Topologie d'un EVN [26, 31]

*

On démontre ici la caractérisation globale de l'adhérence : on ne cherche plus à caractériser les points de E qui sont adhérents à A (ce qu'on a fait au [25]), mais à caractériser l'ensemble \overline{A} comme un "fermé extrémal".

[26.1] Dans un premier temps, on montre que l'adhérence \overline{A} de A est stable par passage à la limite : c'est donc une partie fermée de E.

- Soit $(x_n)_{n\in\mathbb{N}}$, une suite d'éléments de \overline{A} qui converge vers un point $\ell\in E$. Il s'agit de prouver que $\ell\in \overline{A}$ et donc qu'il existe une suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers ℓ .
- Pour tout $n \in \mathbb{N}$, le point x_n est adhérent à A. Or $2^{-n} > 0$, donc [25.2] il existe un point $u_n \in A$ tel que

$$\|\mathbf{x}_{n}-\mathbf{u}_{n}\|\leqslant 2^{-n}.$$

Par inégalité triangulaire,

$$\|\ell - u_n\| = \|\ell - x_n + x_n - u_n\| \le \|\ell - x_n\| + \|x_n - u_n\| \le \|\ell - x_n\| + 2^{-n}.$$

Le majorant est la somme de deux quantités de limite nulle, donc $\|\ell-u_n\|$ tend vers 0 par encadrement.

 \bullet On a ainsi démontré qu'il existait une suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ d'éléments de A qui convergeait vers ℓ . Donc $\ell\in\overline{A}$.

[26.2] Par [26.1], l'adhérence de A est un fermé et par [24.3], l'adhérence de A contient A :

$$A \subset \overline{A}$$
.

Considérons maintenant une partie fermée F qui contienne A : A \subset F.

Pour tout $y\in \overline{A}$, il existe [25.3] une suite $(u_n)_{n\in \mathbb{N}}$ d'éléments de A qui converge vers y.

Comme $A \subset F$, la suite $(u_n)_{n \in \mathbb{N}}$ est une suite d'éléments de F qui converge vers y. Or F est fermé, donc [23.8] la limite y est un élément de F.

Ainsi $\overline{A} \subset F$.

№ On vient donc de démontrer que l'adhérence de A était un fermé qui contenait A et que, de tous les fermés qui contiennent A, l'adhérence de A est le plus petit de tous.

*

On démontre maintenant une caractérisation analogue de l'intérieur d'une partie A qu'on présente comme un "ouvert extrémal".

[31.1] Soit x, un point intérieur à A. Par définition [30.1], A est un voisinage de x et en particulier $x \in A$. Donc $A^{\circ} \subset A$.

Plus précisément, il existe un rayon r>0 tel que la boule ouverte $B_o(x,r)$ soit contenue dans A. Or cette boule ouverte est une partie ouverte [22.5], donc $B_o(x,r)$ est un voisinage de chacun de ses points [déf. 22.1] et comme $B_o(x,r)\subset A$, la partie A est un voisinage de chaque point de $B_o(x,r)$ [17.3]. De la sorte, la boule $B_o(x,r)$ est tout entière contenue dans A° , ce qui prouve que A° est un voisinage de x.

On a donc démontré que A° était un voisinage de chacun de ses points, c'est-à-dire une partie ouverte de A.

Considérons maintenant une partie ouverte G contenue dans A : G ⊂ A. Par définition, pour tout x ∈ G, la partie G est un voisinage de x et donc [17.3] A est un voisinage de x. Cela signifie que A est un voisinage de chaque point de G, c'est-à-dire [30.1] que chaque point de G est à l'intérieur de A :

On vient donc de démontrer que l'intérieur de A est une partie ouverte contenue dans A et que, de tous les ouverts contenus dans A, l'intérieur de A est le plus grand de tous.

[31.3] On sait [26.2] que \overline{A} est une partie fermée qui contient A :

$$A \subset \overline{A}$$
.

On en déduit que

$$(\overline{A})^{c} \subset A^{c}$$
.

En tant que complémentaire d'une partie fermée, $(\overline{A})^c$ est une partie ouverte et elle est contenue dans A^c . Par [31.1], elle est aussi contenue dans l'intérieur de A^c . Donc

$$(\overline{A})^c \subset (A^c)^{\circ}$$
.

Réciproquement, on sait [26.1] que $(A^c)^\circ$ est un ouvert contenu dans A^c . Par passage au complémentaire,

$$A = (A^c)^c \subset [(A^c)^\circ]^c$$
.

Ainsi [23.1] $[(A^c)^\circ]^c$ est une partie fermée qui contient A et on déduit de [26.2] que

$$\overline{A}\subset [(A^c)^\circ]^c$$

et donc que

$$(A^{c})^{\circ} \subset (\overline{A})^{c}$$
.

Par double inclusion, on a démontré que $(A^c)^\circ = (\overline{A})^c$.

La propriété précédente est vraie pour toute partie $A\subset E$, en particulier pour A^c . On a donc démontré que

$$[(A^c)^c]^\circ = A^\circ = (\overline{A^c})^c$$

et donc, par passage au complémentaire, que

$$(A^{\circ})^{c} = \overline{A^{c}}.$$