FILIÈRE MP

EXERCICES DIVERS

PHYSIQUE

I- Propulsion d'une fusée

où m'(t) est la masse du propergol qui reste dans les réservoirs à l'instant t. Au départ de la fusée (t=0), la masse de proporcol amondé t=t'La propulsion d'une fusée de masse à vide m_0 , animée d'un mouvement vertical ascendant suivant l'axe Oz de vecteur unitaire \vec{k} , est assurée par l'éjection de gaz (produits par la combustion du propergol) à travers une masse de propergol emportée est m'_0 tuyère, avec une vitesse relative \vec{u} constante par rapport à la fusée et avec un débit massique : q=-

La fusée est caractérisée, à chaque instant, par les rapports caractéristiques :

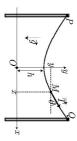
masse initiale totale (fusée + propergol) et
$$\lambda = \frac{q}{m_0 + m_0'}$$

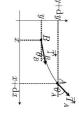
On donne $u=1\,600~\mathrm{m\cdot s^{-1}}$; r=5 ; $\lambda=10^{-2}~\mathrm{s^{-1}}$, $g=9,8~\mathrm{m\cdot s^{-2}}$ (g est supposé indépendant de l'altitude zde la fusée).

- 1. On considère le système fermé constitué de la fusée et de la masse $\delta m_g = q$, dt des gaz éjectés entre deux instants voisins t et t + dt.
- On considère le système ouvert constituée par la fusée et les gaz qu'elle contient à un instant donné Calculer la force de poussée $\vec{\pi}$ exercée par la réaction des gaz sur la fusée, en fonction de q et \vec{u} .
- Retrouver l'expression de la force de poussée $\vec{\pi}$.
- 3. La fusée part du sol sans vitesse initiale. Exprimer l'expression de la vitesse v(t) de la fusée en fonction

II- Equation d'une chaîne

constante). On note T la force exercée sur un point M par la partie droite de la chaîne. On raisonnera, dans un premier temps, sur une portion élémentaire AB de cette chaîne. Une chaîne souple est fixée en deux points P et Q; elle est soumise à son poids (sa masse linéique μ est





- 1. Montrer que $AB \simeq \mathrm{d}x\,\sqrt{1+\xi^2}$ où $\xi = \frac{\mathrm{d}y}{\mathrm{d}x}$.
- 2. A l'aide du principe fondamental de la dynamique développé sur AB, montrer qu'il existe une constante T_0 (appelée tension de la chaîne) telle que $T\cos\theta=T_0={\rm cte.}$
- 3. En déduire l'équation différentielle de la chaîne :

$$\frac{\mathrm{d}\xi}{\mathrm{d}x} = \frac{\mu g}{T_0} \sqrt{1 + \xi^2}$$

4. En intégrant, trouver l'expression de la courbe y(x) décrite par la chaîne, en fonction de h, T_0, μ, g, x .

III- Bassin en rotation

Un récipient cylindrique (C), de rayon a, contenant de l'eau (de masse volumique μ constante) tourne autour de son axe (Oz) à une vitesse angulaire ω . Dans le référentiel tournant \mathcal{R}' lié à (C), le fluide est au repos et prend la forme d'un ménisque.

- 1. Dans le référentiel \mathcal{R}' établir le bilan des forces qui s'exercent sur un élément de volume $\delta \tau$ de fluide, centré sur M(r,z).
- 2. Expliciter le PFD dans \mathcal{R}' et en décuire que la pression dans l'eau suit la loi : $P(r,z) = A + B \times (z-z_0) + C \, r^2$ où l'on exprimera les constantes A,B,C en fonction de μ,g,ω,z_0,P_0 (pression atmosphérique à la surface de l'eau).

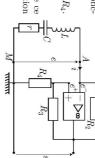
3. En déduire la forme du ménisque (cn donnera l'expression analytique de l'interface air/eau sous la forme

IV- Résistance négative

Dans le circuit ci-contre l'ALI (amplificateur Linéaire Intégré) fonctionne en mode linéaire ($e^+ = e^-$ et

tionne en mode linéaire $(e^+ = e^- \text{ et } i^+ = i^- = 0)$. Dans le circuit ci-contre l'ALI (amplificateur Linéaire Intégré) fonc-

- 1. Donner l'expression du rapport $\frac{e}{z}$ en fonction de R_2 , R_3 , R_4 . Pourquoi appelle-t-on ce montage résistance négative?
- 2. Quelle condition doivent vérifier R_2 , R_3 , R_4 et r pour que ce montage réalise un oscillateur sinusoïdal (e(t) est une fonction sinusoïdale)?



Réponses

I- Propulsion d'une fusée

$$1. \ \vec{\pi} = qu \, \vec{e}_z$$

3.
$$v(t) = -gt - u\,\ln(1-\lambda t)$$

II- Equation d'une chaîne

4.
$$y = h + \frac{T_0}{\mu g} \left[\cosh\left(\frac{\mu gx}{T_0}\right) - 1 \right]$$

III- Bassin en rotation

2.
$$P(r,z) = P_0 - \mu g (z - z_0) + \frac{\mu r^2 \omega^2}{2}$$

3.
$$z = z_0 + \frac{r^2 \omega^2}{2}$$

IV- Résistance négative

1.
$$\frac{e}{i} = -\frac{R_2 R_4}{R_3}$$

2. $r = \frac{R_2 R_4}{R_3}$

2.
$$r = \frac{K_2 K_4}{R_3}$$