La complexité globale est en O(k).
20.

let recherche_kmp s t = occurences (enleve_repli (automate_kmp s)) t;;

La complexité est, d’après les calculs de complexité précédents, en O(k) +O(kλ) +O(n) = O(kλ) +O(n).
21. Il s’agit du langage des mots qui se terminent par aa, ab ou ba.
22. On considère l’automate à 6 états : 0, 1, 2, 3, 4, 5. Il y a une transition de 0 vers 1 étiquetée par b et des transitions de 0 vers 0
étiquetées par a et c ; une transition de 1 vers 2 étiquetée par a, une transition de 1 vers 3 étiquetée par c, une transition de 2 vers 4
étiquetée par a, une transition de 2 vers 5 étiquetée par b. Les états finals sont 3, 4 et 5. Enfin, le repli de 1, 2, 3 et 4 est 0, celui de 5
est 1.
23.

let rec recherche_dictionnaire_kmp S t = match S with
| [] -> []
| s::S0 -> (recherche_kmp s t)@recherche_dictionnaire_kmp S0 t;;

La complexité est en O(λk)+O(n) pour chaque motif. Globalement, il faut additionner cette complexité pour chaque motif. Cela donne
O(|S|kλ) +O(n|S|).
24. On peut créer un AFDR qui reconnaissent les mots qui se terminent par l’un des motifs. Pour cela, il suffit de construire un automate
KMP pour chaque motif. Ensuite, on fait en sorte que l’état initial de chacun d’entre eux soit le même et que les états suivants soient
les premiers états de chaque automate, puis les seconds... Les replis doivent également être recalculés.

2

