Espaces probabilisés discrets

* L'ensemble vide \varnothing appartient à la tribu $\mathscr E$ et comme μ_1 et μ_2 sont deux mesures de probabilité

$$\mu_1(\varnothing)=0=\mu_2(\varnothing),$$

donc $\emptyset \in \mathscr{C}$.

 \bullet Si $A\in \mathscr{E}$, alors $\mu_1(A)=\mu_2(A)$ par définition. Mais $A^c\in \mathscr{E}$ aussi et

$$\mu_1(A^c) = 1 - \mu_1(A) = 1 - \mu_2(A) = \mu_2(A^c),$$

donc $A^c \in \mathscr{C}$.

Considérons enfin une suite croissante d'événements

$$(A_n)_{n\in\mathbb{N}}$$

appartenant à \mathscr{C} :

$$\forall \ n \in \mathbb{N}, \qquad \mu_1(A_n) = \mu_2(A_n).$$

Comme $\mathscr E$ est stable par union dénombrable (comme toute tribu doit l'être), on a donc

$$\bigcup_{n\in\mathbb{N}}A_n\in\mathscr{E}$$

et par continuité croissante,

$$\mu_1\bigg(\bigcup_{n\in\mathbb{N}}A_n\bigg)=\lim_{n\to+\infty}\mu_1(A_n)=\lim_{n\to+\infty}\mu_2(A_n)=\mu_2\bigg(\bigcup_{n\in\mathbb{N}}A_n\bigg).$$

Par conséquent,

$$\bigcup_{n\in\mathbb{N}}A_n\in\mathscr{C}$$

et l'ensemble $\mathscr C$ est bien une "classe monotone".