Intégrales

On considère l'intervalle $I =]0, +\infty[$.

Pour tout entier $k \geqslant 1$, on pose

$$\forall t \in I, \quad u_k(t) = te^{-kt}.$$

Pour tout $k \geqslant 1$, la fonction u_k est continue sur l'intervalle ouvert I.

Elle tend vers 0 (= une limite finie) au voisinage de 0, donc elle est intégrable au voisinage de 0.

Lorsque t tend vers $+\infty$,

$$u_0(t) = t e^{-t/2} \cdot e^{-t/2} = {\scriptstyle {\mathcal O}}(e^{-t/2})$$

et

$$\forall \; k \geqslant 2, \quad \mathfrak{u}_k(t) = t e^{-(k-1)t} \cdot e^{-t} = o(e^{-t})$$

donc u_k est intégrable au voisinage de $+\infty$.

Ainsi chaque fonction \mathfrak{u}_k est intégrable sur I.

La série de fonctions $\sum u_k$ converge simplement sur I en tant que série géométrique de raison $0 < e^{-t} < 1$ (puisque t > 0) et

$$\forall t > 0, \qquad S(t) = \sum_{k=1}^{+\infty} u_k(t) = t \sum_{k=1}^{+\infty} (e^{-kt})^k = \frac{te^{-t}}{1 - e^{-t}} = \frac{t}{e^t - 1}.$$

- On voit sur l'expression précédente que la somme S est continue sur I.
 - Enfin, pour tout $k \ge 1$,

$$\int_{I}\left|u_{k}(t)\right|dt=\int_{0}^{+\infty}te^{-kt}\;dt=\frac{1}{k^{2}}$$

(par intégration par parties, bien sûr).

▶ Comme la série $\sum 1/k^2$ est convergente, on peut appliquer le théorème d'intégration terme à terme : la somme S est donc intégrable sur I et

$$\int_0^{+\infty} \frac{t}{e^t - 1} dt = \sum_{k=1}^{+\infty} \int_0^{+\infty} u_k(t) dt = \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

- Et si on avait choisi $I = [0, +\infty[$?
- L'étude de l'intégrabilité était simplifiée : chaque fonction u_k étant continue sur $[0, +\infty[$, il suffisait de l'étudier au voisinage de $+\infty$ pour justifier son intégrabilité.
- La convergence simple était un peu plus délicate! Pour t=0, on n'a plus une série géométrique convergente (la raison est égale à 1), mais une série de terme général nul (à cause du facteur t).
- La régularité de la somme était plus délicate aussi! Un développement limité montre que S(t) tend vers 1 au voisinage droit de 0 alors que S(0) = 0 (somme de la série de terme général nul). Par conséquent, S est continue sur $]0, +\infty[$ et admet une limite à droite finie en 0, donc S est bien continue par morceaux sur $[0, +\infty[$ (sans être continue sur cet intervalle).